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ABSTRACT 

We study numerically transonic flow past a cylinder located above a convex corner. The cylinder produces a 
detached shock which interacts with the expansion flow region over the corner. Solutions of the Reynolds-averaged Navier-
Stokes equations are obtained with a finite-volume solver of second-order accuracy on fine meshes. The dependence of 2D 
shock position on the free-stream Mach number, Reynolds number, corner angle, and rounding arc is studied. Also 3D flow 
simulations for two spans of the cylinder are discussed. 
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1.  INTRODUCTION 

In the last two decades, numerical simulations of 
inviscid and turbulent transonic flow demonstrated 
instability of double supersonic regions on airfoils 
comprising a flat segment or nearly flat arc [1- 4]. The 
instability arises due to an interaction between (i) the shock 
wave terminating the bow supersonic region and (ii) the 
front (sonic line) of the aft supersonic region.   

The same type of instability occurs in channels 
with a bend or break of walls and a supersonic velocity at 
the inlet [5]. In this case, the shock wave forms in front of 
a compression ramp of a wall, whereas the sonic surface 
arises over the expansion corner of the opposite wall. A 
dependence of the shock location on the velocity profile 
given at the inlet was studied in [5, 6].      

Instability of a detached shock wave, which forms 
ahead of a channel, was examined in [7]. The shock leg 
interaction with an expansion flow created at the channel 
throat was analyzed. Effects of the angle of attack on the 
shock behavior in the entrance region were studied. In 
practice, such a problem occurs, e.g., when a supersonic 
intake encounters variations of the incoming flow 
parameters because of the atmospheric turbulence or a 
maneuvering flight of aircraft [8, 9].  

In [10] we explored the instability of a detached 
shock in front of a cylinder placed above an expansion 
corner. Free-stream Mach numbers M∞ and streamwise 
coordinates xc of the corner, at which the shock position is 
extremely sensitive to small perturbations, were determined 
for two radii of the cylinder.         

This paper aims at further study of the problem 
examined in [10]. First, in Section 2 we formulate boundary 
conditions and outline a numerical method. Then in Section 
3 we discuss 2D shock wave positions and their dependence 
on the corner angle θ, Mach number M∞, Reynolds number, 
and a circular arc that rounds the corner. Section 4 addresses 
3D flow simulations for two cylinders of finite span. 
 
2. FORMULATION OF THE PROBLEM AND A  
    NUMERICAL METHOD 

For 2D flow simulation, we consider a plane (x,y) 
and a circle of radius r1=0.003 m  whose center is located at 
a height  h=0.3 m  and has an abscissa of 0.21 m. The circle 

is a cross section of the 3D cylinder of infinite span. In what 
follows, the Cartesian coordinates (x,y,z) and radius r1 are 
non-dimensionalized by h ; hence, the coordinates of the 
circle center are  x=0.7 and  y=1, see Figure-1. 
 

 
 

Figure-1. Sketch of the 2D computational domain and 
shock/sonic line location in the case θ>3.8°. 

 
A wall with an expansion corner is given by the 

expressions 
 
y=0  at  −1 ≤ x ≤ xc ,    y= −(x−xc) tan θ   at  xc< x ≤ 1     (1)  
 
where  xc =0.4.  

The inlet boundary of the computational domain is 
set at x=−1, 0≤y≤H. The upper boundary y=H, −1≤x≤1.5 is 
remote at a distance H=16 from the wall in order to 
eliminate its influence on the flow between the wall and 
cylinder. The outlet boundary is constituted by a vertical 
segment x=1.5, 1≤ y≤H, and a segment connecting the point 
x=1.5, y=1 with the end of wall   x=1, y= −(1−xc) tan θ. 

