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ABSTRACT 
 The problem of the MHD free convection flow past an impulsively started vertical porous plate through a porous 
medium, taking into account the heat due to viscous dissipation, is investigated and simulated. A generic computer 
program using the Galerkin finite element method is employed to obtain solutions for velocity and temperature fields. The 
energy equation, the momentum equation, and the parameters entering into the description of the flow, are transformed into 
an interpretable code. The influences of the dimensionless parameters entering into the description of the problem are 
investigated. 
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INTRODUCTION 
 Porous media are very widely used to insulate a 
heated body in order to maintain its temperature. They are 
considered to be useful in diminishing the natural free 
convection which would otherwise occur intensively on 
the vertical heated surface. To make the heat insulation of 
the surface more effective, it is necessary to study the free 
convection flow through a porous medium. The flow past 
an impulsively started infinite plate was studied by a 
number of authors such as [1-5]. On the other hand, flows 
through porous media are very much prevalent in nature 
and therefore the study of flows through media has 
become of practical interest in many scientific and 
engineering applications. Various authors have made 
important contributions in the area of fluid flows such as 
[6-13]. 
 Fagbade et al. [14] presented an application of 
the spectral homotopy analysis method in order to solve a 
problem of darcy-forcheimer mixed convection flow in a 
porous medium in the presence of magnetic field, viscous 
dissipation and thermopherisis. Their analysis was aimed 
at studying the effects of chemical reaction, magnetic 
field, viscous dissipation and thermophoresis on mixed 
convection boundary layer flow of an incompressible, 
electrically conducting fluid past a heated vertical 
permeable flat plate embedded in a uniform porous 
medium. Dhar et al. [15] applied the group-theorytic 
approach to solve the problem of the unsteady MHD 
mixed convective flow past on a moving curved surface. 
They reduced the number of independent variables by two, 
and the obtained ordinary differential equations were 
solved numerically using the shooting method. Duan et al. 
[16] considered a two-dimensional symmetric space-
fractional diffusion equation in which the space fractional 
derivatives are defined in Riesz potential sense. They 
solved the diffusion equation by using Crank-Nicolson 
technique in time and Galerkin finite element method in 
space. They also proved the stability and convergence of 
their schemes. Naroua et al [5] presented a formulation 
coupling the classical finite element method with a 
stepwise Lagrange polynomial in order to compute the 
solution of a fluid flow problem. Instead of using line 

segments within elements as used by the classical method, 
they used polynomials of degree two over couples of 
elements.  
 In this paper, we are proposing to study a specific 
non-linear fluid flow problem and compute its solution by 
a generic software tool using finite elements. We first 
investigate the interaction of the free convection with 
hydromagnetic flow past an impulsively started vertical 
plate through a porous medium by taking into account the 
heat due to viscous dissipation. Next, we make use of a 
generic finite element method to compute the numerical 
values of the flow fields. 
 
MATHEMATICAL FORMULATION OF THE 
PROBLEM 
 We make an investigation of the MHD free 
convective flow past an impulsively started vertical 
infinite porous plate. The x/-axis is taken along the plate in 
the vertical upward direction and y/-axis is taken normal to 
the plate. The magnetic field is applied in the direction of 
y/-axis. Initially, the temperatures of the plate and the fluid 
are assumed to be the same. At time t/˃0, the plate starts 
moving impulsively in its own plane with velocity U and 
its temperature is instantaneously rised or lowered to 

/
T which is maintained constant later on. A uniform 

magnetic field B0 is assumed to be applied transversely to 
the direction of the flow. Since the plate is infinite in 
length, all variables are functions of y/ and t/ only. The 
flow occurs with a low Mach number and hence the 
density of the fluid can be taken as constant. The induced 
magnetic field is neglected since the magnetic Reynolds 
number is very small [17]. Then under the usual 
Boussinesq approximation, the problem is governed by the 
following set of equations: 
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The initial and boundary conditions are: 
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The equation of continuity gives  
 

/
0

/ vv               (5) 

 
where v0 is the constant suction velocity. The 

symbols u/, v/ stand for the velocity components in the x/ 
and y/ directions, t/ the time, g the acceleration due to 

gravity, β the coefficient of volume expansion, /
T  the 

temperature at infinity, /
wT the fluid temperature near the 

plate. ρ, Cp, k and υ are respectively the fluid density, the 
specific heat, the thermal conductivity and the kinematic 
viscosity. σ, B0 and K/ are the electrical conductivity of the 
fluid, the external magnetic field and the permeability of 
the medium respectively. We introduce now the following 
non-dimensional quantities: 
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where Pr, Ec, Gr, M and K are the Prandtl 

number, the Eckert number, the Grashof number, the 
magnetic parameter and the permeability parameter 
respectively. 

