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ABSTRACT  

Sustainable initiatives are increasingly getting attention from the research community and one of the aspects in 
achieving sustainable development is to enhance the efficiency and optimize the technology used to generate and utilize 
energy. Fault detection and diagnosis is a critical optimization factor in power generation sector. Early faults detection 
ensures that correct mitigation measures can be taken, whilst false alarms should be eschewed to avoid unnecessary cost of 
operation, interruption and downtime. Pure Intelligent Condition Monitoring System (ICMS) represented by artificial 
neural network (ANN), developed by training the network with real operational data, may be proven to be useful for real-
time monitoring of a power plant. In this work, an integrated data preparation method has been proposed and the 
development of ANN models to detect steam turbine trip for Malaysia MNJ power station will be presented. Two models 
adopting feed forward with back propagation ANN were trained with real data from the MNJ station. The developed 
models were capable of detecting the specific trip within a period of 32 minutes before the actual trip occurrence, which is 
considered to provide good and satisfactory early fault detection.  
 
Keywords: artificial neural networks, condition monitoring system, steam turbine. 
 
INTRODUCTION  

Driven by the advancement in various industries, 
the demand for energy has grown rapidly for the past few 
decades. This increasing need of power and energy can 
only be satisfied with the construction of additional power 
plant or by optimizing and increasing the efficiency of 
existing plant. The later actions are more beneficial 
considering the cost of establishing a new plant is massive 
and it involves many stakeholders. One pervasive factor 
that decreases the efficiency of a power plant is the forced 
outages or unplanned equipment downtime. Forced 
outages typically involve losses up to millions of USD and 
at least 5% of the total power generation availability. For 
power generation industry, the hidden cost of downtime 
can represent 5–10% of the annual revenue and potentially 
30–40% of annual profits [1]. Predictive maintenance as 
one of optimization action has emerged to provide 
condition-based early warning. In power generation 
industry, it provides early warning of asset failure such as 
combustion turbines, steam turbines, boiler feed water 
pumps and cooling water pumps. 

One of the most important elements in a power 
plant is its steam turbine. Steam turbine trip can lead to 
entire plant shutdown, thus it is very critical to ensure that 
the turbine is at normal operation. By developing an 
intelligent condition monitoring systems (ICMS) for steam 
turbine trips, the causes of turbine trips can be identified 
and mitigation steps can be taken to maintain the normal 
and safe operating condition of the turbine. The 
operational data of steam turbine need to be studied and 
measured to detect the tripping trends which will be used 
to drive the algorithm used in the ICMS. 

A detailed data preparation procedure for steam 
boiler fault detection and diagnosis (FDD) analysis was 
presented by Firas B. Ismail Alnaimi et al. [2], where real 
data of steam boiler were captured, identified, clustered, 

and sampled. After plant data preparation, parameters 
selection phase began, where the data were tested, 
checked, and normalized. The boiler behaviour was 
studied, and the most influencing parameters were 
decided. For fault detection and diagnosis neural network 
(FDDNN) model training-validation phase, feed-forward 
neural networks were used. The FDDNN model could 
detect and diagnose the super heater low temperature 
quickly and accurately. 

ANN modelling of all the major combined heat 
and power (CHP) plant components was possible as 
demonstrated by M. Fast and Thomas Palmé [5]. The 
described ANN models are plant specific; however, the 
method is general, and thereby applicable to other power 
plants and configurations. The pros and cons of ANN 
monitoring approaches were also summarized. The pros of 
ANN were no detailed physical in-formation are needed, 
only operational data is required, ANN calculation is fast 
and can be used online, and ANN can establish 
relationships between performance parameters and 
operational conditions that are difficult to model. The cons 
of ANN monitoring were summarized as, data covering 
the entire operation range is needed for training and any 
new operational condition changes require a retraining. 