The free stream is uniform and parallel to the x-
axis. Therefore the x- and y-components of the flow 
velocity are  
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U∞=M∞ a∞  ,      V∞= 0 ,     W∞= 0 .                     (2) 
 

At the inlet we prescribe the velocity components 
(2), static pressure p∞=105 N/m2, a turbulence level of 0.2%, 
and static temperature T∞=250 K which determines the 
sound speed a∞=317.02 m/s. At the outlet, a condition of the 
supersonic flow regime is imposed. On the wall (1) and 
cylinder we use the no-slip condition and vanishing heat 
flux. Initial data are either parameters of the uniform free 
stream or a flow field calculated for a different free-stream 
Mach number.  

The air is treated as a perfect gas whose specific 
heat at constant pressure cp is 1004.4 J/(kg K), the ratio 
γ=cp/cv of specific heats is  1.4, and molar mass is  28.96 
kg/kmol. The Sutherland formula is used for molecular 
dynamic viscosity.  

The 2D turbulent flow is governed by the unsteady 
Reynolds-averaged Navier-Stokes equations with respect to 
velocity components U(x,y,t), V(x,y,t), density  ρ(x,y,t),  and 
static temperature T(x,y,t) :  
 
ρt + (ρU)x+ (ρV)y=0,       (3) 
 
(ρU)t+ (ρU2 )x +  (ρUV)y = −px + τx

xx + τy
xy ,      (4) 

 

(ρV)t+ (ρUV)x +  (ρV2)y = −py + τx
yx + τy

yy  ,      (5) 

[ρ(cvT+(U2+V2)/2)]t + [ρU(cpT+(U2+V2)/2)]x +    
                                 + [ρV(cpT+(U2+V2)/2)]y =  
 
=(kTx+Uτxx +Vτxy+σx )x + (kTy+ Uτyx + Vτyy+ σy )y ,    (6) 
 

where the subscripts  t, x, y  denote partial 
derivatives, and the static pressure p  is related to  ρ  and T  
by the equation of state p=ρRT, R=cp−cv. In (4)-(6), k is the 
thermal conductivity, whereas the vector (σx, σy) and tensor 
(τxx, τxy, τyx, τyy) govern flow viscosity and heat fluxes (see 
details in [11, p.232]). The local Mach number is   
M=(U2+V2)1/2/a   where  a=(γRT)1/2 is the sound speed.  

Solutions of the system (3)-(6) were obtained with 
an ANSYS-15 CFX finite-volume solver of second-order 
accuracy, which is based on a high-resolution scheme for 
convective terms [12]. An implicit backward Euler scheme 
was employed for the time-accurate computations. We used 
a Shear Stress Transport k-ω turbulence model which is 
known to reasonably predict aerodynamic flows with 
boundary layer separations [13].   

Numerical simulations of 2D flow were performed 
on hybrid meshes constituted by quadrangles in 39 layers 
on the wall and cylinder, and by triangles in the remaining 
region. The non-dimensional thickness y+ of the first mesh 
layer on the wall and cylinder was less than 1. Apart from 
the boundary layer region, mesh nodes were clustered in 
vicinities of the expansion corner and shock waves. Test 
computations on uniformly refined meshes of 
approximately 105, 2105, and 4105 cells showed that a 
discrepancy between shock wave coordinates obtained on 
the second and third meshes did not exceed 1%. Global time 
steps of 10−6 s and 210−6 s yielded undistinguishable 

solutions. That is why we employed meshes of 2105 cells 
and the time step of 210−6 s for the study of 2D transonic 
flow at various free-stream velocities. The root-mean-
square CFL number (over mesh cells) was about 3. 
Simulations of 3D flow were performed in a domain that 
extends spanwise from z=0 to z=4, as described below in 
Section 4. 

Free-stream Mach numbers under consideration 
lie in the range 1.075 ≤ M∞≤ 1.1. Therefore, the Reynolds 
number based on h=0.3 m is Re≈7.9×106. In addition, a few 
computations were performed at p∞=2.3×105 N/m2, 
Re≈1.8×107 for comparison (Figure-5b).  

