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ABSTRACT 

Unsteady laminar free convection flow past a vertical cone with non-uniform surface heat flux ( ) m
wq x ax  

varying as a power function of the distance from the apex of the cone ( x = 0 ) under viscous dissipation effect is presented 
here. Here m is the exponent in power law variation of the surface heat flux and a is a constant. The unsteady, coupled and 
non-linear dimensionless partial differential governing equations of the flow are solved using a Network Simulation 
Method. The effect of viscous dissipation   with various parameters Prandtl number Pr , and the exponent m  for the 
velocity and temperature profiles have been studied and are analyzed graphically. The local as well as average skin-friction 
and Nusselt number are also analyzed graphically. The present results are compared with available results in literature and 
are found to be in excellent agreement. 
 
Keywords: finite difference method, heat transfer, laminar free convection, NSM, PSPICE, viscous dissipation, vertical cone. 
 
INTRODUCTION 

When a heated surface is in contact with the fluid, 
the result of temperature difference causes buoyancy force 
which induces natural convection heat transfer. This type 
of natural convection flows under the influence of 
gravitational force which occurs frequently in nature as 
well as in science and engineering applications. Hence 
they have been investigated extensively. The applications 
include, for example, the cooling of the core of a nuclear 
reactor in the case of a pump, or power failures and 
cooling of electric components. The basic solution of 
thermal convection from a heated or cooled surface due to 
suction or injection has numerous practical applications 
ranging from the cooling of manufactured products to the 
local weather forecasting level. 

Merk and Prince[1-2] developed the general 
relations for similar solutions on isothermal axi-symmetric 
forms and showed that the vertical cone has such a 
solution. Eventhough numerous authors have investigated 
laminar free convection for the two-dimensional situation; 
this paper is concerned primarily with results for axi-
symmetric flows. Approximate boundary-layer techniques 
were utilized to arrive at an expression for the 
dimensionless heat transfer. Hering [3] has obtained a 
number of similarity solutions for cones with prescribed 
wall temperature being a power function of the distance 
from the apex along the generator. 

Heat flux applications are mainly being used in 
industries, engineering and science fields. Heat flux 
sensors can be used in industrial measurement and control 
systems. Detection fouling, Monitoring of furnaces and 
Flare monitoring are some of the applications of heat flux. 
Use of heat flux sensors can be lead to improvements in 
efficiency, system safety and modelling 

The laminar free convection from a right circular 
cone with prescribed uniform heat flux conditions for all 
Prandtl numbers and expressions for both wall skin 
friction and wall temperature distributions at Pr →∞ were 
studied and similarity solutions are presented by Lin [4]. 
Hasan and Mujumdar[5] studied the free convective flow 
of a vertical cone with double diffusion effects under 
uniform flux condition. Watanabe [6] studied the effects of 
suction or injection on steady, free convection from a 
vertical cone with constant wall temperature condition. 
Chen et al.[7] studied the flows and heat transfer 
characteristics of laminar free convection in boundary 
layer flows from horizontal, inclined and vertical plates 
with variable wall temperature and heat flux.Kafoussias 
[8] studied the effects of mass transfer on the laminar free 
convective flow past a vertical cone surface embedded in 
an infinite, incompressible and viscous fluid. Vajravelu 
and  Nayfeh [9] analysed the convection flow and heat 
transfer in a viscous heat generating fluid near a cone and 
wedge with variable surface temperature and internal heat 
generation or absorption. The governing flow and heat 
transfer equations are solved numerically by using a 
variable order, variable step size finite-difference method. 
Yih[10] studied numerically in saturated porous media 
combined heat and mass transfer effects over a full cone 
with uniform wall temperature/concentration or heat/mass 
flux and for truncated cone with non-uniform wall 
temperature/variable wall concentration or variable 
heat/variable mass flux using the Keller box implicit 
difference method. Soundalgekar [11] studied about the 
free convective flow past a semi-infinite inclined plate for 
a viscous dissipative fluid. Bapuji et al.  [12] studied the 
problem under non uniform surface heat flux, without 
semi vertical angle.  Also Bapuji and Chamka [13] studied 
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the problem with non uniform surface heat flux including 
MHD with semi vertical angle. 

