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ABSTRACT 

In this paper we discuss the effects of radiation, double dispersion and MHD on heat and mass transfer in a mixed 
convective Newtonian flow over a semi infinite vertical plate embedded in a non-Darcy porous medium. The basic 
governing equations are made dimensionless by introducing similarity variable and transformations. The resulting 
equations are then solved numerically by fourth order Runge-Kutta method coupled with shooting technique. Velocity, 
Temperature and Concentration profiles against the similarity variable are shown graphically. Also the profiles of heat and 
mass transfer against the mixed convection parameter are shown graphically. 
 
Keywords: mixed convection, double dispersion, heat transfer, mass transfer, radiation. 
 
INTRODUCTION 

In the case of a fluid through a porous medium, 
Thermal and Solutal transport are of a great interest from 
both theory and application point of view. Heat transfer in 
the case of homogeneous fluid-saturated porous media has 
been studied with relation to different applications like 
dynamics of hot underground springs, terrestrial heat flow 
through aquifer, hot fluid and ignition front displacements 
in reservoir engineering, heat exchange between soil and 
atmosphere, flow of moisture through porous industrial 
materials, and heat exchanges with fluidized beds. Mass 
transfer in isothermal conditions has been studied with 
applications to problems of mixing of fresh and salt water 
in aquifers, miscible displacements in oil reservoirs, 
spreading of solutes in fluidized beds and crystal washers, 
salt leaching in soils, etc. An integral approach to the heat 
and mass transfer by natural convection from vertical 
plates with variable wall temperature and concentration in 
porous media saturated with an electrically conducting 
fluid in the presence of transverse magnetic field has been 
studied by [1]. The unsteady free convective MHD flow 
and mass transfer of a viscous, incompressible, electrically 
conducting fluid past an infinite vertical, non-conducting 
porous plate with variable temperature was analyzed by 
[2]. Natural convection from a permeable sphere 
embedded in a variable porosity porous medium due to 
thermal dispersion was analyzed by [3]. Dual solutions in 
mixed convection flow near a stagnation point on a 
vertical porous plate were investigated by [4]. Combined 
heat and mass transfer by natural convection under 
boundary layer approximations has been studied by [5], 
[6]. Coupled heat and mass transfer by mixed convection 
in Darcian fluid-saturated porous medium has been 
analyzed by [7]. The problem of thermal dispersion and 
radiation effects on non-Darcy natural convection in a 
fluid saturated porous medium were studied by [8]. 
Thermal radiation heat transfer effects on the Rayleigh of 
gray viscous fluids under the effect of a transverse 
magnetic field have been investigated by [9]. The steady 
two-dimensional stagnation-point flow of an 

incompressible fluid over a stretching sheet by taking into 
account radiation effects using the Rossell and 
approximation to model the heat transfer has been 
investigated by [10]. Heat and mass transfer for Soret and 
Dufour’s effect on mixed convection boundary layer flow 
over a stretching vertical surface in a porous medium filled 
with a visco-elastic fluid was studied by [11]. The study of 
melting effect is considered by many authors. [12] Studied 
the velocity and temperature fields, the heat transfer rate 
and the melting layer thickness. The non-linear behavior 
of non-Newtonian fluids in a porous medium is quite 
different from that of Newtonian fluids in porous media. 
The conjugate mixed convection conduction heat transfer 
of a non-Newtonian power law fluid on a vertical heated 
plate which is moving in an ambient fluid was noticed by 
[13]. Analytical method to investigate transient free 
convection boundary layer flow along a vertical surface 
embedded in an anisotropic porous medium saturated by a 
non-Newtonian fluid was presented by [14]. Effect of non-
Newtonian natural convection at a melting front in a 
permeable matrix was discussed by [15]. These results 
documented the dependence of the local heat transfer rate 
at the melting front on the type of power law fluid 
saturating the porous matrix. [16] presented a numerical 
study for non-Darcy hydro magnetic free convection flow 
of an electrically conducting and heat generating fluid 
over a vertical cone and a wedge adjacent to a porous 
medium. [17] performed an analysis for non-Darcy free 
convection flow of an electrically conducting fluid over an 
impermeable vertical plate embedded in a thermally 
stratified, fluid-saturated porous medium for the case of 
power law surface temperature.  The effect of suction 
or injection on the free convection boundary layers 
induced by a heated vertical plate embedded in a saturated 
porous medium was discussed by [18]. 

