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ABSTRACT  

Topology optimization is an optimization technique used to find optimal material distribution with in a given 
design domain under applied loads and boundary conditions. Most of the developments in structural topology optimization 
have been formulated and solved for minimizing compliance. The absence of considering the displacement and stress 
constraints in the formulation and solution of topology optimization problems may lead the unfeasible optimal solutions 
where stress and displacement constraints are crucial criteria for the design considered. To include these two crucial 
elements in the optimization process some efforts have been devoted to formulate and solve the optimization problem by 
including stress constraints. Though considering the stress constraint in the optimization model is closer to the engineering 
point of view it facing three main challenges associated with the constraints. This paper aims to explore and discuss the 
three challenges in stress based topology optimization along with the proposed solutions. 
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INTRODUCTION 

Topology optimization is a mathematical 
approach which seeks optimal material distribution within 
a given design domain to sustain applied load under 
specific boundary conditions. It includes determination of 
connectivity, geometries of cavities and location of voids 
in the design domain considered. Topology optimization 
has a great implication in the conceptual design stage 
where a lot of modifications are made and 80% of the cost 
of a given product/design is determined [3]. The changes 
in the design at the conceptual design affect the 
performance and manufacturability of the final structure. 
Topology optimization has significant control of these 
issues through optimal material distribution at the 
conceptual design stage of a structure.   

Unlike other types of structural optimization 
methods [4-8], in topology optimization approach the 
number and location of holes/voids shapes and solid 
elements are not known prior to the optimization process. 
This gives the designer more freedom than that of other 
optimization methods which will let the designer to 
distribute the material optimally within the design domain. 
The definition of any topology optimization includes 
selection of design variables and formulation of objective 
and constraint functions.   

 

 
Figure-1. Topology optimization for simply supported 

beam [6]. 

              Figure-1 (a) shows a design domain of a simply 
supported beam under applied load and boundary 
conditions. Figure-1(b) shows optimal materials 
distribution within the design domain shown in         
Figure-1(a) where all the elements represented with black 
colour are solid and others to be void elements.  
             Different approaches and algorithms have been 
suggested for formulating and solving an optimization 
problem, respectively. Optimality criteria methods 
(OC)[11], Method of Moving Asymptotes (MMA) [13], 
Sequential Quadratic and Linear Programming (SQP and 
SLP) [15] , Particle Swarm Optimization (PSO) are among 
algorithms used for solving an optimization problem. 
Homogenization Method [17, 18], Evolutionary Structural 
Optimization (ESO) [19-22], Bi-directional structural 
optimization (BESO) [23-25], Solid Isotropic Material 
with Penalization (SIMP)[26, 27] and Level Set 
Method[28, 29] are among the methods used to formulate 
topology optimization problems. Among the problem 
formulation approaches the SIMP approach is the common 
due to its conceptual simplicity and high computational 
efficiency[30].  
           Most of the researches in the area of structural 
topology optimization are focused on formulating and 
solving compliance minimization problems [31-38]. 
Though this approach is easy to formulate and becomes 
more popular, it faces some challenges including variation 
of results with the amount of material distrusted, un-able 
to consider stress and displacement in the optimization 
process which may let the results to be unfeasible in the 
real world application [30].  

A formulation of structural optimization which 
takes stress into consideration has been developed and 
solved [14, 39-41]. Though this way of formulating and 
solving an optimization problem is closer to the 
engineering point of view it has some major challenges 
associated with the stress constraints, namely local nature 
of stress constraints, singularity phenomenon associated 
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with void materials and high nonlinear dependence of 
stress constraint. 

This paper aims to discuss about the three 
challenges in stress based topology optimization and the 
solutions that has been suggested so far to alleviate these 
challenges. 

The rest of the paper is organized as follows: the 
first section discusses about the local nature of stress 
constraints with the proposed solutions and limitations. 
The second section discusses about the singularity 
phenomenon with the most common solution proposed for 
it. The third discusses high nonlinear behavior of stress 
constraints and the solution proposed along with their 
limitations. 

 
LOCAL NATURE OF STRESS CONSTAINTS  

In topology optimization of a structure under 
stress constraints, every element in the design domain is 
expected to be free from stress failure. For a discrete finite 
element model of stress based topology optimization 
problem, the number of stress constraints will be very 
large as one need to impose local stress constraints on all 
elements. Due to this large number of the stress 
constraints, the computational time and cost is expensive 
to be solved by existing algorithms [14, 15, 42].   

