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ABSTRACT 

The turbulent transonic flow over a wall with an expansion corner and ramp is studied numerically at free-stream 
Mach numbers from 1.11 to 1.28. A shock wave forms in front of a horizontal plate or bar located above the ramp. 
Solutions of the Reynolds-averaged Navier-Stokes equations are obtained on fine meshes with a finite-volume solver of 
second-order accuracy. The solutions demonstrate instability of the shock position at certain free-stream Mach numbers, 
which depend on the streamwise location of the plate/bar with respect to the ramp. The flow behavior under steady and 
unsteady perturbations in the free stream is analyzed. Also positions of the shock as functions of the ramp slope are 
studied.  
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1. INTRODUCTION 

In the 1990s and 2000s, numerical simulations of 
transonic flows revealed instability of double supersonic 
regions on airfoils comprising a flat or nearly flat arc [1-
3]. The instability is caused by an interaction between the 
shock wave, which terminates the bow supersonic region, 
and the sonic line, which is a front of the rear supersonic 
region. The spacing between the shock and sonic line 
decreases as the free-stream Mach number increases; 
however, it cannot vanish because the shock and sonic line 
cannot have a common point on the airfoil. Therefore, if 
M∞ exceeds a certain value, then the shock jumps 
downstream and creates a coalescence of the bow and rear 
supersonic regions. In the 3D flow over wings, the 
supersonic regions may coalesce either gradually or 
abruptly, depending on the wing sweep angle [4].  

The same type of instability takes place in 
channel flows where the sonic line arises over an 
expansion corner of a wall, while the shock is formed due 
to a bend of another wall. A dependence of the flow 
instability and bifurcation on the velocity profile given at 
the inlet of a divergent channel was studied in [5]. Effects 
of the angle of attack on the shock bifurcation in the 
entrance region of a simple intake were examined in [6]. 
In practice, such problems may occur, e.g., when a 
supersonic intake encounters variations of the incoming 
flow due to the atmospheric turbulence or a maneuvering 
flight of aircraft [7, 8]. 

In this paper, we study shock wave instability in 
front of a horizontal plate/bar located above a backward 
facing ramp. In contrast to [5], the computational domain 
involves a region ahead of the plate in order to capture the 
detached shock wave. We determine free-stream Mach 
numbers, streamwise locations of the ramp and expansion 
corner angles, at which the shock position is extremely 
sensitive to small perturbations.    
 

 
 

Figure-1. Sketch of the computational domain. 
  
2. FORMULATION OF THE PROBLEM 

In Sections 2-5, we consider a solid wall with a 
break of 16° given by the expressions 
 
y=0  at  0≤ x≤ xc ;   y= -(x-xc) tan(16°)  at  xc<x≤ xout.      (1) 
 

A horizontal plate of  0.006 m thickness and 0.33 
m length is placed above the wall in such a way that its 
lower surface coincides with the segment  y=0.3 m,  0.12≤ 
x, m  ≤0.45. In what follows, the Cartesian coordinates 
(x,y,z) are non-dimensionalized by the height h=0.3 m, so 
that the plate occupies the region   
 
1<y<1.02,  0.4< x < 1.5,          (2) 
 
see Figure-1. The left boundary of the computational 
domain is set to x=0, 0<y<H. The upper boundary is 
remote at a distance H=6 from the wall in order to 
eliminate its influence on the flow in the plate/wall region. 
The outlet boundary is constituted by two segments with 
the endpoints  
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 x=0.7,  y=1.02   ;    x=1.5, y=H ,        (3) 
 
and  
 
x= xout , y= yout  ;   x=1.5, y=1 ,           (4) 
 
where  xout =1.24,  yout = -(xout -xc) tan(16°). The choice of 
the oblique segment (4) (instead of a vertical one) makes it 
possible to reduce the computational domain and avoid 
complications arising because of a boundary layer 
separation from the wall in the interval 1.24< x < 1.5.   

At the outlet, we impose the condition of the 
supersonic flow regime. On the left boundary x=0, we 
prescribe the flow velocity, static pressure p∞=100,000 
N/m2, and static temperature T∞=250 K which determines 
the sound speed a∞=317.02 m/s. The no-slip condition and 
vanishing heat flux are used on the wall and plate. Initial 
data are parameters of the uniform free stream. The air is 
treated as a perfect gas whose specific heat at constant 
pressure is 1004.4 J/(kg K) and the ratio of specific heats 
is 1.4. We adopt the value of 28.96 kg/kmol for the molar 
mass, and use the Sutherland formula for the molecular 
dynamic viscosity. The free-stream Mach numbers under 
consideration are 1.11 ≤ M∞≤ 1.28; therefore, the 
Reynolds number based on M∞ and the height h=0.3 m is 
about 8.7×106.   