The irreversible process by means of which the 
work is done by a fluid on adjacent layers due to the action 
of shear forces transformed into heat is defined as viscous 
dissipation. The effect of viscous dissipation in natural 
convection is appreciable when the induced kinetic energy 
becomes appreciable when compared to the amount of 
heat transferred. This occurs when either the equivalent 
body force is large or when the convection region is 
extensive.  The effect of the viscous dissipation on heat 
transfer is significant, especially for high-velocity flows, 
for highly viscous flows even at moderate velocities, and 
for fluids with a moderate Prandtl number and moderate 
velocities with small wall to fluid temperature difference 
or with low wall heat fluxes and flowing through micro 
channels. Viscous dissipation occurs in natural convection 
in natural devices. Such dissipation effects may also be 
observed in the presence of strong gravitational fields and 
in processes wherein the scale of the process is very large, 
e.g., on large planets, in large masses of a gas in space and 
in geological processes, and in fluids internal to various 
bodies. Viscous mechanical dissipation effects are usually 
characterized by the Eckert number. Viscous dissipation 
effects can be measured by using an independent 
parameter called dissipation number. Taking this into 
account, viscous dissipative heat is included in the energy 
equation. The heat due to viscous dissipation in the energy 
equation is very small and is usually neglected. However, 
if the gravitational force is intensive or if the Prandtl 
number of the fluid is very high, the viscous dissipative 
effects cannot be neglected. 

Genhart[14] was the first to study free convective 
flows over a vertical flat plate subject to isothermal and 
uniform flux surface conditions by an approximate method 
and also defined the non-dimensional dissipation 
parameter, Viscous dissipation is considered for vertical 
surfaces subject to both isothermal and uniform flux 
surface conditions using perturbation method. Kishore et 
al.[15] studied the thermal radiation and viscous 
dissipation effects on the transient laminar free convection 
flow past a vertical cone with non-uniform surface 
temperature in the presence of a magnetic field.Mohiddin 
[16] studied the free convective flow past a vertical cone 
with vertical surface condition in the presence of viscous 
dissipation with radiation, MHD and mass transfer effects. 
Rishi et al.[17] studied the effect of Viscous dissipation on 
natural convection heat and mass transfer from vertical 
cone in a non-newtonian fluid saturated with non-darcy 
porous medium. Palani el al. [18] examined the combined 
effect of the magnetic field and viscous dissipation on a 
free convection flow of a compressible, viscous, and 
electrically conducting fluid past a semi-infinite vertical 
cone subjected to a variable surface heat flux. The system 
of dimensionless governing equations is solved by the 
finite difference method. 

NSM simulates the behaviour of unsteady electric 
circuits by means of resistors, capacitors and non–linear 
devices that seek to resemble thermal systems governed by 
unsteady linear or non–linear equations. Electrical, 

Thermal motion analogy provides a network model that is 
solved by means of a very common program used to 
simulate electrical circuits, Pspice[19]. NSM yields the 
ordinary differential equations the basis ones for 
implementing standard electrical network model for an 
elemental control volume from the partial differential 
equations that define the mathematical model of physical 
process and by means of spatial discretization 
Rektorys[20]. Alhama and Campo [21] represents the 
relation between NSM and heat transfer. 

Alhama el al. [22] studied numerical solution of 
the heat conduction equation with the electro thermal 
analogy and the code PSPICE. Zueco [23] studied for 
dissipative fluid, free convective flow past a vertical plate 
with constant heat flux using NSM.  Zueco [24] studied 
the unsteady free convection in an infinite vertical 
parallel-plate channel with a viscous dissipative fluid and 
in the presence of buoyancy forces with constant thermal 
properties and subject to boundary conditions of the third 
kind, by means of the numerical Network Simulation 
Method. Zueco [25] developed a suitable network model 
to model the equations of the unsteady problem (MHD 
free convection flow past a semi-infinite vertical porous 
plate), with the fluid considered non-gray (absorption 
coefficient dependent on wave length), and study the 
effects of thermal radiation, viscous dissipation, suction / 
injection and magnetic field. Beg et al.[26] studied the 
unsteady magnetohydrodynamic viscous Hartmann–
Couette laminar flow and heat transfer in a Darcian porous 
medium intercalated between parallel plates, under a 
constant pressure gradient presence. Viscous dissipation, 
Joule heating, Hall current and ion slip current effects are 
included as is lateral mass flux at both plates. Unsteady 
MHD heat transfer in a semi-infinite porous medium with 
thermal radiation flux using network simulation method 
was studied by Beg et al.[ [27]. The steady, laminar 
axisymmetric convective heat and mass transfer in 
boundary layer flow over a vertical thin cylindrical 
configuration in the presence of significant surface heat 
and mass flux are studied theoretically and numerically by 
Zueco el al.[28]. 

