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ABSTRACT  

In the 21
st
 Century, a key challenge in both wild and cultured fish populations for control and management of 

disease is to securely and consistently perform pathogen identification. To provide automated accurate classification for the 

challenging Gyrodactylus species, we introduce an ensemble based majority voting approach for their classification. In this 

system, an ensemble classification approach is created that utilises a combination of multiple feature sets and classifiers for 

Gyrodactylus species identification. The classifier base makes use of K-Nearest Neighbor (K-NN) and Linear Discriminant 

Analysis (LDA) approaches; with three different feature sets used for successful multi-species classification, considering 

25 point-to-point data measurements, as well as smaller feature sets chosen using different feature selection techniques. 

The results show that our proposed ensemble based approach is accurate and robust, with ensemble based majority voting 

of classifiers and feature sets together found to be more effective than only combining feature sets. 

 
Keywords: gyrodactylus, classification, feature selection, ensemble, majority voting. 

 

INTRODUCTION 
The continued worldwide expansion of 

Aquaculture has been accompanied by increased disease 

problems. Of particular interest are the disease issues 

related to the spread of ectoparasitic monogenean worms. 

In this paper, the focus is on Monogenea of genus 

Gyrodactylus.  These are widespread and can inhabit 

marine, brackish, and fresh water environments. 

Specifically, G. salaris primarily lives and reproduces in 

fresh water environments, However, it can tolerate 

brackish water for different time periods, depending on the 

salinity levels present. In several countries, Gyrodactylus 

salaris (G. salaris) has the reputation and nickname of ‘the 
salmon killer’ due to its significant impact on the mortality 

rate of salmon. Bakke et al.  (Bakke, et al. 2007) stated 

that previously there has been a limited focus on this topic 

due to the complexity of G. salaris taxonomy. However, 

due to the effect on Atlantic salmon of  G. salaris research 

interest has increased to such a level that gyrodactylids are 

now the most heavily researched type of monogeans. 

Gyrodactylus are generally very small (<1mm), 

ectoparasitic monogenetic fish flukes (Harris, et al. 2004), 

with over 440 known species. The majority of 

Gyrodactylus species are non-pathogenic, which means 

that their presence causes very little harm or damage to the 

fish that hosts them, however this is not always the case.   

There is incomplete knowledge of the majority of 

Gyrodactylus species, with descriptions often limited to an 

incomplete morphological description of their attachment 

hooks. In recent years, molecular techniques have 

contributed significantly to species discrimination 

(Cunningham, et al. 1995), however Gyrodactylus 

definitions often still rely on morphological characteristics 

(i.e. the morphology of attachment hooks, focusing on the 

sickle shape of the 16 small peripheral marginal hooks, 

due to these being considered the most important 

taxonomic feature) (Malmberg, 1970).  

The expansion of managed fish culture into new 

environments due to continued decline in wild stocks 

because of anthropogenic activities, over-fishing, and 

other environmental changes, with the subsequent increase 

in ectoparasitic worms, has outstripped our ability to 

recognise a number of individual parasite pathogen 

species within a manageable timescale. There is also the 

issue of a wide variance in the pathogenicity seen between 

very closely related species and therefore, a key challenge 

in both cultured and wild fish populations is having the 

capability to securely and consistently identify pathogens.  

As discussed previously, when it comes to 

species definitions, the key feature is often the 

morphological characteristics (i.e.  the morphology of 

attachment hooks).  These may be have a correlation with 

pathogenicity but research has identified that it is not 

always the case that there is a relationship between these 

characteristics and other recognised discriminatory 

molecular markers (Cunningham, et al. 1995).  It has been 

found that some pathogenic species, including many 

monogeneans (whose discrimination from congeners can 

be particularly difficult due to the relatively small number 

of discrete morphological characteristics) can only be 

classified separately from other related non-pathogenic 

species by the process of morphological characterisation.  

This has the result of species classification being 

extremely time consuming and challenging.  

Some of the key challenges include the often 

small size of specimens, there only being very small 

differences in morphology in some of the most important 

taxonomic features, a lack of distinctive colouration and 

patterning, and also the fragile nature of some specimens, 

which means they have to be living or immediately 

preserved in order to be classified. Kay et al. (Kay, et al. 

1999) provide a detailed discussion of the challenges 

associated with parasite classification by shape because of 

the often very slight differences between each species. 

http://www.arpnjournals.com/
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This paper presents a new method to alleviate this problem 

by creating an automated classification approach that uses 

Ensemble Classification and Majority Voting. 