Solutions of the unsteady Reynolds-averaged 
Navier-Stokes equations were obtained with an ANSYS-
15 CFX finite-volume solver, which is based on a 
numerical scheme of second-order accuracy. An implicit 
backward Euler scheme was employed for the time-
accurate computations. We used a Shear Stress Transport 
k-ω turbulence model which is known to reasonably 
predict aerodynamic flows with boundary layer 
separations [9].   

Numerical simulations of 2D flow were 
performed on hybrid computational meshes constituted by 
quadrangles in 39 layers on the plate and wall, and by 
triangles in the remaining region. The non-dimensional 
thickness y+ of the first mesh layer on the plate and wall 
was less than 1. Apart from the boundary layer region, 
mesh nodes were clustered in vicinities of the expansion 
corner and shock wave. Test computations on uniformly 
refined meshes of approximately 105, 2105, and 4105 
cells showed that a discrepancy between shock wave 
coordinates obtained on the second and third meshes did 
not exceed 1%. Global time steps of 10−6 s and 210−6 s 
yielded undistinguishable solutions. That is why we 
employed meshes of 2105 cells and the time step of 
210−6 s for the study of 2D transonic flow at various free-
stream velocities. The root-mean-square CFL number 
(over mesh cells) was about 3. 

Simulations of 3D flow were performed in a 
domain created by an extrusion of the 2D domain in the z-
direction from z=0 up to z=1. An unstructured mesh was 
constituted by 3.2106 prisms in 39 layers on the plate and 
wall, and by 18.1106 tetrahedrons in the remaining 
region. The solver was verified by computation of a few 
commonly used 2D and 3D test cases, in particular, 

transonic flow in a channel of 184 cm length and 19 cm 
height with a circular-arc bump and a curved shock 
located on the bump [5, Figure-2].  
 

 
 

 
 

Figure-2. Mach number contours in the flow over the wall 
with the corner location xc=0.4: a) M∞=1.19, (b) M∞=1.16. 
 
3. STREAMWISE POSITIONS OF THE 2D SHOCK  
    VERSUS M∞ AT VARIOUS LOCATIONS OF THE  
    EXPANSION CORNER  

Let the free stream be uniform and parallel to the 
x-axis, so that the x- and y-components of the incoming 
flow velocity are  
 
 U∞=M∞ a∞ , V∞= 0   at  x=0,  0<y< H.                    (5) 
 

Computations of 2D flow in the band 1.14≤ M∞ 
≤1.28 demonstrated a convergence of the mean parameters 
of turbulent flow to steady states in less than 0.2 s of 
physical time.  

For M∞=1.19 and the expansion corner located at 
xc=0.4, the steady flow field exhibits a curved shock, 
behind which the velocity is subsonic except for a small 
vicinity of the corner, see Figure-2a. The vicinity resides 
beneath the line y=0.17, so that there are intersections of 
the line with the V-shaped contour M(x,y)=1. The x-
coordinate xsh of the left intersection point is used 
hereafter to trace the streamwise position of the shock. 

Numerical simulations demonstrated a shift of the 
shock position upstream with  decreasing  M∞  step-by-
step from 1.19 to 1.162, as indicated by dots on the upper 
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branch of curve 2 in Figure-3. If M∞ is further decreased to 
1.16, then the supersonic region splits, and a relaxation 
yields a steady flow with two supersonic regions separated 
by a subsonic zone (Figure-2b). The splitting is 
accompanied by a jump of the shock from the position 
xsh=0.3333 to xsh=0.2016. Further decrease of M∞ to 1.142 
causes a gradual displacement of the shock position 
upstream and an increase of the distance between the 
shock and the expansion corner. Inversely, when M∞ 
increases from 1.142 to 1.16, the shock gradually shifts 
downstream, and xsh increases from 0.0165 to 0.2016. 
After that, if M∞ is further increased to 1.162, then the 
shock jumps to the position xsh ≈ 0.336.      

For the expansion corner located at xc=0.5, 
computations showed a similar behavior of the shock 
wave (curve 3 in Figure-3), though the jump of xsh is 
smaller than that in the previous case. 
 

 
 

Figure-3. Shock wave coordinate xsh at the height y=0.17 
versus the free-stream Mach number M∞ at various 

locations of the expansion corner:   1 – xс=0.3, 2 – xс=0.4,    
3 – xс=0.5, 4 – xс=0.7. Dashed curves (indicated by the 

triangles) show the shock positions obtained in an 
enlarged computational domain. 

