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ABSTRACT  

Recent years, the volume of data is increasing rapidly.  There is a huge of information available that lead to 

extremely large datasets. Most of data comes in unstructured forms such as Twitter, Facebook, Blogs, and others. Formal 

Concept Analysis (FCA) is a way to organise data.  However, large dataset leads to the complex formal lattice and 

becomes unreadable.  Principal Component Analysis (PCA) using Singular Value Decomposition (SVD) are used to 

reduce the high dimension of data.  This method is able to be used with both fuzzy and crisp formal contexts.  In order to 

select principal components, we combine two rules; first rule is we use Cumulative Explained Variance Fraction and 

second rule is we examine Cattell’s Scree Graph.  This method is compared with other methods using Edit Distance 
measurement that quantify the distance between original lattice and reduced lattices.  

 
Keywords: fuzzy concept, formal concept analysis, data compression, principal component analysis, singular value decomposition, edit 

distance. 

 

INTRODUCTION 

There are many ways to represent the structured 

data.  One of the ways is Formal Concept Analysis (FCA).  

FCA is an approach to represent knowledge, analyse data, 

and manage information [1].  There is an indistinct 

difference between Ontology and FCA as both methods 

are complementary to each other.  Ontology represents the 

relation between set of attributes while FCA represents 

concepts in simpler way and lesser dependency compared 

to ontology.  Besides that, FCA provides a good support to 

ontology engineering field where it structures the concepts 

using hierarchical structures.  The structures come in 

many forms such as line diagram, nested diagram, tree 

diagram, and others.  In conceptual thinking, FCA is 

important in formalising the unit of thought that we called 

as a concept.  A concept is a combination of attribute and 

object that related to each other.  FCA is also a tool that 

has been applied in many areas like information retrieval, 

political science, and information retrieval.  Some areas 

deal with small number of attributes and objects, but 

others deal with many concepts. 

As time goes by, the data is increasing too.  There 

is a phenomenon that occurs when the volume of data is 

extremely large that known as information overload or 

digital obesity [2].  When this happens, the volume of data 

gives much problems rather than advantages. Recent 

development within the internet and World Wide Web can 

cause the information overload too.  The digital data 

comes in variety of sources such as personal file stores, 

networked databases, images, videos, tweets, blogs, and 

tweets.  

When dealing with large volume of data, it 

consists large number of attributes and objects too. These 

kinds of data always face with complexity and scalability 

problems especially if we represent them using FCA. As 

number of concepts in formal lattice is growing 

exponentially with number and concepts, it is very 

difficult to model them using FCA.  The lattice is very 

hard to read because the complexity of the structure.  

Besides that, the complicated structures produce high cost 

because the amount of time to traverse each of the 

concepts has increased.  According to [3], the amount of 

time to traverse entire concepts is polynomial in the 

number of input objects and attributes per generated 

concepts.  As a conclusion, there is a need to search a 

good method to represent big dataset using FCA.  Several 

studies have shown that many methods can represent the 

large dataset, for examples decomposition [4], reduction 

of fuzzy relation [5], noise reduction [6], and others. 

Large datasets are always related to high 

dimensional data which offer mathematical challenges and 

new theories to be discovered.  In information retrieval, 

this kind of data always bring big problems. One way to 

solve the problems is to reduce the dimension of data.  

This method has been used in many applications in data 

mining and machine learning such as classification and 

clustering.   

In this study, we use Principal Component 

Analysis (PCA) through the Singular Value 

Decomposition (SVD) as an approach to reduce the high 

dimension data.  This paper is organised as followed: 

Section I is an introductory of challenges in representing 

large datasets, while in Section II presents the previous 

studies that represented large datasets.  In the following 

section, Section III is concerned with the FCA and 

methodology used for this study. In Section IV, we apply 

those methods using real world data and finally Section V 

mentions the conclusion of this study. 

We use a moderate large example of a fuzzy 

lattice that is shown in Figure-1. Fuzzy lattice is a 

graphical illustration of fuzzy context from Table-1.  This 

lattice has 39 concepts which clearly shown in Figure-1.  

The reason why this example is chosen is it is sufficient 

large to illustrate the problem and displayed clearly.   