The solver was verified by computation of several 
commonly used test cases, such as transonic flow over 
ONERA M6 wing [14] and flow in a channel with a 
circular-arc bump [6]. Also we performed computations of 
a shock in front of a circular cylinder of radius r2=0.006 m 
in the absence of solid walls. At M∞=1.35, the obtained 
distance d between the center of cylinder and shock was 
6.32r2 for inviscid flow and 6.34r2 for turbulent flow 
(Re=3.9×105). This result matches perfectly experimental 
data documented in [15]. At M∞=1.6, the solver produced 
d=3.46r2 for inviscid flow and d=3.47r2 for turbulent flow; 
this is in a reasonable agreement with the value of 3.67r2 
 

 
 

Figure-2. Mach number contours in the flow 
over wall (1). 

 
at M∞= 1.089,  θ= 3.5° 
 

obtained in experiments by Holder and Chinnek 
[16]. Calculated isoMachlines over the cylinder at M∞=1.1 
and M∞=1.3 virtually coincided with ones computed by 
Bashkin et al. [17] (except for minor discrepancies in the 
near wake). 
 
3. RESULTS OF 2D FLOW SIMULATIONS    

Numerical simulations demonstrated a 
convergence of the solutions to steady states in less than 0.2 
s of physical time. At M∞<1.1, the obtained flow fields 
exhibit a large subsonic region between the detached shock 
and the sonic line emanating from the cylinder (see Figure-
2). The sonic line is a front of the supersonic region SR1 
located downstream. If the expansion angle θ is less than 
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approximately 3.8°, then there exists another supersonic 
region SR2 at the corner of the wall. The region SR2 expands 
and gets into coalescence with SR1 when θ increases and 
exceeds 3.8°. 

To trace the streamwise position of the shock, we 
use the x-coordinate xsh of its intersection with the 
horizontal line y=0.17 located above the boundary layer 
which forms on the wall. Computations showed that the 
shock coordinate xsh as a function of the angle θ depends 
crucially on the Mach number M∞. If M∞≤1.09, then xsh is 
proportional to the angle θ when 0 ≤θ≤ 3° (curves 1-4 in 
Figure-3), whereas it is almost fixed when 5°≤θ≤16°. The 
discontinuities of curves 2-4 are caused by jumps of the 
shock from a nearly vertical position ahead of the expansion 
corner to an oblique position in which its foot reaches a 
vicinity of the corner. 
 

 
 

Figure-3. Dependence of the shock position xsh on the 
expansion angle θ at various M∞: 1 - 1.079, 2- 

1.082, 3 - 1.084, 4 - 1.089, 5 - 1.099. 
 

Surfaces in Figure-4 illustrate   xsh as a function of 
two parameters, θ and M∞, for turbulent and inviscid flows. 
As seen from Figure-4b, the qualitative behavior of the 
shock in inviscid flow is the same as in turbulent one, 
though the surface xsh(θ, M∞) is shifted to smaller Mach 
numbers and angles θ. There is a narrow region in the plane 
(θ, M∞) that admits a flow hysteresis. 
 

 
 

 
 

Figure-4. Shock wave coordinate  xsh  as a function of  M∞ 
and expansion corner angle θ: (a) - 2D fully turbulent 

flow, (b) - 2D inviscid flow in a range  0≤θ≤ 6°. 
 

Also flow simulations were performed for the wall 
with a rounded corner.   
 
  y=0                              at     -1 ≤ x ≤ xc1 ,   (7a) 
 
  y= –R+ [ R2 – (x- xc1 ) ]1/2        at     xc1 < x < xc2 ,   (7b) 
 
  y= −(x−xc) tan 5°                 at     xc2 ≤ x ≤ xout .  (7c) 
 

The circular arc (7b) is tangent to the segments 
(7a), (7c) at x=xc1 and x=xc2, respectively. Coordinates xc1 

and xc2 for two values of R are given in Table-1. When 
R→0, one obtains xc1→0.4, xc2→0.4, that is the wall (1).  

