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ABSTRACT  

The present study aims to investigate the use of Artificial Neural Networks (ANN) for the performance-based 

condition monitoring of indusrial gas turbine engines. Toward this end, a health assessment tool is presented by developing a 

Multi-Nets ANN model. A number of key performance parameters that are commonly measurable on the most industrial gas 

turbines are monitored and their associated neural networks for the healthy condition are trained. Three-layer feed-forward 

configuaration is chosen to construct the networks, the Levenberg-Marquardt algorithm is used as the training function, and 

the k-fold cross-validation process is employed to obtain the optimum number of neurons in the hidden layers. The model is 

developed and tested using the gas path performance data collected from an 18.7 MW twin-shaft industrial gas turbine. A 

special attention is also devoted to the system theory interpretation in order to evaluate the effect of the input neurons on 

each output of the Multi-Nets. To that end, the sensitivity analysis is formulated using derivatives based on an interpretation 

of the neural network’s weights. 
 
Keywords: gas turbine, performance-based condition monitoring, diagnostics, multi-networks, artificial neural networks, sensitivity 

analysis. 

 

INTRODUCTION  

Gas turbines are widely being used for providing 

prime movers in the power plants, petrochemical 

companies, and oil and gas industry. During the operation 

and maintenance phase of gas turbines, condition 

monitoring activities play a decisive role. Various 

maintenance strategies are usually recommended by 

manufacturers base on equipment and process condition. 

Costly run-to-failure and scheduled preventive 

maintenance methods can be avoided by implementing 

predictive maintenance, which continuously detects 

performance problems and makes the user aware of the 

situation [1]. This method which refers to a condition-

based maintenance recommends the maintenance actions 

based on the information obtained from condition 

monitoring and can increase maintenance agility and 

responsiveness, improve operational availability, and 

reduce life cycle total ownership costs [2]. Condition 

monitoring can be implemented using different methods 

and utilize various levels of technology. Gas turbine 

condition monitoring methods can generally be classified 

as mechanical-based condition monitoring and 

performance-based health monitoring. It is well known that 

performance-based monitoring has a prominent ability in 

all three steps of gas turbines CM including health 

assessment, diagnostics, and prognostics. This method is 

not only able to provide maintenance engineers with gas 

turbine performance information but also has an 

outstanding capability to give an effective vision of the gas 

path component degradation. 

Over the last two decades, significant research 

efforts are conducted on the development of gas turbine 

performance-based condition monitoring systems. The 

main idea of all presented approaches is to simulate the 

healthy gas turbine in various operating conditions and set 

the output as the accepted healthy references. Then, 

through the passage of time, the engine is monitored to 

determine deviation from the reference performance in 

order to detect an impending failure. However, the selected 

key performance parameters and the analyzing methods 

characterize various approaches which can generally be 

classified into two categories. The first category, known as 

model-based methods, mainly rely on the mathematical 

modeling of the engine operation. Gas-path analysis [3], 

Kalman filter [4] and weighted Least Squares [5] are three 

main types of these methods which are mostly considered 

by the gas turbine research community. Typically, these 

methods promise successful detection of both abrupt and 

gradual degradation in the engine performance. However, 

when the modeling uncertainties and the system 

complexity increase, their monitoring accuracy decrease. 

The second category, known as data-driven methods, 

mostly rely on real-time or collected historical data from 

the engine sensors to learn the behavior of the healthy and 

unhealthy engine. A wide range of data-driven methods is 

developed for health assessment, diagnostics and 

prognostics of gas turbines, as reported in the application 

of ANNs [6, 7], Genetic Algorithms (GA) [8], Expert 

Systems (ES) [9] and Fuzzy Logic (FL) [10, 11]. Research 

results prove that these methods provide a flexible tool to 

deal with the complexity and non-linearity characteristics 

of dynamical systems.  

In this paper, a Multi-Nets Artificial Neural 

Networks (M-N AANs) which employs standalone trained 

ANNs as learners are developed for the purpose of  health 

assessment of an 18.7 MW twin-shaft industrial gas 

turbine. Each of these networks represents a performance 

parameter of the engine and can be valuable in monitoring 

and fault detection of the gas turbine. Levenberg-

Marquardt (LM) algorithm is employed to train these 
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networks and a k-fold cross-validation process is used to 

obtain the optimum number of neurons in hidden layers. 