In the remainder of this paper, the background 

section provides further background information into the 

research problem.  The Morphometric Dataset section 

presents a full description of the data collection process 

using the point-to-point measurement approach. After this, 

Ensemble Classification and Majority Voting are 

introduced in the following section. The proposed method, 

Ensemble Classification for Gyrodactylus Species 

Identification is the presented. The Results are presented 

and discussed in the following section and finally, the 

paper is concluded. 

 

BACKGROUND  

There are a range of significant multi-disciplinary 

issues with regard to classification of the Gyrodactylus 

species group. Firstly, manual classification is highly time 

consuming and labour intensive, and related to this, there 

is the issue of access to a level of expert knowledge that is 

capable of successfully distinguishing superficially similar 

species such as G. arcuatus, and G. salaris from each 

other. Thirdly, given the small size of the specimens, the 

error free acquisition of the required point-to-point 

measurements can be extremely challenging.  If the 

measurements are incorrect, this can lead to inaccurate 

classification. Finally, when the final classification 

decision has to be made, only specialist domain experts 

can determine this, with the aid of their own expertise, 

experience, and vision. 

To assist with accurate classification of 

Gyrodactylus species, machine learning techniques can be 

used to recognise and classify an image of a specimen, 

which will provide a big contribution with regard to 

parasite recognition and classification. To date, many 

different algorithms that can be used for classification and 

detection have been proposed, including parasite detection 

in fish (Choudhury & Bublitz, 1994), identification of 

mammalian species (Moyo, et al. 2006), leaf species 

recognition (Du, et al. 2007), and IHHN virus detection in 

shrimp tissue with the use of digital colour correlation 

(Alvarez-Borrego & Chavev-Sanchez, 2001).  

To improve G. salaris identification, which as 

discussed earlier, is time consuming and extremely 

challenging for even domain experts to do manually, a 

number of morphometric techniques have been proposed 

that aim to distinguish this particular species from others 

that are closely related and can also be found on 

salmonids.  These include molecular techniques 

(Cunningham, et al. 1995), (Cunningham, et al. 1995), 

(Meinila, et al. 2002), (Hansen & Bachmann, 2002), and 

also approaches based on statistical classification (Kay, et 

al. 1999), (McHugh, et al. 2000), (Shinn, et al. 2000). 

 

MORPHOMETRIC DATASET 

In this paper, we utilise a morphometric dataset 

based on point-to-point feature extraction.  This was 

collected and prepared by the Parasitology Laboratory at 

the Institute of Aquaculture, University of Stirling. The 

specimens were collected from a wide geographic range. 

In this paper, nine species of Gyrodactylus in were used 

for investigation. These are G. derjavinoides, G. arcuatus, 

G. salaris, G. kherulensis, , G. sommervillae, G. thymalli, 

G. truttae, G. cichilidarum, and G. gasterostei. In total, 

557 specimens from nine different Gyrodactylus 

ectoparasite groups were sampled, using light microscopy. 

As discussed in Shinn et al. (Shinn, et al. 2000), 

the main method of attaching to the host species is with 

the opisthaptor of the attachment hook. This is also 

considered to be the most significant feature for 

identification of distinct Gyrodactylus Malmberg species.  

In this paper, feature information was extracted from the 

tree part of the opisthaptor attachment hooks; hamuli, 

ventral bar and marginal hook. 

A dataset of Morphometric features containing 25 

point-to-point measurements was measured from glass 

slide mounted specimens.  The number of each species is 

presented in Table-1. This table shows the distribution of 

the multiple species of Gyrodactylus in the dataset. Some 

species have more than 50 specimens (e.g.: G. salaris), 

while others have much less (e.g.: G. arcuatus) 

 

Table-1. Detailed breakdown of the Gyrodactylus species 

and their number of specimens. 
 

 
 

 In the dataset, all measured point-to-point 

distances are categorised as scale type data and measured 

in micrometres (µm).  6 were taken from the ventral bar 

which spans the two hamuli (anchors), 11 from one of the 

paired central hamuli, and the remaining 8 were measured 

from one of the 16 peripheral marginal hooks. The total 

list of point-to-point measurements is given in Table-2. 

 

http://www.arpnjournals.com/


                                    VOL. 12, NO. 2, JANUARY 2017                                                                                                         ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

 
www.arpnjournals.com 

 

 
312 

Table-2.Detailed list of all point-to-point measurements. 