A solution for sensor fault detection, isolation, 
and accommodation by employing ANN as a classifier 
was presented by Thomas Palmé et al. [6]. Nonlinear 
Principal Component Analysis (PCA) for early warning of 
gas turbine failure implemented through the use of Auto-
Associative Neural Network (AANN) was also 
demonstrated by Thomas Palmé et al. [7]. In this work, the 
use of AANNs for early detection of abnormal engine 
behaviour could warn the operator a few days prior to full 
failure. A comparison is made between the nonlinear PCA 
with AANNs and a standard PCA model. The result 
showed that the AANN could provide a more reliable 
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detection of failure by a higher residual generation during 
failure mode, as well as fewer false indications prior to the 

failure. 

 
Table-1. Summary of previous researches on ANN application in power generation industries. 

 

 
 

A Multi-Layer Perceptron (MLP) Neural 
Network (NN) model to develop a base-line model of a 
gas turbine was developed by Thomas Palmé et al. [8]. 
MLP based NN model is used for baseline development of 
two different gas turbine (GT) types, and for several 
different units of each type. An ANN based vibration 
analysis for steam turbine was proposed by K. P. Kumar et 
al. [10]. The simulation results using actual data from 
operating power plants showed the data detection method 
could be applied to identify the fault presence with less 
intervention of a human expert. The same technique can 
be used to classify all the faults of the turbo generator by 
training with different fault conditions data. 

The performance and robustness of SVM and 
ANN for fault diagnosis in a centrifugal pump were 
compared by M. Saberi et al. [11]. The SVMs method 
with Gaussian and linear functions are superior due to 
better performance, robustness in noisy environments, and 
its simplicity. Table-1 summarizes the methodologies and 
ANN topologies consideration of the previous researches. 

In this work, an integrated data preparation 
method has been proposed. This paper also presents the 
development of two ICMS to diagnose turbine trip. Both 
are using a feed-forward with back propagation ANN. The 
first model uses only a hidden layer (1HL) and the second 

model uses 2 hidden layers (2HL). Various ANN 
topologies were considered and the data to train these 
ANN were taken from MNJ power station which is a coal-
fired power plant located on a man-made reclaimed island 
off the coast of Perak, Malaysia. Turbine trip data and 
operational data with 1 minute interval for a period of 1 
year (2008) were provided by the plant owner. 70% of 
these data were used for ANN training, 15% were used for 
cross validation and the remaining 15% were used for 
testing. The input variables were selected initially 
according to research scope and plant operator experience. 
 
Brief description of the plant 

A brief description of MNJ coal-fired power 
plant will be discussed in this section. It is located about 
10 km south of the nearest town Lumut, approximately 
288 km north of Kuala Lumpur and near to the tourism 
island of Pangkor. The power blocks scheme of the plant 
are identical unit of 3 x 700 MW. The type of boilers for 
the three units is drum type and controlled circulation 
tangential firing. They are equipped with economiser, 
superheater, reheater and low NOx burners. The boilers are 
designed to burn imported international coals as main fuel 
on base load. Light fuel oil will be used for ignition and 
for sustaining the flame at low load. The turbine generator 
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sets have a rated output corresponding to a nominal net 
power of 700MW and have a rotating speed of 3000 rpm. 
The turbine is of axial flow design with all the turbine and 
generator rotors are directly coupled in tandem. The 
turbine consists of a high pressure (HP) turbine, an 
intermediate pressure (IP) turbine and two double flow 
low pressure (LP) turbines. Table-2 shows the parameter 
for both the boiler and turbine. 

The generator is a two-pole hydrogen and water 
cooled machine of the “Gigatop” type. The rotor winding 
and the stator core are hydrogen cooled. The stator 
winding and the terminals are directly water cooled. The 
machine is fitted with the seal oil, gas cooling and stator 
water cooling systems. Its excitation is provided by a static 
excitation connected to the slip ring unit. The circulating 
water system takes cooling water from the sea to the three 
condensers by means of six 50 % duty concrete volute 
type main cooling water pumps. The feedwater heating 
plant includes four LP heaters arranged in series, with LP1 
& 2 located in the condenser neck, one feedwater tank 
equipped with a de-aerator and three HP heaters [12-13]. 
 

Table-2. Boiler and steam generator parameters. 
 