An interpretation of the neural network via examination of 

the interconnection weights is finally attempted in order to 

assess the ability of each network in data interpolation and 

real-time forecasting.  

 

STUDIED GAS TURBINE AND TRAINING DATA 

A schematic diagram of the selected gas turbine 

engine which is of twin-shaft open loop type is shown in 

Figure-1 and its associated performance at standard 

condition is listed in Table-1. 

 

 
Figure-1. Schematic layout of the case studies gas turbine. 

 

Table-1. The performance of the studied gas turbine at 

standard condition. 
 

 
 

In using ANNs for condition monitoring and 

health assessment, it is necessary to train multiple networks 

in order to learn and represent the dynamic characteristic of 

the equipment. The multiple networks can then be used to 

monitor the real-time performance and behavior of the 

equipment. In order to implement this idea for IGT, a 

complete set of engine performance data at healthy 

condition is required. Toward this end, a gas turbine off-

design performance simulation model developed and 

verified previously is used. The ambient condition and 

operation loads are the input requirements of this model 

and the pressure and temperature values through the gas 

path, air and fuel mass flow rates, gas generator speed, the 

isentropic efficiency of various components, and overall 

thermal efficiency of the engine are the output parameters. 

Data collected from the real gas turbine during two months 

operation indicates that the engine mostly operates in the 

following condition: 26.5 to 33.5 °C ambient temperature, 

1 atm ambient pressure, power load of 10 to 17 MW, and 

the output rotational speed of 2600 to 3100RPM [12]. 

Therefore, the engine simulating model has been run in the 

above-mentioned condition and the output is considered as 

the data for the training and testing of the networks. 1200  

sample points are collected to be applied for network 

training. In order to improve the learning capability, 

sample data are shuffled. And to scale data in the same 

range of values, min-max normalization method is applied 

for each input feature.  

 

Fundamental of artificial neural network 

Neuron structure, network configuration, learning 

method and stopping criteria characterize the neural 

network technique. A scheme of the single artificial neuron 

is shown in Figure-2a. In this neuron, by using the 

weights, ݓ� , incoming data, ݔ�, are linearly combined. 

Then, the scalar bias � is added to form the net input, ݕ. 

The bias is much like a weight, except that it has a constant 

input. Note that ݓ and � are both adjustable scalar 

parameters of the neuron. Finally, the net input is passed 

through the activation function �, which produces the 

scalar output ݖ. Here, � is a transfer function, typically a 

step function or a sigmoid one, which takes the argument y 

and produces the output ݖ. These three processes are called, 

respectively, the weight function, the net input function and 

the activation function and forms the neuron structure. 

 

 
Figure-2. a) Scheme of the single artificial neuron. b) The 

architecture of a two- hidden layered feedforward single 

target neural network. 

 

Single neurons can be combined to build a various 

neural network. A schematic diagram of  a two hidden 

layered neural network is presented in Figure-2b. The two 

layer feed forward neural network (FFNN) is of four layer 

configuration including two hidden layers, i.e. layers 2 and 

3, plus one input layer, i.e. layer 1, and one output layer, 

i.e. layer 4. Each layer has a weight matrix ݓ, a bias vector �, and an output vector ݕ. To distinguish between the 

http://www.arpnjournals.com/
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weight matrices, output vectors, etc., of each layer, the 

layer number is appended as a superscript to the variable of 

interest. The network shown above has ܯଵ inputs and ܰଵ 

neurons in the first hidden layer and ܰଵ
 inputs and ܰଶ

 

neurons in the second hidden layer.  

 

ANNs training 

Multi-layered feed-forward supervised 

configuration proved to bear a keen capability to 

approximate nonlinear mapping. ANN with one hidden 

layer are widely used in researches and have proven to give 

satisfactory results. Increasing the number of hidden layers 

increases the computation time and the danger of 

overfitting which may cause poor out-of-sample 

forecasting capability. In ANNs models, the number of 

neurons in the first and last layers are easily determined 

using the number of inputs and outputs, respectively. 

However, the proper selection of neurons in the hidden 

layer is one of the most important steps in the perceptron 

network training. If an inadequate number of neurons are 

used, the network is not able to model complex data, and 

the fitting result is poor. If too many neurons are used, the 

training time may become excessively long, and the 

network may overfit the data. Eventhough there is no ideal 

solution to this problem,  many methods are developed to 

help in determining the optimum number of hidden layers. 

