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ABSTRACT  

pyOpt is an open source python based object oriented framework for nonlinear constrained optimization 
problems. In this study, we used pyOpt to solve pressure vessel design problem. Among the available optimizers in pyOpt, 
SLSQP (Sequential least squares programming), COBYLA (Constrained Optimization by Linear Approximation), ALPSO 
(Augmented Lagrangian Particle Swarm Optimizer), NSGAII (Non Sorting Genetic Algorithm II), MIDACO (Mixed 
Integer Distributed Ant Colony Optimization), and ALGENCAN (Augmented Lagrangian with GENCAN) were used. The 
effect of initial design variables on convergence was investigated for six different regions. The initial design variables for 
MIDACO and SLSQP should be within the design variable bound while COBYLA and ALPSO provide good result when 
the initial point is greater than the upper bound. On the other hand, NSGAII and ALGENCAN converge to the optimum 
value regardless of the initial value.  The optimum results from all optimizers were compared with published literatures. 
Except for ALPSO with mixed discrete variables, the results are in good agreement with maximum percentage error of less 
than 5%. Therefore, pyOpt can be considered as an alternative option to solve engineering design optimization problems.   
 
Keywords: pyOpt, pressure vessel design, constrained optimization, nonlinear optimization. 
 
INTRODUCTION  

Design optimization is the process of finding 
optimal parameters that leads to obtaining minimum or 
maximum value of the cost (objective) function subjected 
to a set of constraints. This type of optimization is known 
us constrained optimization and can be further classified 
as linear or nonlinear optimization depending on the type 
of objective function and constraints. There are a number 
of algorithms and methodologies to solve such problems 
with varying ease of use and degree of success. The choice 
and selection of these algorithms depends on the type and 
complexity of the design problem (linear/nonlinear, 
constrained/unconstrained), types of design variables 
(continuous, discrete, integer), availability of solver 
(commercial/ open source), and ease of use among others.  

In this paper, we investigate the use of pyOpt, an 
open source optimization framework, for optimal design 
of pressure vessel design. pyOpt is a python based object 
oriented framework for nonlinear constrained optimization 
problems[1]. Python is an open source high-level 
programming language which can be used to write 
standalone application models. It can also be interfaced 
with application models written in low-level programming 
languages such as C, C++, and Fortran. pyOpt is also an 
easy-to-use optimization framework where problem 
formulation and solution by different solvers are defined 
independently using object oriented constructs. The main 
capabilities of pyOpt include flexible optimizer 
integration, operating on multiple platforms, 
parallelization, and warm-restart for automatic result 
refinement.  

In general, pyOpt can be used to find solution for 
general constrained nonlinear optimization problems of 
the form: 

)(min xf
x

                       (1)  

Subjected to: 

me equality constraints  

ej mjxh ,...,10)(   (2)                     

m inequality constraints  

 mmjxg ej ,...,10)(                     (3) 

n bounds  
nixxx iUiL ,...,10                             (4) 

 
The objective function f(x) is assumed to be 

nonlinear function, and the equality and inequality 
constraints can be either linear or nonlinear functions of 
the design variables x. Three different variable types 
namely: continuous, integer, and discrete can be used in 
pyOpt. However, the use of variable types depends on the 
optimizers. There are various optimization algorithms 
integrated with pyOpt for nonlinear constrained 
optimization. Some of the algorithms require commercial 
license while most are freely available with Creative 
Commons (CC) license.  We will use the CC licensed 
algorithms to study their effectiveness in solving pressure 
vessel design and compare their result with previous 
studies. Pressure vessel design is one of the most widely 
used structural design benchmarking problem used by a 
number of researchers to validate their algorithms [2-8]. 

PyOpt 1.2 version with Python 2.7.11 which 
contains a number of constrained optimization solvers 
designed to solve general nonlinear optimization problems 
was used. Among the available solvers, we used SLSQP 
(Sequential least squares programming), COBYLA 
(Constrained Optimization by Linear Approximation), 
ALPSO (Augmented Lagrangian Particle Swarm 
Optimizer), NSGA2 (Non Sorting Genetic Algorithm II), 
ALHSO (Augmented Lagrangian Harmony Search 
Optimizer), MIDACO (Mixed Integer Distributed Ant 
Colony Optimization), and ALGENCAN (Augmented 
Lagrangian with GENCAN). These solvers are all freely 
available except MIDACO which requires license when 
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the variables are more than 4. The derivative estimation 
for SLSQP and ALGENCAN with finite difference (FD) 
and complex-step (CS) methods has been investigated. 
Table 1 lists the optimizers used in this study with 
supported variable types. 