The objective of the present paper is to study 
unsteady free convective flow from a vertical cone with 
viscous dissipation and non uniform surface heat flux 
using a new method called the Network Simulation 
Method and it has not received any attention in the 
literature. The governing boundary layer equations are 
transformed into ordinary differential equations and are 
solved using the code PSPICE. In order to check the 
accuracy of the numerical results, the present results are 
compared with the available results of Palani and Kim 
[29], Hossain and Paul [30], Pop and Watnabe [31]  and 
are found to be in excellent agreement. 
 
Formulation of the problem 

An axi-symmetric unsteady, laminar free 
convection flow of a viscous incompressible fluid past a 
vertical cone with non uniform surface temperature and 
viscous dissipation is considered. It is assumed that the 
effects of pressure gradient along the boundary layer are 
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negligible. It is also assumed that the cone surface and the 
surrounding fluid which is at rest are at the same 

temperature T . Then at time 0t  , it is assumed that 

heat is supplied from cone surface to the fluid at the rate 

( ) m
wq x ax  and it is maintained at this value with m 

being a constant. 

 
 

Figure-1. Physical model of the coordinate system. 
 

The co- ordinate system is chosen (as shown in 
Figure-1) such that x measures the distance along surface 
of the cone from the apex ( 0)x  and y measures the 
distance normally outward. Here ( )r x is the local radius of 

the cone. The fluid properties are assumed to be constant 
except for density variations which induce buoyancy force 
and it plays vital role in free convection. The governing 
boundary layer equations of continuity, momentum, and 
energy under Boussinesq approximation are as follows:  
 
Equation of continuity: 

    0ur vr
x y
  
 

                                                   (1)                                                                              

 
Equation of momentum: 
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Equation of energy:  
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 The initial and boundary conditions are  
 

for all and

( )
0: 0, 0, at 0

at 0

0, as

0: 0, 0,

0,

w

x y

q xT
t u v y

y k

x

u T T y

t u v T T

u T T



      




   

      

   

   (4) 

           
where u  and v  are the velocity components 

along x  and y  axes, T  is the fluid temperature, t  is 

the time, g is the acceleration due to gravity, 

( sin )r x  is the local radius of the cone, wq is the 

uniform wall heat flux per unit area,  is the density of 

the fluid, PC is the specific heat at constant pressure, k  is 

the thermal conductivity of the fluid,  is the thermal 
diffusivity,   is the thermal expansion coefficient, and   

is the kinematic viscosity. 

The physical quantities local skin-friction x  

and local Nusselt number xNu  are given, respectively 

by 
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   where  is the dynamic viscosity. Also the average skin 

friction
L
                                                                                                 

is given by  
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Average heat transfer co-efficient h  over cone 
surface is 

0
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The  average Nusselt number LNu  is 
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Using the following non-dimensional quantities: 
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and 
P

g L

C

    where   is viscous dissipation 

parameter as described in Gebhart [14] and LGr is the 

grash of number. 
Equations (1)-(3) are reduced to the following 

non dimensional form: 
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Where Pr  is the Prandtl number and R is the 

dimensionless radius of the cone.                                                                    
The corresponding non-dimensional initial and 

boundary conditions are  
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         Local skin-friction X  and local Nusselt number 

XNu  in non-dimensional quantities are  
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Average skin-friction   and average Nusselt 

number Nu  in non-dimensional quantities are 
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Solution procedure 

The governing partial differential equations (11)-
(13) which are unsteady, coupled and non-linear with 
initial and boundary conditions (14) are solved using a 
new method called the network simulation method. 

The network simulation method is a numerical 
technique for solving nonlinear heat conduction equations 
whose accuracy, efficiency and reliability have already 
been proven in numerous linear and nonlinear direct 

problems in heat transfer engineering [20 - 28]. NSM is 
based on the classical electro –thermal analogy between 
thermal and electrical variables. Electrical and thermal 
systems are said to be analogous if they are formulated in 
the same domain with similar equations and identical 
initial and boundary conditions. The model is elaborated in 
network through space, not temporal, discretization. In the 
NSM technique, discretization of the differential equations 
is founded on the finite difference formulation, where 
discretization of the spatial coordinates is necessary, while 
time remains a real continuous variable. Hence, the 
imminent advantage of this method of non mathematical 
manipulations in the discretization of the time coordinate 
is necessary for most of the numerical methods used 
currently, since the code does this work. This is an 
essential difference between the most classic methods and 
the NSM. 