 

PREVIOUS STUDIES 

There are many approaches to represent large 

datasets; for examples decomposition [4], reduction of 
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fuzzy relation [5], noise reduction [6], and others.  

Decomposition is a well-known approach to reduce the 

complexity of lattices.  According to [5], they suggested to 

use distinct granules to decompose fuzzy formal contexts. 

This method is designed to decrease a fuzzy formal 

context 𝐹 = ሺ𝑂, 𝐴, ܴሻ where 𝑂 is a set of objects, 𝐴 is a set 

of attributes, and ܴ is a fuzzy relation on 𝑂 ×  𝐴 into a 

few other crisp formal contexts.  Fuzzy relation reduction 

is another method to reduce the size of contexts.  This 

approach is introduced by [5].This Figure-1. An Example 

of Fuzzy Formal Lattice based on Table-1method projects 

the fuzzy relation between objects and attributes and 

produces two lattices only.  The next approach is noise 

reduction method.  Any small part in formal contexts that 

is below than user-defined is named noise.  This noise 

should be removed to reduce the size of the lattice.  This 

method is a similar approach compared to iceberging 

lattice. In the iceberg lattice approach, a lattice is truncated 

by removing concepts that do not have a defined minimum 

number of objects. Meanwhile, Noise Reduction approach 

is a semi-automated form of iceberging lattice where it 

reduces noise by using minimum support so that the 

reduced lattice is more manageable and meaningful lattice. 

 

 
Figure-1. Iceberg lattice using minimum support. 

 

Table-1. An example of fuzzy formal context. 
 

 

PRINCIPAL COMPONENT ANALYSIS (PCA) 

WITH SINGULAR VALUE DECOMPOSITION 

(SVD) APPROACH 

PCA has become one of the well-known methods 

for data summarization and visualization these days. PCA 

is also a mathematical method of restructuring information 

in a dataset of samples and this technique measures data 

and shows the direction of the highest variance of the data 

(the directions where the data is spreadout).  

The aims of PCA are to obtain the important 

information in a data table, to reduce the data set by 

selecting the crucial information only, to simplify the 

description of the data set and to analyse the structure of 

the observations and the variables [7]. All those goals can 

be achieved by computing the principal components. The 

first few principal components contain a large proportion 

of the data variance, typically 80 to 90 percent of data 

variance. 

 PCA only deals with a square matrix, but 

Singular Value Decomposition (SVD)can deal with a 

rectangular matrix. SVD is a matrix decomposition 

method from linear algebra. It can be seen as a 

generalisation of eigen value decomposition. Like 

eigenvalue decomposition, it decomposes a matrix as 

(orthogonal matrix) × (diagonal matrix) × (orthogonal 

matrix) 

Basically, we use SVD to perform PCA because 

there is a direct relation between both of them. We assume 

all features are normal in both uninvariate and multivariate 

combination. Before applying the SVD, we need to 

preprocess the data table by centering the data. This is 

done by subtracting the mean row vector from all the data 

vectors. If 𝑋 is the data matrix, 𝐴 is the centered matrix 

with 
 

 (1) 
 

The PCA is calculated using the covariance matrix, 𝐶 

where 
 

    (2)            

 ܷ is ݊ ×  ݉ matrix. If ݊ <  ݉, the first ݊ 

columns in ܷ correspond to the sortedeigenvalues of 𝐶, 

and if ݉ ൒  ݊, the first m correspond to the sorted non-

zero eigen values of 𝐶. 

The matrix ܷ, which contains the eigenvectors 

of 𝐶, is usually called the loadingmatrix, where it means 

the correlation between components and the original 

variables. The higher the component loadings, the more 

important that variable is to the component. The matrix 𝛴ܸ𝑇 is called the scores matrix, and it contains the 

coordinates of the original data in the new coordinate 

system defined by the principal components. The eigen 

values of 𝐴𝐴𝑇 are equivalent to the square of the singular 

vectors, 𝛴ଶ, which are proportional to the variances of 

principal components. Inorder to know which components 

contain most of the information, we apply two rules which 
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first is identify the cumulative explained variance fraction 

and second, plot the Cattell’s screen graph [8].  

In order to select the principal components, there 

are two rules that we should follow; first we use 

Cumulative explained Variance Fraction to define a range 

of principle components and then we examine Cattell’s 
Screen Graph to obtain a single value for the number of 

components to use. 