To alleviate this problem, different scholars 
suggested alternate solutions. Among the proposed 
solutions, the recent and most prominent one’s are global 
constraint approach [42], block aggregation approach [15], 
enhanced aggregation [14] and the clustered approach 
[43]. 

In the global approach, the whole design domain 
is defined by a single inequality constraint [9, 42]. Though 
this approach has a significant advantage on reducing the 
computational time it fails to control the global optimum 
and local stress measures [15].The failure in controlling 
the global optimum will lead the optimization problem to 
have unstable convergence and trapped in local optima 
which will vary the final output of an optimization result. 

The failure in controlling the local stress 
measures will limit the control on the stress level of 
elements within a design domain. Thus it will let the final 
optimized layout to have elements with violated stress 
level which may not be feasible for real world application.  

In the case of block aggregation approach, other 
than defining the whole design domain with a single 
inequality constraint, the constraints are grouped in 
different blocks [15]. Each block in the design domain are 
created by just grouping elements with correlative indexes 
in the finite element mesh. A general Kreisselmeier- 
Steinhauser (K-S) function is used for the formulation of 
the global function in each block with the design domain. 
Though block aggregation is able to retain the advantages 
of the global approach and mitigate the computational cost 
to some extent, still the computational cost is highly 
dependent on the number of blocks and number of 
elements in each block. It is difficult to determine the 
number of blocks for better representation of design 

domain without losing control on the local stress 
measures.  

In both approaches it is difficult to determine the 
appropriate value for the aggregation parameter and left 
open for the end user. This makes the final result to be 
highly dependent on the skill and experience of the end 
user which will limit the reliability and implementation of 
the final results. 

An enhanced aggregation approach combines 
active set and global constraint method[14]. In the active 
set method only those potentially critical stress constraints 
are taken into consideration in each iteration step [10]. In 
this method all constraints are divided into optimal active 
constraint set and inactive constraint set based on the 
stress state of the elements. A general K-S function is used 
to identify active and inactive constraints within the design 
domain of a given problem and original K-S function is 
used for aggregating those constraints in the active and 
inactive constraint set respectively .The optimization will 
be handled with the constraints which are active at the 
optimum. The method enables the user to use those 
elements removed during the iteration. Even if this method 
is able to overcome some the problems in block 
aggregation still the number of elements to define the 
block and number of blocks to represent a given design 
domain is dependent on the end user. 

In the case of clustered approach, which is 
somewhat similar to block aggregation, a moderate 
number of stress constraints are used and several stress 
evaluation points are clustered into each constraints [43]. 
The problem is formulated using nested formulation where 
the equilibrium equation is not used as a constraint as in 
the simultaneous formulation used by other approaches [9, 
14, 15]. The displacement vector is considered as a given 
function of the design variables and it is solved in the 
finite element analysis.  

For clustering stress from multiple stress 
evaluation points into a single constraint a P-norm method 
is used. Those stress evaluation points which have similar 
stress level are clustered together. Even if this approach is 
able to reduce the computational cost which arises from 
the local nature stress constraints, still the problem is 
influenced by the way how the clusters are created and 
still it is difficult to determine the number of points to be 
clustered together. 

In all aggregation techniques achieving certain 
level of smoothness of the aggregation function for 
preventing numerical instabilities and accuracy of 
approximating the local stress levels are the two 
conflicting requirements. The other major problem is it is 
impossible to know the best value of the aggregation 
parameter prior to the design and it is problem dependent. 

 
SINGULARITY PHENOMENON 

This problem was first identified during the 
designing of trusses under stress constraint. During the 
optimization process, a degenerate subspace of dimension 
less than n was found in n-dimensional feasible design 
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space[44, 45] Further the globally optimum design is often 
an element of the degenerate subspaces. 

Further the globally optimum design is often an 
element of the degenerate subspaces[46]. Nonlinear 
programming algorithms cannot identify these region and 
they converge to locally optimum designs. In case of 
topology optimization, it arises in density based topology 
optimization when materials with zero density reappear in 
the finite element matrices, which may prevent the 
algorithm to reach a feasible solution. This zero density 
gives rise to the singular stiffness matrix and the 
numerical breakdown of linear solvers in structural 
analysis. The stress constraints and the design variables 
are relaxed to eliminate the degenerate regions and thereby 
allow the nonlinear programming algorithms to find the 
global optimum. Different relaxation approaches/solutions 
have been suggested by different scholars for tackling this 
problem [30, 40, 47-49] which includes ε-relaxation[47], 
phase field relaxation[48] and qp relaxation[50, 51] 
Among the alternative solutions ε-relaxation [47] is the 
most common in stress based topology optimization.  

