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ABSTRACT  

The focus of neuroscience research over the years has been to understand how neurons respond to a variety of 
stimuli and communicate with each other and to construct models that attempt to predict responses to similar stimuli. 
Findings have been used for establishing better treatments for human diseases like, epilepsy, stroke and Alzheimer's. This 
in turn has also been helpful in designing appropriate prosthetic devices. The recent advances in multiple-electrode 
recording and computational capacity have made it possible to study the simultaneous spiking activity of multiple neurons. 
A systematic analysis and understanding of simultaneous spike recording of multiple neurons using computational 
algorithms offers new promise for investigating some of the fundamental questions concerning how the brain works. This 
research contributes to this growing literature through using new datasets and computational techniques. In this paper, we 
develop a computational algorithm to estimate the neural connections of a simulated neuronal network data of 10 cultured 
neurons obtained from the MLBio+ Lab at George Mason University. The inferred brain network derived from the 
algorithm was then compared using statistical techniques such as RMSE and MAE with observed truth data which mimic 
actual functioning of the brain.  The results suggest that average error between truth and simulated network decreases as 
the number of time steps increases. This means, longer it takes between the stimuli and firing of neuronal responses, the 
closer we get to the optimal network. This type of research is very relevant as it can help neuroscientists design complex 
experiments and as a consequence, answer some of the key on the functioning of the brain. 
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INTRODUCTION  

The focus of neuroscience research over the years 
has been to understand how neurons respond to a variety 
of stimuli and communicate with each other and to 
construct models that attempt to predict responses to 
similar stimuli. A central question that neuroscientists 
have been grappling with over the years relates to how the 
neurons send messages to each other: is it the rate of 
spiking or the timing of firing that defines the messages 
being carried?  Another question of interest is whether we 
can infer anything about the input stimuli by observing 
and analyzing the network output. 

To understand all this better, the best approach is 
to potentially administer a stimulus and simultaneously 
record neural activity from a brain region believed to 
respond to that stimulus.  The recent advances in multiple-
electrode recording have made it possible to study the 
simultaneous spiking activity of many neurons (in fact 
more than 20).  This allows us to understand how neurons 
act in concert to define the function of a given brain 
region. Brown and others (2004) suggest that 
“simultaneous recording of multiple neurons offers new 
promise for investigating some of the fundamental 
questions concerning how the brain works.” The research 
question can thus be addressed by characterizing the 
relation between the stimulus and the neural responses 
and/or by studying the relation among the spiking activity 
of the neurons within the group. 

There has also been much interest in the 
neuroscience community to understand better the structure 
and functioning of these “neural networks.”  Of particular 
interest is the connectivity structure of these networks.  It 

has been observed in general that the connectivity changes 
as a function of network development or in response to an 
applied stimuli.  Hamilton et al.  (2013) suggest that, 
“tracking these changes is essential for understanding the 
underlying dynamical evolution of the network, and serves 
as a valuable tool for experimental interventions.” 
Findings from such research could potentially be used for 
establishing better treatments for diseases that are likely to 
lead to brain degeneration, for example, epilepsy, stroke 
and Alzheimer's (Kosik, 2013; Duch, 2007). This in turn 
can also help to design appropriate prosthetic devices. 

 
HYPOTHESIS 

In this paper, we develop a computational 
algorithm to estimate the neural connections using the 
relation between the stimulus and the ensemble neural 
responses in the brain. Specifically, an algorithm is 
developed to correlate the spiking activity of the brain 
neurons across time in a network of cultured neurons 
recently sampled by a microelectrode array. The inferred 
brain network derived from the spike signals are then 
compared using statistical techniques with observed truth 
data that mimics actual functioning of the brain network.  
Optimization of the inference procedure like this can then 
lead to reconstruction of the optimal structure that best 
reproduces the connections within the brain. The two main 
objectives are: 
 To detect the presence of spike coincidences in 

simultaneously recorded multiple spike trains 
across time; (or, the transmission time among 
different neurons in response to the stimulus) 
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 To identify the connectivity structure from the 
simulated data that best corresponds to the observed 
data. 

The hypothesis is that the mean absolute square 
error between the simulated brain connectivity matrix and 
the observed matrix is minimized as the number of time 
steps between stimulus administration and response time 
of the brain neurons increases. 

Independent Variable: Number of time steps 
between stimulus administration and response time of the 
brain neurons 

Dependent Variable:  Correlation between 
predicted matrix and truth connectivity matrix (computed 
through Mean Absolute Error as well as Root Mean 
Square Error). 

 
REVIEW OF RELATED LITERATURE 

     Simultaneous recording of multiple spike 
trains from several neurons offers a window into how 
neurons work together to generate specific brain functions. 
There is a growing literature that has delved on this issue. 
An attempt is made here to contribute to this literature by 
using most recent data and computational techniques.  