Two circuits (Figures 1a and 1b) are developed 
for each non-dimensional boundary-layer equation.  
 

 
 

Figure-1a. Network model of the control volume-
momentum equation. 

 

 
 

Figure-1b. Network model of the control 
volume-energy equation. 

 
The fundamental flow variables, U and T are 

equivalent to the variable voltage, and their derivates are 
equivalent to the electric current. A sufficient number of 
networks are connected in series to form the whole 
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medium and boundary conditions and added by means of 
special electrical devices. The entire network model, 
including the devices associated with the boundary 
conditions is designed. A few programming rules are 
needed since not many devices form the network, solved 
by the numerical computer code Pspice [19] and the graph 
solution can be obtained by means the Probe software of 
Pspice. This code is imposed and adjusted continuously 
automatically for the time-step to reach a convergent 
solution in each iteration, according to the given stability 
and convergence requirements.  

To solve the set of non-linear differential 
equation (11) – (13) subject to boundary condition (14) the 
NSM has been applied. The finite-difference differential 
equations resulting from dimensionless continuity, 
momentum balance, energy balance and mass balance 
equations are 
 
   
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In Equations. (20) and (21) all the terms can be 

treated as a current. Therefore implementing Kirchhoff’s 
law for electrical currents from circuit theory, the network 
model is obtained. To introduce the boundary conditions, 
voltage sources are employed to simulate constant values 
of velocity and temperature. 

The NSM technique begins with the design of the 
network model of the element cell, following which we 
incorporate the boundary conditions. The following 
currents are defined 
Momentum balance  
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where , , , , and U i j Y U i j Yj j   are the currents 

that leave and enter the cell for the friction term of U and 

are implemented by means two resistances , , U i j YR   of 

values “ / 2Y ”;    , ,UT i jj  is the current due to the 

buoyancy term and , ,  ,  ,  and Ux i j Uy i jj j are the currents 

due to the inertia terms of U and V, respectively and are 
implemented by means of voltage control current 

generators , , , , , , , , , , , U i j U x i j U y i jG G G   . while , , Ut i jj  

is the transitory term and is implemented by means one 

capacitor of value , , U i jC Y  ,  connected to the centre 

of each cell.  
ii) Energy equation  
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where , , , , and T i j Y T i j Yj j   are the currents 

that leave and enter the cell for the friction term of U and 

are implemented by means two resistances , , T i j YR   of 

values “ / 2Y ”;    , ,T i jj  is the current due to the 

buoyancy term and , ,  ,  ,  and Tx i j Ty i jj j are the currents 

due to the inertia terms of U and V, respectively and are 
implemented by means of voltage control current 

generators ,  ,  ,  , ,  ,  ,  , ,  ,  ,  T i j T x i j T y i jG G G   . while , , Tt i jj  

is the transitory term and is implemented by means one 

capacitor of value , , ,  T t i jC Y  ,  connected to the 

centre of each cell.  
A more rigorous step-by-step numerical analysis 

is described by Gonzalez-Fernandez and Alhama [24], 
Zueco [26]. 

The finite difference equation corresponding to 
equation (10) is 
 

   
 

,  ,  ,  

,  ,  

 –   / 2  

 +  /

i j i X j i X j

i j i j Y

V U U Y X

U Y i X V

   

 

 

 




  (24)           

                                   
Above Equations [(20) – (21)] can be written in 

the form of Kirchhoff’s law as 
 

,  ,  ,  ,  ,  ,  ,  ,  

,  ,  ,  ,  

 

 0

U i j Y U i j Y UT i j Ux i j

Uy i j U t i j

j j j j

j j

     

 
              (25) 

 

, , , , , , , , , , , , 0  T i j Y T i j Y T i j Tx i j Ty i j Tt i jj j j j j j        (26) 

 
It should be mentioned that heat conservation is 

satisfied since Kirchhoff conservation law for the electric 
currents is inherent in the networks. In this way, no 
additional conditions are needed to ensure this condition. 
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The uniqueness of the temperature variable is also 
satisfied due to Kirchhoff voltage law. 