In view of equation (6), equations (2) and (3) 
reduce to the following non-dimensional form: 
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The initial and boundary conditions are given as follows: 
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SOLUTION OF THE PROBLEM 
 The above system of equations (7) and (8) with 
initial and boundary conditions (9) has been solved 
numerically by a generic computer program based on the 
finite element method in step 1 and step 2. 
 
Step 1: Energy equation finite element solution 
 We solve equation (8) with the help of initial and 
boundary conditions (9).   Constructing the quasi-
variational equivalent of equation (8), we obtain: 

dy 
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where  i  denotes the test function and   is the 

region of the flow. 
Consider an N elements mesh and a two 

parameter (semi discrete) Galerkin approximation of the 
form [18]: 
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where i = 1,2,3,…,N and yi and yi+1 are 
respectively the lower and upper coordinates of the 
element i.  
    
Using equations (11-12), equation (10) reduces to: 
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Using the  - family of approximation developed 
by Reddy [18], equation (13) reduces to: 
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The initial value C0 is obtained by the Galerkin 

method from a 64 elements mesh and is given by: 
 

 TC 0.....,..........,.........0,0,10           (17) 

 
For t > 0, 
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Step 2: Momentum equation finite element solution 
 We solve equation (7) with the help of initial and 
boundary conditions (9).   Constructing the quasi-
variational statement of equation (7), we obtain:  
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where i  is the test function and  is the region 

of the flow. 
Consider a two parameter (semi-discrete) 

Galerkin approximation of the form [18]: 
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where i=1,2,3,…..,N and yi and yi+1 are 

respectively the lower and upper coordinates of the 
element i. Using equations (20-21), equation (19) reduces 
to: 
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Using the  - family of operators developed by 
Reddy [18], equation (22) takes the form: 
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Where 
 

 Td 0...........,.........0,0,10                      (25) 

 
 The numerical values of the temperature and 
velocity fields have been computed from equations (18) 
and (24). All input elements such as matrix and vector 
elements are transformed into postfix code which will be 
interpreted in the process of calculations. 
 
DISCUSSION OF RESULTS 
 In order to achieve a physical understanding of 
the problem and for the purpose of discussing the results, 
numerical calculations have been carried out for the 
velocity and temperature distributions. The results 
obtained are displayed in Figures 1-3. The method used is 
unconditionally stable and is independent of the time step 
t. The velocity profiles are examined for the cases Gr > 0 
and Gr < 0. Gr > 0 (= +5) is used for the case when the 
flow is in the presence of cooling of the plate by free 
convection currents. Gr < 0 (= -5) is used for the case 
when the flow is in the presence of heating of the plate by 
free convection currents. Figures 1-2 show the velocity 
distribution for the two cases from which we observe that 
the velocity (u) decreases away from the plate. 
 
 From Figure 1, for the case when Gr>0 (in the 
presence of cooling of the plate by free convection 
currents), we observe that: 
 The velocity (u) increases due to an increase in the 

Prandtl number (Pr), the permeability parameter (K) 
and the time (t); 

 An increase in the Eckert number (Ec) leads to an 
insignificant change in the velocity profile (u). 

 
 From Figure-2, for the case when Gr<0 (in the 
presence of heating of the plate by free convection 
currents), we observe that: 
 The velocity (u) decreases due to an increase in the 

Prandtl number (Pr) and the permeability parameter 
(K); 

 The velocity (u) increases with an increase in the time 
(t); 

 There is an insignificant change in the velocity profile 
(u) due to an increase in the Eckert number (Ec). 
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From Figure-3, we observe that: 

 The temperature (T) decreases away from the plate. 
The decrease is greater for a Newtonian fluid than it is 
for a non-Newtonian fluid (T decreases with Pr); 

 There is a rise in temperature profiles (T) due to an 
increase in the time (t); 

 An increase in the Eckert number (Ec) leads to an 
insignificant change in the temperature profile (T). 

  

 
 

 
 

Figure-1. Velocity distribution for Gr = +5. 
 

 
 

 
 

Figure-2. Velocity distribution for Gr = -5. 
 

 

 
Figure-3. Temperature distribution for Gr = ±5. 
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