 
 
Artificial neural network (Ann) – Brief theory 

Artificial Neural Network (ANN) is a fast-
growing soft computing method, which has been used in 
different type of industries recently. ANN is a 
computational model inspired by natural neurons. Natural 
neurons receive signals through synapses located on the 
dendrites or membrane of the neuron. When the signals 
received are strong enough to surpass a certain threshold, 
the neuron is activated and will emit signals through the 
axon. This signal might be sent to another synapse, and 
might also activate other neurons. 

ANN imitates the characteristic of a natural 
neurons by several functions, namely inputs (like 
synapses), which are multiplied by weights (strength of 
signals) and then computed by mathematical function, 
determining the activation of neuron. Another function 
will compute the output, which will sometime depend on a 
certain threshold. A neural network model is made up of 

interconnected artificial units (neurons). Neurons are 
arranged in different layers, including input layer, hidden 
layer(s), and output layer. The number of neurons and 
layers depends on the type of problems need to be solved 
and the complexity of the system to be modelled. 

ANNs learn the relation between the inputs and 
outputs of the system through a process called training. 
Each input into the neuron possessed its own associated 
weight. Weights are adjustable numbers, which are also 
determined during the training process of the network. 
Figure-1 shows a simple structure of a typical ANN with 4 
inputs, first hidden layer with 5 neurons, second hidden 
layer with 3 neurons, and one output. 
 

 
 

Figure-1. Simple ANN structure. 
 
METHODOLOGY 
 
Turbine trip identification 

One of the main causes of forced outages in a 
thermal power plant is turbine trip. The plant operator’s 
experience was fully utilized to determine the type of 
turbine trip which will be analyzed in the work. The 
turbine trip chosen, which is a steam temperature fall 
turbine trip is one of the most influential trips occurred in 
MNJ station. The details of the trip are shown in Table-3. 
 

Table-3. Trip details. 
 

 
 
Plant data preparation 
 Data preparation is about constructing a dataset 
from one or more data sources to be used for analysis and 
modelling. Good data preparation is a key prerequisite to 
successful neural networks training. Data preparation is 
often a time consuming process and heavily prone to 
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errors. In practice, it has been generally found that data 
cleaning and preparation takes approximately 80% of the 
total data engineering effort. The quality of the prepared 
data to be used as input for the ICMS may strongly 
influence the system performance [14]. The data 
preparation phase could be divided into three execution 
phases as shown in Figure-2.  
 Identification of data is when the turbine 
operational variables were identified and acquired for the 
specific turbine trip. Initially, 1800 observations (actuator 
and sensor signals) were identified from on-line plant 
control system. The number of observation was reduced 
by a process shown in Figure-3. Only observations related 
to turbine were considered and the numbers of variables  
 

 
 

Figure-2. Plant data preparation stages. 
 

 
 

Figure-3. Plant data reduction process. 
 

were reduced from 1800 to 177. Taking into account the 
advice from plant operator, the 177 observations were 
further reduced to 90 by neglecting non-effective factors 
on the trip scenarios. Some of the observations were from 
the same sensors and by comparing the sensor serial 
number, the observation were reduced from 90 to 69. Most 
observations were measured by multi sensors so an 
averaging approach was adopted to further reduce the 
number of variables. Finally, 32 influential turbine 
operation variables, as listed in Table-4, formed the final 
set of the training data. 
 
Data pre-processing 
 Data pre-processing stage consists of 3 main 
steps; which are data cleaning, missing data treatment and 
data normalization. Data cleaning is about dealing with 
noise values or error in the observed values. For MNJ 
station, the common concerns about noise in the data were 
duplicate records. It was found that some of the readings 
from the actuators and sensors were duplicated several 
times in the data storage. This noise could be detected and 
removed by analyzing the sensors/actuators serial number 
and with visual cleaning. The noise could also be removed 
by creating an automated graphical tool that could detect 
duplicates and remove them accordingly. 
 