 

 
 

ENSEMBLE CLASSIFICATION 

Single classifier based approaches discussed in 

previous research (Ali, et al. 2011), investigated the use of 

a range of single classifiers and different single feature 

sets. It was found that none of these approaches (i.e., those 

utilising one feature set combined with only one classifier) 

produced significantly better Gyrodactylus classification 

results. The key limitation of using a single classifier 

together with a single feature set is that this may only 

learn to completely correctly classify certain species 

within the subset of possible species, whereas a different 

classifier may completely classify other species, and 

generate different errors. It is therefore expected that the 

combined use of different feature and classifier sets for 

Gyrodactylus species identification will allow for robust 

classification performance and overcome weaknesses with 

individual classifiers. 

As discussed by Yu and Xu (Yu & Xu, 2011), the 

use of an ensemble classification approach has merits due 

to difficulties with producing fully accurate classification 

with single classifier approaches, for a number of reasons, 

with one important scenario being when a large dataset, or 

one with a large number of features or data points, is used. 

In order to be able to learn interpretable multi-target 

models capable of classifying several classes 

simultaneously, the FIRE (Fitted Rule Ensembles) method 

was proposed (Aho, et al. 2009), which can learn multi-

target regression rule ensembles. Published results confirm 

that in general, there is a trend of larger models being 

more accurate.  

With regard to multi-disciplinary research, one 

previous example is field line proteomic mass spectra 

classification (Geurts, et al. 2005), which proposed a 

decision tree ensemble based systematic approach to 

determine proteomic biomarker and predictive models, 

with promising results and more efficient processing 

times. 

 

MAJORITY VOTING 

In a range of relevant examples of existing 

ensemble models, majority voting has been applied. Based 

on their research, Kainulainen (Kainulainen, 2010) 

recommend the use of majority voting if the output 

consists of class labels, and therefore, for the research 

presented in this paper, this approach was followed for 

Gyrodactylus species classification.  We also use simple 

majority voting, which is a decision rule that selects one of 

a number of alternative choices, by choosing the 

prediction that has the most “votes” (Kim, et al. 2011). To 

demonstrate this, given a hypothetical ensemble consisting 

of three different classifiers, which we call h1, h2 and h3, 

and a sample x to be classified, classification is first 

performed with all three.  In one scenario, h2(x) and h3(x) 

may both classify correctly but h1(x) produces an incorrect 

result.  In this scenario majority voting will correctly 

classify x by counting the votes of each classifier and 

selecting the majority opinion. In theory, if the errors that 

the classifiers make are independent (i.e. have 

misclassifications with different labels), the majority vote 

should outperform the best single classifier. 

An example of this was proposed by Bouziane 

(Bouziane, et al. 2011) , who applied majority voting for 

predicting the secondary structure of globular proteins. 

They combined Artificial Neural Networks (ANNs) and 

K-Nearest Neighbor (K-NN) with Multi-class Support 

Vector Machines and used these classifiers to compare 

three different strategies for voting; Influence Majority 

Voting (IMV), Weighted Majority Voting (WMV), and 

Simple Majority Voting (SMV).  

 

ENSEMBLE CLASSIFICATION FOR 

GYRODACTYLUS SPECIES IDENTIFICATION 
For Gyrodactylus species identification, a number 

of combinations of feature sets and classification methods 

have been considered for the creation of an ensemble 

based approach. Three different feature sets have been 

utilised, and these are used two different classifiers, K-NN 

and Linear Discriminant Analysis (LDA), which together 

comprise the classifier base. These were chosen based on 

prior research (Ali, et al. 2011), which identified that 

when comparing LDA and K-NN approaches to Support 

Vector Machine (SVM) and Multi-Layer Perceptron 

(MLP) methods, the resulting misclassifications were not 

noticeably different, meaning that integrating all four 

classification methods into one ensemble held little 

additional value as the individual classifiers did not all 

make independent errors.  The success of an ensemble 

system is dependent on being able to correct the errors 

made by individual classifiers within it (Kainulainen, 

2010). If all classifiers provide the same output (i.e. are 

not independent of each other), it is impossible to correct 

individual mistakes. 

http://www.arpnjournals.com/
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In addition, as MLP and SVM are non-linear 

approaches, it can be argued that the chosen (linear) 

classifiers are less computationally complex than 

implementing additional non-linear approaches. 

The chosen features are the 25 full feature point-

to-point measurement set, 21 selected features using 

Sequential Forward Selection (SFS) (Karagiannopoulos, et 

al. 2007), (Gheyas & Smith, 2010) and 20 selected 

features from Sequential Backward Selection (SBS) 

(Karagiannopoulos, et al. 2007), (Kolodyazhniy, et al. 

2011). Majority voting (Kim, et al. 2011) is implemented 

to combining the classifiers and feature sets. 