In -relaxation approach, the internal force 
constraints   of the structural member are relaxed and the 
shape of the feasible domain is modified [2, 30, 47]. The 
stress constraints are replaced by internal force constraint 
functions which will let discontinuity of the constraint 
function at the zero cross sectional area to be removed. 
The value of parameter epsilon determines to what extent 
the constraint can be relaxed [2, 10]. 

The approaches that has been suggested so far are 
able to alleviate the singularity phenomenon to some 
extent but there are two major challenges associated with 
the solutions.  

The first challenge is the computational cost 
associated with the additional steps to find the elements 
with zero density and reconstruction of the system of 
equations.  

The second is the physical inconsistency that 
weak material appears on the element containing 
essentially no material, which will make the 
manufacturing of optimal topology challenging. 

The other difficulty is related to constraint 
relaxation techniques which are used to avoid singularity 
phenomenon within the design domain. Hence these 
techniques are based on smoothing the original constraint 
by which the design space is enlarged and gradient based 
techniques can access local minima. But this results in a 
highly non-convex design space which will let the 
optimization problem to converge locally. 

The summary of literatures the ε-relaxation 
approach in stress based topology optimization is shown in 
Table-1. 
 

 
 
 
 
 
 

Table-1. Summary of literatures for epsilon relaxation. 
 

 
 
NON-LINEARITY OF STRESS CONSTRAINTS  

This is the third major challenge in stress based 
topology optimization. It is caused by the significant 
alteration of the stress level by small changes in the 
neighbouring regions which will create a numerical 
inconsistency in the constraint. The numerical 
inconsistency in the constraints will lead the optimization 
problem to have unstable convergence during the 
optimization process. Different researchers have been 
suggesting solutions for alleviating this problem [46, 52].  

Imposing local stress measure [10] provides 
precise control over the local stress levels, but it needs a 
large computational time and cost. By means of the global 
stress measure the computational cost can be 
compromised but it will be difficult to control the local 
stress levels.  

The method proposed by Chau Le et.al [46] uses 
several regional stress measures to improve the local stress 
control. Other than using local stress definitions or using a 
single global constraint, in the proposed method regional 
constraints were defined for defined regions based on 
physical location, stress distribution. Even if setting 
several regional stress measures let the designer to control 
the local stress states still the computational cost and time 
will be higher.  
 
CONCLUSIONS  

Topology optimization which deals about an 
optimum material distribution with in a given design 
domain has been an active research area since the land 
mark paper of Bendsoe and kickuchi [18] in 1988.  

Most of the research works in topology 
optimization so far are formulated and solved to minimize 
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compliance of a structure. Though this approach is easy 
for implementation it faces some problems which may 
prevent the final results to be used in real world 
applications.  

Formulation and solution of optimization 
problem considering stress as a design constraint has been 
also formulated and solved which is quite realistic and 
acceptable from engineering point of view. Though the 
stress based approach is much closer to the engineering 
point of view it has been facing challenges associated with 
the design variables and stress constraint.  

The three main challenges, namely local nature of 
stress constraints, singularity phenomenon and high 
nonlinear dependency of stress constraints, in stress based 
topology optimization are discussed. Solutions that have 
been suggested by different researchers, as summarized in 
Table-2 are reviewed and the limitations of each proposed 
solution are discussed.  

The following conclusion can be drawn regarding 
the limitations of proposed solutions from authors’ 
perspective  

1. Determination of the aggregation parameter while 
using aggregation techniques to reduce the number 
of constraints. 

2. Determination of optimum number of elements in 
each blocks to define a given design domain using 
group of elements. 

3. Balancing level of smoothness of the aggregation 
function and accuracy for approximating the local 
stress levels. 

4. Computational cost associated with finding zero 
elements and reconstructing system of equation. 

5. Treatment of thin material which does not represent 
any material which will make the manufacturing of 
output results. 

6. Inclusion of relaxation to access singular regions 
within a design domain will increase the level of 
complexity of problems to be solved, which needs 
more computational time and cost. 

 

 
Table-2. Summary of solutions for the three challenges in based topology optimization. 
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