The insertion of arc (7b) produces a shift of the 
sonic line upstream to the beginning of the arc. Therefore 
the spacing between the shock and sonic line decreases, and 
their interaction develops at smaller free-stream Mach 
numbers.  
 
Table-1. Parameters of the circular arc (7b): radius R and 

coordinates of endpoints. 
 

R xc1 yc1 xc2 yc2 

0.5 0.37817 0 0.42167 −0.00190 

1 0.35634 0 0.44334 −0.00379 

 
Figure-5 demonstrates that, indeed, at R=0.5 and 

R=1 the jumps of xsh are shifted to smaller values of M∞, 
while the width of the hysteresis remains almost the same. 
An increase of the Reynolds number from 7.9×106 to 
1.8×107 produces only a minor effect on the shock wave 
position; see the dashed curves in Figure-5.   
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Figure-5. Shock wave position xsh in transonic flow over 
walls (7) and (1): 1 - R=1, 2 – R=0.5, 3 - R=0; (a) inviscid 
flow, (b) turbulent flow: solid curves - Re=7.9×106, dashed 

curves - Re=1.8×107. 
 
4. 3D FLOW SIMULATIONS 

The outer boundary of the 3D computational 
domain was obtained by an extrusion of the 2D boundary 
(Figure. 2) from z=0 to z=4. The cylinder was created by an 
extrusion of the circle (x−0.7)2+(y−1)2=10-4  from  z=0  to  
z=L  where  L=1  or  L=5/3. 

On the plane z=0 we imposed a symmetry 
condition. On the side and top boundaries of the domain, a 
free-slip condition was used. A hybrid mesh was constituted 
by 9.5106 prisms in 39 layers on the wall and cylinder, and 
by 15106 tetrahedrons in the remaining region. Solutions 
of 3D Reynolds-averaged Navier-Stokes equations with 
respect to U, V, W, ρ, T were obtained with the method 
outlined in Section 2.  

A comparison of the calculated Mach number 
contours in the plane z=0 shows that, for the span L=1, the 
subsonic region is noticeably smaller than the one in 2D 
flow. With increasing L from 1 to 5/3, the subsonic region 
enlarges, and the discrepancy decreases. Figure-6 shows the 
shock wave, 3D sonic surfaces, and Mach number contours 
in the plane z=0 for L=5/3, M∞=1.1. 

Since the upward and downward extensions of the 
3D subsonic region for L=5/3 are yet smaller than those in 

2D flow, one needs a smaller free-stream Mach number for 
an expansion of the region down to the wall. Computations 
revealed that this occurs at M∞=1.056 (instead of 1.080 in 
2D flow, see Figure-4a). Then the shock wave jumps to a 
position which is normal to the wall at a point upstream of 
the corner (Figure-7).   

We notice that a replacement of the symmetry 
condition on the plane z=0 by the no-slip one produced a 
negligible effect on the shock and sonic surface positions.  
 
5. CONCLUSIONS 

Numerical solutions of the Reynolds averaged 
Navier-Stokes equations demonstrated that, if the 
expansion corner angle exceeds 3.5°, then there exist 
adverse free-stream Mach numbers admitting abrupt 
changes of the 2D shock position at small perturbations. 
This phenomenon is true for both turbulent and inviscid 
flows. If the expansion corner is rounded with a circular arc, 
the jumps of shock occur at smaller free-stream Mach 
numbers. The 3D flow computations have confirmed the 
shock wave instability at adverse free-stream Mach 
numbers.   
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Figure-6. Surfaces  M(x,y,z)=1 in 3D flow and Mach 
number contours in the plane  z=0  at  M∞=1.1, L=5/3, 

θ=8°:  (a), (b), (c) – views from three different 
perspectives 

 

 
 

Figure-7. 3D shock wave, the sonic surface M(x,y,z)=1 
emanated from the cylinder, and Mach number contours in 
the plane  z=0  at  M∞=1.056,  L=5/3, θ=8°. Sonic surfaces 

in the boundary layers are not visualized for simplicity. 
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