Finally, to implement the velocity, temperature 
boundary conditions (at X = 0 and as Y  ) ground 
elements are employed. Constant current and constant 
voltage at Y = 0 are utilized to simulate the non-uniform 

heat flux ( mT
X

Y





 ).  As regards the initial condition, 

the voltages U = T = 0 for 0t   are applied to the two 

capacitors , , , ,andU i j T i jC C . 

 

RESULTS AND DISCUSSIONS 
In order to prove the accuracy of our numerical 

results, the present results in steady state at 1.0X   
obtained are compared with available results in literature. 

Numerical values of temperatureT , local skin-friction
X

 , 

for different values of Prandtl number Pr  are shown in 
Table-1. 

Table-1. Comparison of steady state local skin-friction values at X = 1.0 with those of Palani [29]. 
 

Pr 

Temperature Local skin friction 
Results of [29] Present results Results of[29] Present results 

T T X  X  

0.72 
1.78840 
1.7864* 

1.7796 1.22705 
1.2240* 

1.2154 

1 1.63454 1.6263 1.08262 1.0721 
2 1.36477 1.3578 0.83155 0.8235 
4 1.15169 1.1463 0.63878 0.6328 
6 1.04708 1.0421 0.54736 0.5423 
8 0.98801 0.9754 0.49040 0.4859 

10 0.93158 0.9272 0.45021 0.4460 
100 0.56289 0.5604 0.18311 0.1813 

       *indicate the values obtained from Pop and Watanabe [31] 

 
and that are compared with the results of [18] in steady 

state. In addition, the local skin-friction 
X

 and the local 

Nusselt number XNu for different values of Prandtl 

number, when heat flux gradient 0.5m  at 1.0X  in 
steady state, are compared with the  results of [11]  in 
Table 2.  

 
Table-2. Comparison of steady state local Nusselt number values at X = 1.0 with those of Hossain 

and Paul [30] for different values of Pr when m = 0.5 and suction is zero. 
 

Pr 

Local Skin friction Local Nusselt number 
Results of [30] Present results Results of [30] Present results 

''
0 (0)F  

3/5/
LX Gr  01/ (0)  1/5/

X LNu Gr  

0.01 5.1345 5.1155 0.14633 0.1458 
0.05 2.93993 2.9297 0.26212 0.2630 
0.1 2.29051 2.2838 0.33174 0.3324 

  
It is observed that the results are in good 

agreement with each other. The transformed equations 
(11)-(13) with initial and boundary conditions (14) were 
solved numerically by using a new method called the 
Network Simulation Method. Profiles of dimensionless 
velocity, temperature, local skin friction, local Nusselt 
number, average skin friction and average Nusselt number 
is presented graphically in Figures 2 through 19. These 
results illustrate the effects of Pr, .m and   The values 

of t  with star (*) symbol denote the time taken to reach 
the steady state. 
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Figure 2: Transient velocity profile at X= 1.0 for different 

values of ‘ ’. 
 

 
Figure 3: Transient temperature profile at X= 1.0 for 

different values of ‘ ’. 
 

It is noticed from Figures 2 and 3 the transient 
velocity and temperature profiles are plotted at 1.0X   

for various values of   with Pr 0.71  and 0.5m  , 
the steady-state velocity increases with increasing viscous 
dissipation parameter  . It is evident that the temperature 
also increases with increasing viscous dissipative heating 
 . i.e. With a positive rise in  , there is a increase in 
velocity close to the cone surface, With an increase in   
the time taken to attain the steady state also increased. The 
effect of viscous dissipation on flow field is to increase the 
energy, yielding a greater fluid temperature and as a 
consequence greater buoyancy force. The increase in the 
buoyancy force due to an increase in the dissipation 
parameter enhances the temperature. i.e The temperature 
in the boundary layer is elevated with a rise in  . Unlike 
the velocity response, the temperature profiles are all 
monotonic decays from the cone surface. The thermal 
boundary layer thickness reduces with decreasing  . 
 

 
Figure 4: Transient velocity profile at X= 1.0 for different 

values of ‘Pr’.          
 

 
Figure 5: Transient temperature profile at X= 1.0 for 

different values of ‘Pr’.          
 