Table-4. Influential operation variables. 
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removed by analyzing the sensors/actuators serial number 
and with visual cleaning. The noise could also be removed 
by creating an automated graphical tool that could detect 
duplicates and remove them accordingly. 
 Missing data usually are the missed observation 
values or information losses. If the missing data 
percentage is high the record must be neglected. For cases 
where the missing data occurrences are limited, the missed 
values can be replaced with mathematical forecasting 
methods: the most common mathematical forecasting 
methods are: extrapolation and interpolation. 
 Data normalization is important for treating 
multi-scale data. Non scaled data could be bias or interfere 
with the training process and lead to an unstable operation 
of the ICMS. The ICMS performs better with numerical 
data scaled between 0 and 1. The normalization techniques 
used in the project is the Min-Max normalization [15]. 
Min-Max formula shown in Equation. (1) is applicable 
when minimum and maximum values for an occurrence 
are known. 
 

oldMin)-(oldMax

oldMin) -  value(original
   valueNew      (1), [15] 

 

Data post analysis 
 Data post analysis stage consists of two main 
steps; behavior analysis of the turbine operation variables 
and the establishment of NN targets. After thorough 
analysis of the operational variables, the targets for the 
ICMS will be set accordingly with the specific trip. The 
methods of target matrix establishment were repeated by 
assuming the faulty data with ±5, ±10, ±15, ±20 and ±25 
minutes. The analysis has shown that the ±20 minutes 
provided optimum training performance of the ANN 
system, where RMSE change compared to the ±25 is 
negligible; i.e., the steady state convergence was achieved. 
It was decided that the fault target interval was within 20 
minutes before and 20 minutes after reaching “1”. Hence 
all the other values are assumed non-faulty values and 
they are tagged as “0” in the normalization format. 
 
DESIGN AND MODELLING OF ICMS 
 The design and modelling of the proposed ICMS 
were developed with the help of MATLAB codes. The 
development procedures are highlighted and discussed in 
this section. The type of intelligent system used was a 
feed-forward ANN. Choosing a good topology is a crucial 
task for the success of any ANN modelling. The topology 
selection influences the learning process, time, and its 
classification. The selection criteria in this work are based 
on its impact towards the network performance. The main 
NN topologies include; training algorithms, learning rate, 
momentum coefficient, activation functions, the number of 
hidden layers, and the number of hidden layer neurons. 
The best structure for the ANN is the one that can predict 
the behavior of the system as accurately as possible and 
the method used in this works was by adopting Root Mean 
Square Error (RMSE) as performance indicator. The 
formula is shown in Equation. (2) 
 

          (2) 
 

Where the (yi) ̂ is the predicted value and yi is the 
observed value. 
 Three different types of training algorithms were 
considered based on their computational time and 
performance. The characteristic of each training algorithm 
based on MATLAB help description are as follows: 
i. Scaled conjugate gradient backpropagation (trainscg): 

Backpropagation is used to calculate derivatives of 
performance with respect to the weight and bias 
variables. It uses less memory. 

ii. Levenberg-Marquardt backpropagation (trainlm): The 
fastest backpropagation algorithm in MATLAB 
toolbox, and is highly recommended as a first-choice 
supervised algorithm, although it does require more 
memory than other algorithms. 

iii. Bayesian regulation backpropagation (trainbr): 
Minimizes a combination of squared errors and 
weights, and then determines the correct combination 
so as to produce a network that generalizes well. 
Takes longer time but may be better for challenging 
problems. 

 The learning rate (α) value (commonly between 
0.1 and 0.9) must be determine by the neural network user 
and usually reflects the rate of learning of the network. 
Values that are too large might produce instability in the 
network and unsatisfactory learning. On the other hand, 
values that are too small might result in excessively slow 
learning. The learning rate for the proposed ICMS was 
fixed at the value rate of 0.5.Three different types of 
activation functions were considered based on their 
suitability with normalized data. The type of activation 
functions are: 
i. Linear summation function (P). 
ii. Sigmoid logistic function (L). 
iii. Hyperbolic tangent (T). 
 