In order to specify the number of neurons in hidden layer, 

K-fold cross-validation method is employed in this 

research. The summary of this method is as follows. 

1. Split training data into k equal-sized parts called 

folds.  

2. Set a candidate number of neurons for hidden 

layer(s). 

3. Train the network k times, in each time use k-1 folds 

as training data and the kth fold as testing data. 

4. Choose the number of neurons whose average testing 

error over the k trials is lowest. 

 

It is generally accepted that selection of a network that 

performs suitable learning on the testing set with the least 

number of hidden neurons is preferred. One should take in 

mind that during a testing various number of hidden 

neurons, it is important to keep all other parameters 

constant. Changing any parameter creates a new neural 

network with a potentially different error level which 

would needlessly complicate the selection of the optimum 

number of neurons. 

In this work, hyperbolic tangent sigmoid (1) 

transfer functions are assigned to a hidden layer. 
 

     (1) 

Mean Absolute Percentage Error (ܯ�ܲ�) also is 

considered as the error function (4). 
 

      (2) 
 

Where � denotes the number of data patterns, � 

is the network output and � is target values. The error 

function was applied backward into the network to adapt 

the weights. The weights are promoted in the training 

process to ensure that the error function is minimum and 

no overtraining happens. Once the training finished 

successfully, the synaptic weights will be saved. As 

discussed by Hagan and Menhaj [13], Levenberg-

Marquardt algorithm is one of the best techniques for 

ANNs training especially when the number of weights 

increases. Therefore, although it does require more 

memory than other algorithms, it is highly recommended 

as the first choice for supervised problems. The weights in 

a Levenberg-Marquardt (LM) training function are 

updated using (3) [13].  
 

     (3) 
 

Where ݓ is the weight matrix, J is output errors 

Jacobian matrix, I is identity matrix and � represents a 

learning component.  

 

Development of multi-nets system 

To develop the Multi-Nets model for the purpose 

of system identification, four networks corresponding to 

key performance variables of the gas turbine engine are 

developed. Compressor outlet pressure, gas generator 

turbine outlet pressure, gas generator turbine outlet 

temperature, gas generator rotational speed, power turbine 

rotational speed, fuel mass flow rate, and output power, 

respectively represented by ଵܲ,  �ଵ, ଶܲ,  4ܲ,  �4,  ଵܰ,  ଶܰ,  and �̇�, are commonly ݓ݇ܲ

measurable on the most twin-shaft IGTs. Here, in order to 

develop the Multi-Nets models, the associated four 

networks are trained individually using four (4) input 

parameters including ambient condition ( ଵܲ and �ଵ), 

rotational speed ( ଶܰ), and fuel flow rate ( �̇�). In addition, 

one of the four (4) measurable engine performance 

parameters including ଶܲ, 4ܲ, �4 and ଵܰ are selected as the 

network output. The corresponding networks are denoted 

by ܰ���ଶ, ܰ���4,  ܰ���4 and ܰ���ଵ. Once the training of 

all networks is finalized, they can be used as a reference 

model to represent the principle operational variables of 

the engine, corresponding to the healthy condition.   

Figure-3 shows the procedure of training these neural 

networks for the purpose of performance monitoring. The 

main properties of each network in the multi-nets model 

are indicated in Table-2. 
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Figure-3. Training a multi-nets model for the purpose of 

gas turbine performance monitoring. 

 

Table-2. Properties of the developed networks. 
 

 
 

To use k-fold cross-validation method, the 1200 

collected sample data points are split into four smaller 

subsets, i.e. k=4. Models are training using three of these 

folds, i.e. 900 sample points, as training data. The 

resulting model is then validated on the remaining 300 

sample points. All four MAPE corresponding to these 

folds are averaged to calculate the network accuracy.   

Using LM algorithm for training purpose, the early 

stopping technique is used to prevent overfitting. 

Therefore, the 1200 observations of training dataset are 

divided into two subsets: 80% for training and 20% 

validation. It should be noted that this set of validation 

data is employed to monitor the network training error, in 

order to determine the optimal number of training iteration 

or epochs. Following settings are considered as training 

performance parameters: maximum number of epochs 

300, maximum validation failures 10, performance goal 

0.0, and minimum performance gradient 1e-5. All other 

training parameters were left intact to their default values 

in Matlab R2015a. Various structures with different 

numbers of hidden layers and neurons are examined 

during the training phase using both LM algorithms.  