 

 
 

Figure-1.Proposed ensemble based feature selection and 

majority voting approach for Gyrodactylus species 

classification. 

 
The proposed ensemble voting framework is 

presented in Figure-1.  This consists of: 

1. Feature selection. 25 features were extracted from 

SEM images using manual point-to-point 

measurement techniques, as discussed previously. 

From these, two feature selection techniques are then 

applied to produce two further feature-sets. 

2. Classification. 2 classifiers are used in this paper, 

LDA, and K-NN. 

3. Voting system. Prior research found that the 

different classifiers produced different 

misclassification results with the use of different 

feature sets. These results are used as an input into 

the voting system, and are not individually weighted 

to adjust the contributions of the classifier to the 

voting system, but all combinations of classifier and 

feature set are weighted equally. 

After the statistical step, to maximise specimen 

classification accuracy, a majority voting based ensemble 

is applied which combines the individual classifier and 

feature set combination results. The complete 

methodology is presented algorithmically as follows: 

1. Given ܦ = ଵܺ ଵܻ, … , ܺ௡ ௡ܻ where ௝ܻ א ሺͳ,ʹ, … ,9ሻ. 

2. Carry out feature selection, retaining the original 

feature set of 25 measurements. 

a. Sequential forward selection (SFS), choosing 21 

of the 25 original measurements. Beginning with 

an empty feature set, this method sequentially 

adds the feature (ܣ+) that maximises ܧሺܤ௝ +  ሻ+ܣ

when combined with the features ܤ௝ that have 

previously been added to the feature set. 

i. Begin with empty set  ܤ଴ = ሺ∅ሻ. 

ii. Identify the best feature ܣ+ = 𝑎𝑟𝑔 ݉𝑎ݔ஺ב஻𝑗ܧሺܤ௝ +  ሻܣ

that has not alreadt been chosen. 

iii. Update ܤ௝ + ;+ܣ 𝑗 = 𝑗 + ͳ. 

iv. Return to step ii, and repeat this process until the 

optimum set of features has been identified. 

b. Sequential backward selection (SBS), choosing 

20 measurements to use as features. Here, 

beginning with a the full feature set, remove the 

feature ܣ− that has the least negative effect on the 

objective functionܨሺܤ −  .ሻ_ܣ

i. Begin with set ܤ଴ =  .ܣ

ii. Eliminate the least relevant 

feature ܣ− = arg ݉𝑎ݔ஺א஻𝑗 ௝ܤሺܨ −  .ሻܣ

iii. Update  ܤ௝+ଵ = ௝ܤ − ;−ܣ 𝑗 = 𝑗 + ͳ. 

iv. Return to step ii, and repeat this process until the 

optimum set of features has been determined. 

3. Ensemble classification is then performed with K-

NN and LDA, using the three different sets of 

features, SFS, SBS, and the original full set of 25 

measurements. Each set is then used as an input 

into the two classifiers: 

a. LDA 𝑁̂௜ = ଴ܹ + ௜ܹଵܦଵ + ௜ܹଶܦଶ + ⋯ + ௜ܹ௡ܦ௡  (1) 

 

b. K-Nearest Neighbor (KNN) 

 ሺܺ௧ , ܺ௨ሻ = √∑ ሺܺ௧௠௠ − ܺ௨௠௠ሻଶ௠௠௠=ଵ   (2) 
 

4. These individual results are then combined in the 

majority voting ensemble system, combining the 

output from both the K-NN and LDA classifiers, as 

given with: 𝑄 = arg ݉𝑎ݔ𝑦 ∑ ሻܦ௧ሺܪሺ̂ܫ = ሻ𝑇௧=ଵݕ , ݕ א ܻ                 (3) 

 

5. In the scenario where there is an equal split in the 

voting calculation, meaning that a simple majority 

is not identified, the result of SFS-LDA is given the 

casting vote, due to this technique being shown to 

outperform all others in an earlier study by Bakke 

et al.  (Bakke, et al. 2007)). 

6. The identity of the specimen 𝑄 is then determined 

as being one of the species listed in Table-1 

 

RESULTS AND DISCUSSION 

 To demonstrate our proposed ensemble based 

majority voting algorithm, the nine class morphometric 

point-to-point measurement dataset discussed earlier is 

used for all experiments, and the three point-to-point 

http://www.arpnjournals.com/
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measurement feature sets discussed in the previous section 

are selected. 

Rather than split the dataset into test, validation, 

and training subsets, we utilise 10-fold cross validation.  