A most comprehensive review of the literature 
can be found in Brown et al. (2004). They provide a nice 
overview of statistical methods for the analysis of multiple 
neural spike-train data and discuss future challenges for 
methodology research in that field. The authors argue that, 
“without substantial methodology research in the future, 
our ability to understand these brain functions will be 
significantly hampered.” They further suggest that, 
“computational algorithms to detect precise patterns of 
spike timing are important tools that offer a lot of promise 
for measuring associations among neural spike trains.” 
Brown et al. (2004) also suggest that, “any extension of 
this research will have immediate, significant implications 
for improving the design and implementation of neural 
prosthetic devices and brain–computer interfaces.” 

A most recent research similar to ours can be 
found in Hamilton et al. (2013). They also develop a 
statistical algorithm to determine and track effective 
connections between ensembles of cultured spinal cord 
neurons measured with multi-electrode arrays. In 
particular, they study the connectivity structure of a 
neuronal networks in order to understand how the 
connectivity changes in response to an applied stimuli. 
The authors show in simulation and with measured data 
from neural cultures that such a method can work 
successfully. This research is quite useful as it too uses 
data from cultured neurons from multi-electrodes. 

In a similar research, Brooks (2007) attempt to 
understand better the structure of the network from time 
series of neural outputs and also examine how nature of 
the connections between the neurons relate to the 
network’s structural complexity.  The two main objectives 
of the paper in the words of the author are to: “(i) to 
analyze the time series output of a simulated neural 
network and make inferences about the underlying 
synaptic structure that produced it, and (ii) to show a 
correspondence between a complexity measure on the 

time series output and a complexity measure on the 
network’s structure.” The paper also contains a nice 
overview of the literature on neural network connectivity 
analysis. 

Analysis of huge time series data from a neuronal 
network can be quite challenging at times especially if it 
involves more than two neurons. Kass et al. (2005) 
provide a nice overview of various statistical tools that are 
available. In their review article, they describe the various 
well established statistical principles, statistical tools and 
algorithms that can be effectively utilized to estimate the 
firing rate and time-varying correlation which in turn can 
provide improvements in experimental sensitivity 
equivalent to large increases in the number of neurons 
examined. 

Analyzing neural networks involved dealing with 
vast amounts of data and manipulating those using modern 
computational techniques.  Li et al. (2015) present 
examples on state-of-the-art studies and techniques in 
algorithms, analytics, and applications of Big Data. 

Finally, there is evolving literature on how this 
type of research can be utilized for dealing with real-world 
situations. According to Kosik (2013), “several lines of 
evidence suggest that networks of neurons in the brain 
operate as local processing units, with few long-range 
connections between them. I believe that tools to analyze 
how neuron networks operate in the human brain will be 
crucial to probing the changes to brain circuitry underlying 
cognitive impairment in Alzheimer's disease.” 

 
PROCEDURE USED 
1. Organize the data in JAVA readable form (.txt file) 
2. Begin with a time series matrix ensemble of cultured 

neuron spike train that represents response of neurons 
to a certain stimuli. To start with, examine interaction 
between 10 neurons (neurons n1 to n10) across T 
(approx. 713,000) time steps.  

3. If neuron i connects into neuron j, then d[i][j] = 1, 
otherwise d[i][j] = 0. For example, d[1][4] = 1 implies 
that neuron 1 sends signals to neuron 4 and d[4][1] 
implies that neuron 4 sends signals to neuron 1. A 
connection is established if both happen 
simultaneously.  

4. Neurons are assumed not to connect into themselves, 
so d[j][j] = 0 for all j.   

5. Objective: to find out the number of time steps its 
takes for both neurons fire simultaneously.  

6. Develop an algorithm using JAVA Programming that 
will calculate the 10x10 matrix of simultaneous 
connectivity from the ensemble matrix for the various 
different time steps.  

7. Here are possible experimental steps: 
 
8. Download truth data in 10X10 matrix form 
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Table-1. Procedure to evaluate how neuron 
networks operate in human brain 

 
 
9. Calculate Mean Absolute Error and Root Mean 

Square Error will be calculated for each of these 
derived 10x10 matrix in comparison to the observed 
truth matrix to see to what extent the recorded and 
predicted numbers of spikes agree. 

10.  Formula for MAE = [Truth (i)(j) – Pred (i) (j)]; for i 
= 1 to 10, j = 1 to 10 

11. Formula for RMSE =     √ [Truth (i)(j) – Pred (i) (j)]2; 
for i = 1 to 10, j = 1 to 10. 

 
DATA AND METHODOLOGY 

We use the data of cultured neurons (Binary 
Connectivity/Transpose) and truth data collected by the 
Machine Learning in Biomedcal Informatics (MLBio+) 
Laboratory of the George Mason University.  The truth 
data as shown in Figure-1, is the observed simultaneous 
recording of spiking activity across 10 neurons.  

The binary connectivity matrix represents the 
response of each neuron to the stimulus. This is raw data 
and the responses were re-coded using multi-electrodes.  It 
depicts the interactions between 10 neurons (neurons n1 to 
n10) across T time steps (approximately 713,000). 