In order to explain the method of finding proper 

network structure, detail procedure of ܰ �ܰ4 training is 

described here. A k-fold cross-validation process is 

employed to train the network using LM algorithm with a 

diverse set of hidden neurons and the outputs of cross-

validation are recorded. Figure-4 shows the MAPE of ܰ �ܰଶ repetitively trained with one (1) hidden layer and 

different numbers of hidden neurons. The optimum 

number of hidden neurons is determined by finding the 

lowest average evaluation error.  

 
 

Figure-4. Illustration of k-fold (k=4) cross-validation 

errors corresponding to ܰ �ܰଶ with single-hidden layer as a 

function of the number of hidden neurons. 

 

The results indicate that the most optimized ܰ �ܰଵ network is achieved using BRTF training function 

and 10 neurons in single hidden layer structure which 

yields to 0.4915 average MAPE. This implies that an 

ANN with one hidden layer and 10 neurons is the most 

robust network for prediction of ଶܲ. To develop Multi-

Nets model, the four ANNs are trained by the similar 

procedure. The ANN tools providing the most accurate 

forecasts and exhibiting the best performance indices are 

summarized in Table-3.  

 

Table-3. Number of hidden layers and MAPE of final 

ANNs in multi-nets model. 
 

 
 

Starting with a relatively small structure, the 

Multi-Nets are developed by incrementally increasing the 

number of neurons in the hidden layers until the desired 

performance specification is satisfied. Prediction accuracy 

is still high enough to validate the inclusion of this output 

parameter in fault detection model. Considering Table-3, 

one can conclude that for the IGT monitoring purposes, 

the proposed Multi-Nets model can predict all 

performance parameters with MAPE of less than 0.7.  

The performance of a neural network in a 

practical application depends on the degree to which it can 

generalize when confronted with data that was not seen 

during training. Hence, a test set is performed to assess 

how well the learning algorithm works. Fifty unseen data 

sets are used to examine the accuracy of developed 

networks in Multi-Nets model. The corresponding plots 

for ܰ �ܰଵ network is given in Figure-5. 

http://www.arpnjournals.com/
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Figure-5. The performance of ܰ �ܰଵ for 50 unseen testing trials. 

 

Interpretation of the weights 

Sensitivity analysis can be employed to evaluate 

the effect of input neurons on outputs and demonstrate 

how a trained network reacts to the change of each input. 

This method can be implemented by changing various 

input slightly and calculating the corresponding output 

variation. In order to assess the importance of each input 

neurons, the connection weight matrix of the neural 

network can be used, as presented in (4) [14]. 
 

  (4) 

 

Where n and h are the values of input factors and 

hidden neurons, respectively, �and �ܱ are the synaptic 

weight matrix between input-hidden layers and hidden-

output layers, respectively, and �݆ is the relative 

importance of the input factors j for the output. Table-4 

shows the relative importance of four input neurons on the 

output neuron for the trained ANNs. 

 

Table-4. The relative importance of input neurons for 

LMNN and BRNN models. 
 

 

The result shows that the relative importance of 

fuel mass flow rate is almost the highest for training of all 

networks except ܰܰ�4 which in it the rotational speed of 

load is more important. However, one should note that due 

to the non-linear nature of the activate functions, the 

relative importance can only be a coarse measure of the 

effect.  

 

CONCLUSIONS 

This paper studied the problem of Modeling and 

sensitivity analysis of a Multi-Nets ANNs Model for real-

time performance-based condition monitoring of an 

industrial gas turbine engine. The Multi-Nets employs 

standalone ANNs as multiple learners, each of which 

represents a performance parameter of the gas turbine 

engine. Toward this goal, four variables which are 

commonly measurable on most gas turbine engines are 

monitored and their corresponding four neural networks to 

simulate the healthy condition are trained. The networks 

are of feed-forward type with one hidden layer structure 

which are trained using Levenberg-Marquardt function. 

To select the optimum network constructions, the cross 

section validation method is used. The result shows that 

for the IGT monitoring purposes, the proposed Multi-Nets 

model can predict all performance parameters with MAPE 

of less than 0.7. In addition, the relative importance of 

each input variable was assessed using the achieved 

synaptic weights of neural networks. The results prove 

that in most trained networks, the importance of fuel mass 

flow rate is relatively higher than the other input variables. 
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