In this paper we studied the effects of radiation, 
double dispersion and MHD on heat and mass transfer in a 
mixed convective Newtonian flow over a semi infinite 
vertical plate embedded in a non-Darcy porous medium. 
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MATHEMATICAL FORMULATION 
Consider a two dimensional MHD mixed 

convective heat and mass transfer from a semi infinite 
vertical plate embedded in a non-Darcy porous medium 
saturated with a Newtonian fluid. The x -coordinate is 
measured along the plate from its leading edge and the y -
coordinate normal to it. A magnetic field is applied in the 
y - direction, the wall is maintained at constant 

temperature wT  and constant concentration wC . The 
temperature and mass concentration of the ambient 

medium are assumed to be T and C respectively, under 
these assumptions and using the Boussinesq 
approximation, the boundary layer equations can be 
written as 
Continuity equation: 
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Momentum equation: 
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Energy equation: 
 

2
1 r

e
p p

qT T T u
u v

x y y y c y c y




        
              

    (3) 

Concentration equation: 
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Boussinesq approximation: 
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together with the boundary conditions: 
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where u and v are velocity components in x and y 
directions, T is the temperature, K is the permeability 
constant, C is an empirical constant, υ is the kinematic 
viscosity, g is the acceleration due to gravity, βT and βC are 
the coefficients of thermal and solute expansions. Ec is the 
Eckert number, ρ is the density, Cp is the specific heat at 
constant pressure, M is the magnetic number. The ‘+’ and 
‘-‘signs in equation (2) correspond to the flow with aiding 
and opposing buoyancies respectively. One can define the 
velocity, temperature and concentration in terms of 
similarity space variable, η = (y/x)√Pex, as follows: 
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where ψ is the stream function. With the help of similarity 
transformations given by (7), one can transform the 
governing equations as follows: 
 

   ' '' ' '1 x

x

Ra
M f f N

Pe
                                   (8) 

 

   2'' ' ' '' ' ' ''4 1
1 Pr 0

3 2 Cf E f D f f
R

          
 

   (9) 

 

 '' ' ' '' '' '1
0

2
Lef LeB f f                              (10) 

where  

Local Rayleigh number,  T w
x

Kg T T x
Ra


 


 , 

Magnetic parameter, 
2 2

0eK H
M




  

Lewis number, Le
b


 , Peclet number, 

x

u x
Pe


 , 

Prandtl number, Pr



  

Schmidt number, Sc
b


 , Buoyancy ratio, 

 
 

C w

T w

C C
N

T T












, Eckert number, 

 
2

c
p w

u
E

c T T







 

Inertia parameter, c K u
F


  

The corresponding boundary conditions are 
transformed to  
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where prime indicates the differentiation is made with 
respect to similarity space variable η.  
Also the local heat transfer rate is given by 
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where ke is the effective thermal conductivity of the porous 
medium which is the sum of the molecular thermal 
conductivity k and the dispersion thermal conductivity kd. 
The modified Nusselt number is defined as 
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and also one can define a dimensionless Sherwood number 
as  
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RESULTS AND DISCUSSIONS 
The dimensionless equations given by (8), (9) 

and (10) together with the boundary conditions given by 
(11) are solved numerically by means of Runge-Kutta 
fourth order method coupled with shooting technique. The 
effects of magnetic parameter (M) and buoyancy ratio (N) 
on the fluid velocity, temperature and concentration 
profiles are illustrated in Figures 1-3, respectively with 
respect to the following set of parameters: R = 0.4, E = 
0.5, P = 0.73, Le = 0.5, Ra/Pe = 1. From Figure-1 it is 
noticed that increase in the magnetic parameter M reduces 
the velocity both in presence and absence of double 
dispersion. Also it is observed that increase in the 
buoyancy ratio enhances the fluid velocity. From Figure-2 
it can be found that temperature is increased with the 
increase in the magnetic parameter adjacent to the wall 
and as we move away from the wall this will get reversed. 
Also from the same figure we found that increase in the 
buoyancy ratio enhances the temperature in both presence 
and absence of magnetism. Figure-3 depicts the fact that 
increase in the magnetic parameter enhances the 
concentration of the fluid.  
 