 

CUMULATIVE EXPLAINED VARIANCE 

FRACTION 

Cumulative explained variance fraction is the 

most basic way to sustain the principal components [9]. In 

order to represent the sufficient principal component, we 

compute the total variability of data fraction. This 

cumulative fraction should be larger than identified critical 

values. The formula for this computation is 
 

   (3) 
 

All the where ܴ2݉shows that each principal 

component represent the share of total variations of 

original matrix that is proportional to its eigen values. It 

can be written as 
 

   (4) 
 

According to [10], the critical value for 

cumulative explained variance fraction should be in a 

range between 70% to 90%, 70% ൑ ܴ𝐶𝑟𝑖௧ଶ ൑ 90%. 

This suggestion can be easily seen to the illustration using 

a scatter graph (refer to Figure-2) which plots the 

cumulative explained variance fraction, ∑ ܴଶ݉𝑀௠=ଵ  on 

the y-axis and principal component, m on the x-axis.   

Figure-2 shows two red lines that mark the 

boundaries for principal component; this means the 

number of principal components should be selected 

between 29 and 54. This rule should be combined with 

another method of selecting principal component, named 

Cattell’s Scree Graph that will be explained in the next 
section. 
 

 
 

Figure-2. Graphical displays of cumulative explained 

variance fraction based on principal components. 

 

CATTELL’S SCREE GRAPH 

This graph allows us to visualise the variance of 

each component. In this graph, we sort the eigen values 

and plot them for all of the components. All the points are 

connected with a line. When the line slope becomes more 

flat, although we add extra components, it does not change 

the total explained variance much. Therefore, we need to 

select the number of components, 𝑘 which depends on the 

“elbow” pointat which the remaining eigenvalues are 

relatively small and all about the same size. 

By referring to Figure-3, a number of 

components, 𝑘 (principal component) that is supposedly 

chosen based on the slope change is 17. This value is 

selected because the slope becoming more flat after the 

selected k. However, as we follow the first rule 

(Cumulative Explained Variance Fraction), we need to 

choose a number of principal components that is in range 

between 29 and 54. So, in this case, we choose the 

principal component 29 as the slop e is fairly smooth after 

it. 
 

 
 

Figure-3. An example of Cattell’s scree graph. 
 

TRUNCATED SVD 

SVD acts on a rectangular matrix, 𝐴 where 𝐴 is 

an ݊ ×  𝑝 matrix, where ݊ is rows, while 𝑝 is 

column,𝐴௡×𝑝 = ܷ௡×௡Σ௡×𝑝 𝑝ܸ×𝑝𝑇 , where ܷ and ܸare 

orthogonal, and𝛴 is diagonal. Because the singular values 

usually fall quickly, we can take only 𝑘greatest singular 

values and corresponding singular vector coordinates and 

create a𝑘−reduced singular decomposition of A, which we 
then call a truncated SVD. Figure-4 shows the truncated 

SVD matrices, 𝐴𝑘with 𝑘-reduced singular decomposition 

of 𝐴. 
 

 
 

Figure-4. Truncated SVD with k-reduced singular 

decomposition of A. 
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Truncated SVD is defined as the best 𝑘-rank 

approximation of the original matrix, 𝐴. This truncated 

SVD removes noise by ignoring small differences between 

row and column vectors of 𝐴. However, we should choose 

the optimal value for 𝑘. If we choose a higher 𝑘, we get 

closer to the approximation to 𝐴. On the other hand, if we 

choose a smaller 𝑘, it will save us more work but more 

information will be lost if comparing with the original 

matrix. So, the optimal value of 𝑘 is a value for which 

these opposing tendencies are balanced with respect to 

some principles. 

 There are two rules that we need to consider; first 

is cumulative explained variance fraction and second is 

Cattell’s screen graph.  

 

 In order to obtain truncated SVD matrix, we 

follow the general steps listed below: 

1. Center the data, A. To do that, we need to subtract the 

mean row vector from each data vector. 

2. Compute the eigen values, Σଶ by calculating Singular 

Value Decomposition of A. 

3. Sort them in descending order using insertion sort 

algorithm. 