 
Table-1. Optimizers and variable types used in this study. 

 

 
 

PROBLEM FORMULATION 
The pressure vessel design problem has been 

formulated to minimize the total cost which includes the 
cost of material and cost of fabrication (forming and 
welding). The pressure vessel is made from a cylindrical 
vessel caped at both ends with hemispherical heads as 
shown in Figure-1.There are four design variables namely: 
thickness of the cylindrical vessel, Ts, thickness of the 
hemispherical heads, Th, inner radius of the vessel, R, and 
the length of the vessel excluding the heads, L. Ts and Th 
are considered as discrete variables with values of integer 
multiples of 0.0625 whereas R and L are considered to be 
continuous variables.  

 
Figure-1. Pressure vessel with design parameters. 

 
According to [8], the optimization problem for 

pressure vessel design is modeled as  
Minimize:     

RTLTRTRLTf sshs
222 84.191661.37781.16224.0   (5) 

 

Subjected to:    
 

00193.01  RTg s         (6) 

 
000954.02  RTg h         (7) 

 

01296000
3

4 3
2

3 
R

LRg
          (8)  

02404  Lg            (9) 

With bounds: 
  

200,10;0625.0*99,0625.0  LRTT hs      (10) 

 
There are two upper bounds used in the literature 

for L; [2, 6, 8, 9] used  200L while [5, 6, 10, 11] 

used 240L . 
 
SIMULATION MODEL 

The numerical model was defined in pyOpt 
programming environment. The initial values (starting 
points) for simulation were varied as 

iUiUiUiLiLiL xxxxxxxxxxx  00000 ;;;;  using 

randomly generated values for each variable. Here, xiL and 
xiU are the lower and upper bounds of design variable i 
respectively. The simulation was carried out for 
both 200L and 240L . 

As indicated in the problem description, Ts and Th are 
discrete variables. Due to the limitation in SLSQP, 
COBYLA and ALGENCAN, these variables were 
considered as continuous for those solvers. Similar 
assumption were taken by [6] in obtaining the optimal 
values of the design variables. For ALEPSO, ALHASO 
and MIDACO we considered both continuous and discrete 
variable options. An excerpt from the source code for 
continuous variable definition is shown in Figure-2. 
 

 
 

Figure-2. Excerpt from the source code for pressure 
vessel design. 

 
RESULT AND DISCUSSION 
 
Effect of initial value 

We have conducted numerical study with 
randomly generated initial values for each design variable 
for three regions ( iUiUiLiL xxxxxxx  000 ;; ) and 

at the boundaries to investigate the effect of initial values 
on the optimal design and computational time. For each 
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region we repeated the simulation ten times to see the 
consistency of the result and effect of initial values on the 
optimal values. Based on the numerical result, NSGAII 
and ALGENCAN converge to the same numerical result 
regardless of the initial value. MIDACO requires initial 
design variables to be set within the bounds 
( iUiL xxx  0 ). For initial values with values less than 

the lower bound or greater than the upper bound, 
MIDACO terminates prematurely. For initial design 
variables within the bound, MIDACO converges to the 
same optimal value for all attempts similar to NSGAII and 
ALGENCAN regardless of the initial value. On the other 
hand, the results from SLSQP, ALPSO and ALHASO 
vary with the initial value. Thus, the results from these 
solvers require statistical analysis such as mean, median 
and standard deviation. SLSQP gives reasonable values 
when the initial values are within the bound. COBYLA 
and ALPSO converge to the optimum value when the 
initial starting values are in the upper region ( iUxx 0 ). 

For all the regions, the results obtained using ALHASO 
did not converge to optimum value and we could not find 
any statistical correlation. For instance for twenty 
randomly generated initial variables within the 
bound iUiL xxx  0  with L< 200 for the fourth design 

variable, the optimum value for the objective function, f 
was (best = 6706.89, worst = 9427.99, mean = 855056, 
median = 9066.30 and standard deviation = 1003.43). 
Similar trends were observed for the other regions as 
starting value. Thus, we omit the result from ALHASO 
from further analysis. 