 

 
 

Figure-1. Connectivity structure in truth matrix. 
 

Whenever one neuron fires, the spike it produces 
will affect all the neurons connected to it. These neurons 
in turn may fire spikes of their own.  The structure of a 
neural network is defined by how the neurons connect to 
one another.  A spike train is nothing but a time series 
graph of the output of a neuron or a set of neurons.  In 
general a simulated neural network comprises of inputs 
and outputs of N individual neurons over T discrete time 
steps.  

One objective of this research is to analyze the 
spike train of a simulated neural network and make 
inferences about the underlying structure.  In other words, 
to analyze the transmission time among different neurons 
in response to a stimulus.  The other objective is to 
identify the optimal connectivity structure that 
corresponds closest to the observed truth data.  

For example, if neuron i connects into neuron j, 
then dij = 1, otherwise dij = 0. For example, d14 = 1 
implies that neuron 1 connects to neuron 4.  Neurons are 
assumed not to connect into themselves, so djj = 0 for all j.  
A designated neuron receives an artificial external 
stimulus every time step to drive the system.  We develop 
an algorithm that will calculate the 10x10 connectivity 
matrix from the ensemble matrix for the following Step 7 
of the procedure, based on the theory that neural 
interconnectivity is directly related to the delay at which 
neurons fire. 

We then computed the 10x10 matrix for the 
simulated network along the assumptions described above 
by summing across i’s and j’s.  Mean Absolute Error and 
Root Mean Square Error are calculated for each of these 
derived 10x10 matrix in comparison to the observed truth 
matrix to see to what extent the recorded and predicted 
numbers of spikes agree. 

Formula for MAE = [Truth (i)(j) – Pred (i) (j)]; 
for i = 1 to 10, j = 1 to 10 

Formula for RMSE =     √ [Truth (i)(j) – Pred (i) 
(j)]2; for i = 1 to 10, j = 1 to 10. 

*i's and j's represent respective indices for the 
data. i represents the row number, and j represents the 
column number. 
 
RESULTS 

As described above, we develop a computational 
algorithm to estimate the neural connections using the 
relation between the stimulus and the ensemble neural 
responses in the brain. Specifically, an algorithm was 
developed to correlate the spiking activity of 10 brain 
neurons across time in a network of cultured neurons 
sampled by a microelectrode array.  The inferred brain 
network thus derived from the spike signals was compared 
using statistical techniques with observed truth data which 
mimic actual functioning of the brain network.   

The results are presented in Table-1.  Both MAE 
and RMSE are reported for each of the model 
specification comparing simulated data with truth data.  A 
visual illustration is also presented in Figure-2 which 
compares truth data with the connectivity structure derived 
from multiple time steps.  The results suggest that both 
MAE and RMSE decrease as the number of time steps 
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increases suggesting that larger the number of time steps 
closer we get to the optimal network structure (Figure-3).  
The best results are achieved for 100 time steps.    

     This analysis can be extended in the future in 
a number of ways. For example, using the simultaneity of 
occurrences of neuron firing (seeing whether a neuron 
firing will lead to a sustained reception by another) we can 
develop a similar algorithm.  We can also look at series' of 
neuron firing (i.e from a to b to c) rather than just a direct 
one to one approach.  Finally, we can look to see rather 
than a concrete time step delay, whether there may simply 
be a range of time steps between which neural 
connectivity takes place.  This list is definitely not the 
end-all and be-all, but still offers a perspective on where 
research may first be taken in the near future. 
 
CONCLUSIONS 

While this is not the first in this type of analysis 
of time-varying interactions among multiple neurons, it 
contributes to a growing literature that is offering new 
insights into the workings of particular aspects of a brain. 
This research just explored one possible theory/dimension 
in determining and figuring out how brain networks work. 
Obviously, neural impulses and connectivity will depend 
on much more than just the delay between firings in 
certain neurons.  Neural networks are extremely 
complicated, and much work is still being done to 
determine how they function today. In actuality, these 
networks probably depend on a combination of attributes 
to work, such as delays between firings, linking of 
neurons, and so on. 
      However, this research is useful in that as the 
number of neurons whose interactions can be accurately 
measured increases, neuroscientists will be able to 
increase the complexity of their experiments and as a 
consequence, the questions they investigate.  
 

Table-2. Computation of MAE and RMSE between 
predicted and truth data. 

 

 
 

 
 

Figure-2.  Average error between predicted and truth data 
decreases as number of timesteps increases. 

 

 
Truth data 

 

 
Delay zero (Same timestep) 

 

 
Delay two timesteps 

 

 
Delay four timesteps 
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Delay ten timesteps 

 

 
 

Delay fifty timesteps 
 

 
Delay hundred timesteps 

 

Figure-3.  Comparing connectivity structure of truth data 
with simulated data using different timesteps 
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