RESULT & DISCUSSION 
 Two ICMS were proposed to diagnose the 
turbine trips. Both are using a feed-forward ANN. The 
first model uses only a hidden layer (1HL) and another 
one uses 2 hidden layers (2HL). The two systems were 
coded in MATLAB. The outcomes of the developed 
ICMS are presented in this section. The discussion was 
focused on determining the best NN topology combination 
based on RMSE as the performance indicator. To get the 
results, several NN topologies were trained for both one 
hidden layer (1HL) model and the two hidden layers 
(2HL) model. Different numbers of neurons for each 
hidden layer ranging from one to ten were tested. 
 Table-5 summarizes the outcomes of ICMS with 
one hidden layer. Based on the result, it was proven that 
trainlm was the fastest training algorithm with only 5 
iterations to achieve the performance goal. From 
observation, the average computation time for trainbr was 
the slowest and some of the training reaches the maximum 



                                 VOL. 11, NO. 24, DECEMBER 2016                                                                                                        ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

 
www.arpnjournals.com 

 

 
14280

epoch (10,000 iterations) but it produces the best RMSE of 
0.0346. 
 

Table-5. Result summary for 1HL NN. 
 

 
 

Table-6 summarizes the outcomes of ICMS with 
two hidden layer. Based from the result, it was shown that 
trainlm was still the fastest training algorithm; with only 
12 iterations to achieve the performance goal. From 
observation, it was noticed that 2HL ICMS with trainbr 

training algorithm performs really well with plenty of very 
low error results. The best performance achieved was 
1HL1-2HL2 ICMS using trainbr training algorithm with 
RMSE of 0.0200. In general, ANN with two hidden layer 
have better performance compared to one hidden layer. 
 

Table-6. Result summary for 2HL NN. 
 

 
 

 

 
 

Figure-4. Optimal 2HL ICMS output – trainbr. 
 

Figure-4 shows the output of the optimal 2 HL 
ICMS using trainbr training algorithm. In the study, the 
data from MNJTPP steam turbine operational history was 
normalized between 0 – 1. By analyzing the operational 
parameter behavior, the operational thresholds were 
calculated. The normal operation was determined as below 
0.3, low alarm warning was between. 0.3 – 0.6, and high 
alarm warning was above 0.6. The sensor reading was 
taken in one minute interval and the fault happens at the 
151st interval. The intelligent system detects the fault at 
the 119th interval (which is 32 minutes before the plant 
monitoring system). The output is 0.56, which is 
considered as a low alarm warning. In brief, all six 
proposed ICMS configuration using 1HL and 2HL were 
capable of detecting the specific thermal power plant trip 
within a period of around 20 to 30 minutes before the trip 
occurrence. This time period is considered satisfactory. 
 

CONCLUSIONS 
The main objective of this work was to develop 

an ICMS to detect steam temperature fall turbine trip by 
ANN application. An important advantage to highlight is 
that the ICMS can be developed with operational data 
without the need of a detailed model of the plant system. 
Trial and error approach was adopted to find the most 
suitable ANN topology for the specific turbine trip. The 
ANN topology considerations in this work are training 
algorithm, learning rate, activation function, and number 
of hidden layer and their neurons. 

In both one hidden layer and two hidden layer 
ANN, the highest performance are with Bayesian 
regularization back propagation training algorithm. It is 
known that this training algorithm takes longer 
computational time compared to other algorithm but it is 
the most suitable for complex problem. It is found that 
once the correct number of neurons and activation 
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function are matched through trial and error, the ANN 
model will produce good performance within acceptable 
time. 

The best performance for the model is found to 
be a two hidden layer ANN using Bayesian regularization 
back propagation training algorithm with 1 neuron in the 
first hidden layer, 2 neurons in the second hidden layer 
and hyperbolic tangent activation function in all the layers. 
The ANN model is found to have good prediction 
accuracy with only 0.0200 errors. The model predicted the 
fault 32 minutes before the existing plant monitoring 
system. With earlier fault detection, the plant operator can 
implement mitigation measures and bring the plant back 
online faster which in turn reduce the downtime cost for 
unscheduled shutdown. It must be clarified that if any 
changes occur in the system, a retraining of the ANN is 
required. 

For future work, the ICMS can also be trained to 
detect other types of turbine trips. A retraining with the 
new type of trips data would be required. The ICMS also 
could be improved by adopting optimization methods such 
as genetic algorithm. 
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