 
 

Figure-1. Variation of dimensionless velocity f′ with 
similarity variable η (R = 0.4, E = 0.5, P = 0.73, 

Le = 0.5, Ra/Pe = 1). 
 

 
 

Figure-2. Variation of dimensionless temperature θ with 
similarity variable η (R = 0.4, E = 0.5, P = 0.73, 

Le = 0.5, Ra/Pe = 1). 

 
 

Figure-3. Variation of dimensionless concentration  with 
similarity variable η (R = 0.4, E = 0.5, P = 0.73, Le = 0.5, 

Ra/Pe = 1). 
 

The effects of mixed convection on velocity and 
temperature and concentration profiles are shown in 
Figures 4-6 respectively with respect to the following set 
of parameters: R = 0.4, E = 0.5, P = 0.73, N= 2, Le = 0.5. 
From Figure-4 we notice that velocity increases with an 
increase in the mixed convection parameter Ra/Pe. 

It can be also seen from fig.5 that increase in the 
mixed convection parameter enhances the temperature of 
the fluid near the wall. Also from fig.6 we notice that 
increase in the mixed convection parameter reduces the 
concentration profile. This is observed both in presence 
and absence of the magnetic parameter. Figure-7 shows 
that the variation in velocity profile is much significant in 
non MHD flows, this is due to the absence of dragging 
forces. 
 

 
 

Figure-4. Variation of dimensionless velocity f′ with 
similarity space variable η (R = 0.4, N = 2, E = 0.5, 

P = 0.73, Le = 0.5). 
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Figure-5. Variation of dimensionless temperature θ with 
similarity space variable η (R = 0.4, N = 2, E = 0.5, 

P = 0.73, Le = 0.5). 
 

 
 

Figure-6. Concentration  with similarity variable η 
(R = 0.4,N = 2, E = 0.5, P = 0.73,Le = 0.5). 

 
Figure-8 depicts that increase in Lewis number 

Le reduces the concentration of the fluid. This change is 
more in the absence of magnetic parameter. From Figure-9 
we observe that increase in the Radiation parameter R 
does not produce any significant change in the velocity 
profile. The variation of the heat and mass transfer 
coefficients with the mixed convection parameter (Ra/Pe) 
for various magnetic parameter M, buoyancy ratio N, 
thermal dispersion D and solutal dispersion coefficient B. 
It can be observed from the Figure-10 that increase in 
magnetic parameter reduces the heat transfer rate. In case 
of opposing buoyancy and double dispersion, the effect of 
mixed convection on Nusselt number is negligible for a 
magnetic fluid flow whereas in non- magnetic flows, the 
Nusselt number slightly decreases with the increase in 
Ra/Pe. Increase in buoyancy brings a considerable change 
in the Nusselt number. It reduces the heat transfer 
coefficient on increase of Ra/Pe. Also it is found from the 
Figure-11 that Sherwood number increases with the 
increase in the buoyancy ratio. With increase in the mixed 

convection parameter, we observe that the mass transfer 
rate increases. 
 

 
 

Figure-7. Variation of dimensionless velocity f′ with 
similarity space variable η (R = 0.4, N = 2, E = 0.5, 

P =0.73, Ra/Pe = 1). 
 
 
 

 
 

Figure-8. Variation of dimensionless concentration  with 
similarity space variable η (R =0.4,N =2, E = 0.5, P 

=0.73, Ra/Pe = 1). 
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Figure-9. Variation of dimensionless velocity f′ with 
similarity space variable η (Le =1.0, N = 2, E = 0.5, 

P = 0.73, Ra/Pe = 1). 
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Figure-10. Heat transfer coefficient as a function of Ra/Pe 
when R=0.4, Le=0.5, P = 0.73, E =0.5. 
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Figure-11. Mass transfer coefficient as a function of 
Ra/Pe when R=0.4, Le=0.5, P = 0.73, E =0. 
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