It also follows from Figures 4 and 5 transient 

velocity and temperature profiles are plotted at 1.0X   

for various values of Pr with 0.5m   and 0.1  . 
Viscous force increases and thermal diffusivity reduces 
with increasing Pr , causes a reduction in the velocity and 
temperature. It is also noticed that the time taken to reach 
steady state increases and thermal boundary layer 
thickness reduces with increasing Pr . Also the momentum 
boundary layer thickness increases with the increase of Pr
. Physically, it is possible because fluids with high Prandtl 
number have high viscosity and hence move slowly. 
 

 
Figure 6: Transient velocity profile at X= 1.0 for different 

values of ‘m’. 
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Figure 7: Transient temperature profile at X= 1.0 for 

different values of ‘m’. 
 

 

In Figures 6 and 7 transient velocity and 
temperature profiles are shown at 1.0X   for various 

values of m with Pr 0.71  and 0.1  . Impulsive 
forces are reduced along the surface of the cone near the 
vertex for increasing values of m  (i.e. the gradient of heat 
flux along the cone near the apex reduces with the 
increasing values of m ). Due to this, the difference 
between temporal maximum values and steady state values 
reduce. It is also observed that as m  increases, velocity 
and temperature reduces and the time taken to reach steady 
state value increases. 

The study of the effects of the parameters on 
local as well as the average skin-friction, and the rate of 
heat transfer is more important in heat transfer problems. 

In Figures 8-13 the local skin friction X  and local 

Nusselt number XNu  at various positions on the surface 

of the cone (X = 0.25 and 0.75) in the transient period are 

shown. The local skin friction X  distribution for various 

values of Pr  when 0.1   and 0.5m   is shown in 
Figure-8. It is evident that the local wall shear stress 
decreases with increasing Pr  because the flow velocity 
decreases as shown in Figure-4. 
 

 
Figure 8: Local skin friction at X= 0.25 and 0.75 for 

different values of ‘Pr’ in transient state. 
 

In transient period initially local skin friction 
almost constant throughout the surface and gradually 

increases with time along the surface until it reaches 
steady state.  
 

 
Figure 9: Local Nusselt number at X= 0.25 and 0.75 for 

different values of ‘Pr’ in transient state. 
 

Figure-9 indicates the local Nusselt number 

XNu  increases with increasing Pr  and these effects 

gradually increase in the transient period with increasing 
the distance along the surface of the cone from the cone 
vertex along the surface of the cone. 
 

 
Figure 10: Local skin friction at X= 0.25 and 0.75 for 

different values of ‘ ’ in transient state. 
 
         Figure-10 shows the influence of dissipation 
parameter  with Pr = 0.71and m =0.5 on the cone 
surface (X = 0.25 and 0.75) Increasing   clearly boosts 

the wall skin friction X , which grows strongly from the 

leading edge downstream along the cone surface  i.e. With 
increasing viscous dissipative heating  , the local skin 

friction X increases. 
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Figure 11: Local Nusselt number at X= 0.25 and 0.75 for 
different values of ‘ ’ in transient state. 

 

Figure-11 depicts, an increase in the viscous 
dissipative heating leads to a reduction in the local Nusselt 

number XNu . i.e with a substantial increase in   a 

strong decrease in the surface heat transfer rate. 
 

 
Figure 12: Local skin friction at X= 0.25 and 0.75 for 

different values of ‘m’ in transient state. 
 

In addition from Figure-12. it is evident that with 
increasing m with Pr = 0.71and  =0.1, the local skin 

friction X  decreases because the velocity gradient near 

the surface of the cone decreases. 
 

 
Figure 13: Local Nusselt number at X= 0.25 and 0.75 for 

different values of ‘m’ in transient state. 

Figure-13 shows that, with increasing m , the 

Nusselt number XNu  increases, but the trend is slowly 

changed and reversed as distance increases along the 
surface from apex. i.e. near the leading edge, it decreases. 
 

The average values of the skin friction and 
Nusselt number are given in Figures 14-19.  
 

 
Figure 14: Average Skin friction for different values of 

‘Pr’ in transient state. 
 

Figure-14 reveals the average skin friction 
decreases with increasing Prandtl number with  =0.1 and 
m =0.5. 
 

 
Figure 15: Average Nusselt number for different values of 

‘m in transient state. 
 

We observe from Figure-15 the average Nusselt 
number also decreases with increasing values of Pr  with 
 =0.1 and m =0.5.  
 