This is because of the unbalanced number of specimens 

present per species (see Table-1), and consequently, other 

research has recommended the use of cross validation  

(Refaielzadeh, et al. 2008). The complete dataset was 

therefore randomly split into b (10) subsets, with B-1 

subsets allocated for training, and the final one being the 

testing subset. This was repeated 10 times (with all subsets 

being recalculated accordingly), and from this the overall 

average performance was calculated. For the purposes of 

statistical classification, the representation of 10-fold cross 

validation is given by 10-fold = accuracy/b. Here, 

accuracy is the number of correct classifications in b 

experiments.  First, the individual classifier results are 

given in Table-3. 

 

Table-3.Average result of species identification between 

individual classifications. 
 

 
 

Table-3 summarises individual classifier 

performance (including the classifiers not chosen to be 

part of the ensemble) with the different feature sets, the 

results are compared to identify the best performance.  

To evaluate the misclassification error in more 

detail, a confusion matrix is used. A confusion matrix of 

size ݊ × ݊ for a single classifier provides the classification 

results, with n being the number of different possible 

classifications present in the original dataset. (Freitas, et 

al. 2007), (Sofia Visa, et al. 2011).  Two examples of 

individual classifier performance are given in Table-4 and 

Table-5.   
 

Table-4.Confusionmatrix for the original set of 25 

measurements, combined with an MLP. 
 

 
 

 

Table-5.Confusion matrix for the SFS feature set, 

combined with an LDA classifier. 
 

 
 

It is not easy to accurately predict FS 

performance of multiple species. As discussed previously, 

some classifiers manage to accurately classify different 

species completely correctly with different feature sets, 

and with different errors identified in a number of these.  

For reasons of space, we show some examples in Table-4 

and Table-5 of different feature set results.  An 

investigation identified that certain features could cause 

the boundaries distinguishing species from each other to 

be obscured, and were therefore not always suitable for 

use for classification, but this was not always consistent.  

This therefore justified the use of feature selection, and 

also the decision to make use of several different feature 

sets. 

Due to there being remaining species that are 

notfully classified by a single classifier, an ensemble 

method is therefore justified. 

Using the combination of classifiers and features 

sets as part of the ensemble discussed previously in the 

paper, the results of all individual evaluations are input 

into the ensemble voting method to determine the final 

classifier output.It was then calculated that the overall 

accuracy of the ensemble based approach is 97.29% 

±1:98. The overallconfusion matrix of the ensemble 

resultsareshown in Table-6.  The results show that there 

remain a small number of misclassification, with 15 

individuals from 7 different species remaining 

misclassified. 

 

Table-6.Confusion matrix of proposed ensemble model. 
 

 
 

An analysis of the results presented in Table 6 

shows that when ensemble based majority voting is 

applied, of the 70 G. salaries examples in the dataset, 68 

are identified correctly, but on two occasions, G. salaries 

http://www.arpnjournals.com/
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was identified as G. tnymalli. Regarding the G. thymalli 

classification results, there were only two misclassification 

results (83 out of 85 correct), with G. thymallibeing 

identified once as G. derjavinoides and once as G. truttae.  

In addition, misclassification errors remain for G. 

derjavinoides and G. truttae. 

It can be concluded that combining a number of 

feature sets together with a number of classifiers in an 

ensemble, as presented in this paper, is arguably more 

effective than only combining features sets with individual 

classifiers. However, the misclassification errors have not 

been fully eliminated. Although the misclassification 

errors do not show a significant improvement when 

compared to individual optimised feature sets and 

classifiers, the number of errors has been minimised using 

our ensemble approach. 

For better prediction and classification, other 

techniques in addition to ensemble based majority voting 

could be applied in future research. This would investigate 

further improvements and reduce the remaining 

misclassifications. There still remains the issue of certain 

classifiers being very good at classifying certain species, 

while performing poorly with other species, and a lack of 

complete independence in the results (which results in 

poor ensemble performance that majority voting does not 

always solve well). One potential approach to this would 

be to implement multi-target regression with rule 

ensembles (Aho, et al. 2009). This approach combines 

decision trees into a single large collection of rules, which 

can then be optimised to identify the best rule subset, and 

a suitable weighting to be used. 

 

CONCLUSIONS 

This paper presented a majority voting ensemble 

system that successfully integrates a range of previously 

evaluated classifiers and feature selection techniques to 

improve on the classification robustness identified using a 

single feature selection approach. We first presented a 

detailed background and review to the problem, as well as 

the dataset used, before presenting a full description of our 

new proposed approach. The results were presented in the 

Results and Discussion section, and show that our 

ensemble based approach was found to be accurate and 

robust. 
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