 
 
 

Comparative study with published results 
Pressure vessel design optimization problem has 

been solved by a number of authors in the literature. 
Kennan and Kramer [8] used augmented lagrange 
multiplier approach, [9] used self-adaptive penalty 
approach with genetic algorithm, [5] used Firefly 
algorithm (FA),  [10] used filtered simulated annealing 
(FSA), and [6] used penalty guided artificial bee colony 
(ABC) algorithm. A variety of particle swarm 
optimization such as simple particle swarm optimization 
(SiC-PSO) algorithm for constrained optimization 
problem [2], Co-evolutionary particle swarm optimization 
(CPSO) approach [12] were also used. [13] used hybrid 
method combining PSO and AC called heuristic particle 
swarm ant colony optimization (HPSACO). [11] used four 
algorithms namely Simple Genetic Algorithm(SGA),  
Struggle Genetic Algorithm (StrGA), Particle Swarm 
Optimization Algorithm (PSOA), and Particle Swarm 
Optimization Algorithm with Struggle Selection (PSOStr). 
The results from these literatures were compared with the 
results obtained in this paper using PyOpt.  

A number of numerical studies were conducted 
for both conditions (L ≤ 200 and L≤ 240). We classified 
the study in to two categories. The first category includes 
NSAGAII, ALGENCAN and MIDACO (both continues 
[c] and discrete[d] values). These algorithms converge to 
the same optimal value regardless of the initial set of 
design variables. The results are shown together with 
previously published results. Table-2 shows the results of 
the optimization using pyOpt simulation packages for the 
design parameters, constraints and the optimal functions in 
comparison with previously published results. 
 

Table-2. Comparison of results for category I optimizers with other results presented in literature. 
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For L ≤ 200, [7] used mathematical analysis and 
Lagrange multiplier method in an attempt to find the true 
global optimality of the pressure vessel design as 
6059.714 which agrees with a number of other 
publications. For L ≤ 200, the percentage error in 
comparison with [7] are 3% for ALGENCAN, 
MIDACO[c] and MIDACO[d] and 5% for NSGAII. 
Similar trends were observed for L ≤ 240. Note that the 
results from  [5] and [6] are better than the true global 
optimal reported in  [7] as the reported values are the best 
rather than the mean as shown Table-3. 

In the second category, the results from SLSQP, 
COBYLA, ALPSO[c] and ALPSO[d] were considered. 
These algorithms give slightly different optimal values for 
each initial set of design variables. Thus, the comparison 
requires statistical analysis such as mean, median, and 
standard deviations. Table-3 shows the minimized 

objective function using pyOpt simulation packages 
(SLSQP, COBYLA, ALPSO[c] and ALPSO[d]), in 
comparison with published results. 

As shown in Table-3, the mean objective function 
value obtained from pyOpt packages (SLSQP, COBYLA, 
ALPSO[c]) for L ≤ 200 are in good agreement with the 
true optimal value reported in [7] with maximum of 
percentage error of 4%. These solvers also give 
comparable result with those reported in [9, 12, 13] with 
better standard deviation value. For L ≤ 240, SLSQP, 
gives the best result compared to [10, 11]. The mean 
optimal value obtained from COBYLA and ALPSO[c] is 
close to the result reported in [10, 11] with better standard 
deviation. On the other hand, for both L ≤ 200 and L ≤ 
240, ALPSO[d] gives the worst result among the ones 
reported in the literature. 
 

 
Table-3. Comparison of results for category II optimizers with other results presented in literature. 

 

 
 
CONCLUSIONS 

There have been many attempts on the 
methodology of solving the optimization problem in 
engineering design with various degree of success. In this 
paper we presented the application of an open source 
package pyOpt to optimal design of pressure vessel. 
Among the optimizers in pyOpt, we investigated seven 
solvers namely: SLSQP, COBYLA, NSGAII, 
ALGENCAN, MIDACO, ALPSO and ALHASO. Since 
MIDACO, ALPSO and ALHASO can handle both 
discrete and continuous design variables; we optimized the 
pressure design problem using both types of design 
variables. The effect of initial design variables on 

convergence of the optimization problem has been 
identified. The results from these optimizers have been 
compared with published results. In general, the results 
were in good agreement with less than 5% error with other 
optimizers except ALHASO (both continuous and discrete 
variables) and ALPSO[d] with discrete variable.  

Similar to other search algorithms reported in 
literatures which were tested with different benchmarking 
problems, it is necessary to investigate the optimizers in 
pyOPt with various engineering problems. Thus, as 
continuation to this research, we will conduct detailed 
investigation on the application of these optimizers on 
other engineering design problems.  
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