4. Compute the cumulative explained variance fraction. 

5. Plot the cumulative explained variance fraction graph. 

6. Plot the Cattell’s screen graph. 

7. Choose the number of components, k or principal 

component. 

8. Truncate A(the original data). 

9. Add the mean vector to the truncated matrix. 

10. Choose the threshold for the crisp lattice cases. 

 

Those steps can be applied to any large dataset in 

a way to obtain a truncated SVD matrix. After we truncate 

the lattice, there are three possible cases for the nodes or 

concepts; first, there may be some nodes removed; second, 

there may be some nodes added, and finally, more objects 

may have the same set of attributes. By applying to the 

dataset, we can examine those kinds of possibilities. 

 

The building of a truncated formal context 

(formal lattice) is described in Algorithm 1. The input is a 

formal context in a CSV file. To implement the PCA 

through SVD, the first step is to read and transform the 

formal context into an adjency matrix, 𝑋. The next step is 

to compute the mean of 𝑋, 𝑀. According to thePCA 

implementation, we must ensure that the data has zero-

mean. This is achieved by computing the mean of the 

matrix in Step 2 and subtracting it from the matrix,𝑋 that 

is shown in the Step 3. The following step is to compute 

the eigen vector,𝛴.As we implemented this algorithm 

using MATLAB, we called the svd commandthat 

computes the matrix singular value decomposition in a 

way to obtain 𝛴 value.As the formula of SVD of matrix 𝐴 

is 𝐴 =  ܷ𝛴ܸ𝑇, we must transpose the matrixV. 

 

The next step is Step 6 where we compute the 

eigen values. The eigen values are the squares of the 

singular values in Σ. Since the diagonal of 𝛴ଶ contains 

theeigenvalues, we can easily compute eigenvalues, 

eigenv by squaring the command diag(S). In the 

next following steps are to select the k. We plot the eigen 

values on the y-axis, and number of columns 𝑋 on the x-

axis. Then, we choose the 𝑘 byselecting the “elbow” point.   
Using the 𝑘 that is chosen, we can truncate the 

matrices in SVD. In Step 12, the product of ܷ𝑇𝑟௨௡𝑐,  ܵ𝑇𝑟௨௡𝑐and  𝑇ܸ𝑟௨௡𝑐 is the decomposition of 𝐴𝑇𝑟௨௡𝑐. In order 

to get the original data back, we need to add the mean of 

the original data, which is shown in Step 13. So, if the 

matrix, 𝑋 is fuzzy data, the truncated concept lattice has 

been obtained. However, we need to set a threshold,𝑡 for 

crisp data. This step isexplained in Step 14 where if the 

element in the truncated matrix, 𝑋𝑇𝑟௨௡𝑐 is greaterthan the 

threshold, the value will be 1. On the other hand, the value 

will be 0. 

 

 
We use edit distance measurement that was 

developed by [11] to measure the distance between 

reduced fuzzy concepts and original fuzzy concepts. The 
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change is based on pairing concepts in the two lattices and 

finding the cost of converting each concept to its 

counterpart.  Table-2 shows the comparison results of edit 

distance for each of methods. 

Based on the results, we can see that the smallest 

difference between original lattice and reduced lattice 

which applies PCA using SVD method.   

 

Table-2.  Table Comparison of edit distances between 

original lattice (shown in Figure-1 and each methods. 
 

 
 

CONCLUSIONS 

 Recent years have been seen the rise of the 

phenomenon of information overload. But not all 

information is important. Although knowledge can be 

represented in formal concept lattices, the volume of 

information may produce very complicated lattices. In that 

case, many methods can be applied to reduce the lattices’ 
complexity.  In this paper, we have discussed using 

Singular Value Decomposition (SVD) to implement the 

PCA for selecting the important dimensions of data. The 

unimportant data dimensions are considered as noise 

which can be removed.  There are three main contributions 

in this study.  First is the use of PCA with SVD that can be 

used in both crisp and fuzzy formal contexts.  This method 

has been shown clearly in Algorithm 1.  The second 

contribution is the combination of two rules to select the 

principal components. Finally, the third contribution is we 

quantify the differences between original and reduced 

lattices using Edit Distance measurement.  As a 

conclusion, this study has demonstrated that PCA with 

SVD method is able to reduce 
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