 
Figure 16: Average Skin friction for different values of 

‘  in transient state. 
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Figure-16 shows an increase in   with Pr
=0.71, m =0.5 the viscous dissipative heating leads to an 

increase in the average skin friction  . 

   

 
Figure 17: Average Nusselt number for different values of 

‘  in transient state. 
 
In Figure-17 it also follows that the average 

Nusselt number Nu  decreases with increasing viscous 

dissipation parameter   with Pr =0.71, m =0.5. The 
average Nusselt numbers are higher at the initial stage than 
at subsequent levels. Within a short time interval, the 
average Nusselt number is constant at each level of 
various parameters. This shows that heat conduction plays 
the major role at the initial stage. The average Nusselt 
number decreases with increasing dissipation parameter 
 . 

 
  Figure 18: Average skin friction for different values of 

‘  in transient state. 

Figure-18 indicates that average skin friction 
decreases with increasing m  for Pr =0.71and  =0.1 
because the velocity gradient near the cone surface 

decreases. i.e. the average skin friction   increases with 

time and asymptotically reaches a constant value. 
 

 
Figure 19: Average Nusselt number for different values of 

‘m’in transient state. 
 

 

Figure-19 shows that in the initial period, the 

average Nusselt number Nu  does not change as m  

varies. This implies that, initially, heat transfer occurs only 
by heat conduction. In the initial period of convection, the 

average Nusselt number Nu  slightly decreases and then 

increases with increasing m  for Pr =0.71and  =0.1. 
 
CONCLUSIONS 

The time taken to reach steady state decreases 
with decreasing values of Pr , m and   
The velocity and temperature decreases with lower viscous 
dissipation   and increases for the lower values of the 
controlling parameters Pr and m . 

The momentum and thermal boundary layers 
become thin for higher values of m  and lower values of
 . The momentum boundary layer becomes thick and 
thermal boundary layer becomes thin for higher values of
Pr . 

The local wall shear stress X  increases for 

lower values Pr , m  and higher values of  . 

The local Nusselt number XNu  decreases for smaller 

values of Pr , m  and larger values of  . 

The average skin-friction   decreases for smaller values 

 , and higher values of m and Pr . 

  The average Nusselt number uN  increases for 

lower values of   and higher values of  Pr . 
The effect of m on the average Nusselt number 

uN  is almost negligible. i.e. the average Nusselt number 

Nu  does not change as m varies. This implies that, 

initially, heat transfer occurs only by heat conduction. In 
the initial period of convection, the average Nusselt 

number Nu  slightly decreases and then increases with 

increasing m .  
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NOMENCLATURE 

A Constant 

0 (0)F   Local skin friction in Hossain and Paul [30] 

 
grashof number 

 acceleration due to gravity 2ms  

h  
average heat transfer coefficient over surface 

   Wm-2K-1 

 thermal conductivity Wm-1K-1 

 reference length m 

m  exponent in power law variation in surface 
temperature 

 
local Nesselt number 

 average Nusselt number 

 
non-dimensional local Nesselt number 

 non-dimensional average Nusselt number 

 prandtl number 

 uniform wall heat flux per unit area 2wm  

 dimensionless local radius of the cone 

 local radius of the cone m 

 temperature 0K  

 dimensionless temperature 

 time s 

 dimensionless time 

 dimensionless velocity in X- direction 

 velocity component in x- direction ms-1 

 dimensionless velocity in Y- direction 

 velocity component in y- direction ms-1 

 dimensionless spatial co-ordinate  

 spatial co-ordinate along cone generator m  

 
dimensionless spatial co-ordinate along the 
normal to the cone generator 

 
spatial co-ordinate along the normal to the 
cone generator m  

 
 

GREEK SYMBOLS 

 thermal diffusivity 12 sm  

 volumetric thermal expansion 10 k  

 dimensionless time-step 

 
Dimensionless finite difference grid size 
in X- direction- 

 
Dimensionless finite difference grid size 
in Y- direction 

 Semi vertical angle of the cone 

01/ (0)  Local Nusselt number in Hossain and 
Paul [30] 

  density    kg 3m  

dynamic viscosity kg 11  sm  

  kinematic viscosity 12 sm  

local skin-friction 

X

  dimensionless local skin-friction 

L
  average skin-friction 

  dimensionless average skin-friction 

 
SUBSCRIPTS 

Condition on the wall 

Free stream condition 

i associated with i nodal point 

J associated with j nodal point 
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