 
If the expansion corner is placed at xc=0.7, then the shock 
foot reaches the corner at larger values of M∞. Figures 4a 
and 4b show that, with an increase of M∞ from 1.23 to 
1.255, the shock and sonic line approach each other inside 
the flow. At M∞=1.268 they get into a contact, creating a 
local subsonic region near the wall (Figure-4c). Further 
increase of M∞ entails shrinking the subsonic region, 
which eventually disappears and admits a gradual 
transition from the flow with a Mach stem to the flow with 
a shock wave terminated at the expansion corner (Figure-
4d). As a consequence, curve 4 in Figure-3, which 
corresponds to xc=0.7, is continuous. 

 
 
 
 
 
 
 
 

 

 
 

 
 

 
 

Figure-4.  Shock wave positions at xc=0.7 and   (a) M∞= 
1.230, (b) M∞ =1.255, (c) M∞ =1.268, (d) M∞ =1.270. 

 
 
 
 
 
 



                                    VOL. 12, NO. 3, FEBRUARY 2017                                                                                                        ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                651 

If M∞<1.13 and the coordinate xc of the corner is 
0.3, then the shock migrates upstream and hits the 
boundary x=0 of the computational domain. In this case, in 
order to capture the shock, we set the left boundary to x= -
0.3 and prolong the wall to this coordinate. For the 
enlarged computational domain, a dependence of the 
shock wave position on M∞ at xc=0.3 is illustrated by 
curve 1 in Figure-3. In order to explore an effect of the 
expanded boundary layer (due to the longer wall), we 
recomputed the shock position in the enlarged domain for 
xc=0.5. A comparison of the dashed and solid branches of 
curve 3 shows that the effect is negligible.    
 
4. OSCILLATORY FREE-STREAM VELOCITY, 
    xC=0.4 

Now we suppose that the Mach number of the 
incoming flow oscillates, while the velocity direction 
remains parallel to the x-axis,  
 
U∞=M∞(t) a∞  ,   V∞= 0   at   x=0,   0<y<H,       (6)  
 
where   M∞(t)= (1+δ sin(2 π t /T )) Mmid.  

If Mmid=1.16 and δ=0.00862, then M∞(t) 
oscillates between  1.15  and 1.17.   For the period T=0.05 
s, the numerical simulation shows shock position 
oscillations in the interval  
xsh,min= 0.149 ≤ xsh ≤ xsh,max= 0.250, 
which is shorter than the band  0.0997 ≤ xsh ≤ 0.375  
determined by curve 2 in Figure-3 for the stationary values 
M∞=1.15 and M∞=1.17. This is explained by the 
insufficient time T=0.05 s for accomplishing the flow 
relaxation to steady states corresponding to different 
branches of curve 2. Meanwhile for the doubled period 
T=0.1 s computations showed oscillations of xsh in the 
longer interval  
 
 0.120 ≤ xsh ≤ 0.282.       (7) 
 

If now Mmid is increased to 1.17, so that M∞(t) 
oscillates with the same T=0.1 s and the same amplitude 
between  M∞=1.16 and M∞=1.18, then shock wave 
oscillations are halved as compared to (7): 
 
0.329 ≤ xsh ≤ 0.412.  
 

This is explained by the fact that, during the full 
period of oscillations, the shock positions correspond to 
the upper branch of curve 2 in Fig. 3; therefore there are 
no abrupt changes of the flow pattern.    

Finally, let the free-stream Mach be 1.17, while 
the angle of attack oscillates between -1° and +1°, i.e., the 
flow velocity components are 
U∞=M∞ a∞ cos ,   V∞= M∞ a∞ sin ,      = sin(2πt /0.1),    
instead of (6). Then computations demonstrate oscillations 
of the shock leg in a wide interval between the vicinity of 
expansion corner and the left boundary of the 
computational domain:   
 
0.0756 ≤ xsh ≤ 0.480.  

This confirms a high sensitivity of the flow field 
to small perturbations at Mach numbers which are close to 
the discontinuity of curve 2 in Figure-3.  
 

 
 

Figure-5. Shock wave coordinate xsh versus M∞ at xc=0.4: 
1 - 2D flow, 2 - 3D flow, 3 -D flow in which the plate (2) 

is replaced by the bar (8). 
 
5. 3D FLOW COMPUTATIONS 

In 3D flow simulations, the side boundaries z=0 
and z=1 of the computational domain were split into two 
parts by the segments y= 2.5x, 0≤x≤0.4 and the plate 
depicted in Figure-1. Each of the lower parts is given by 
the expressions y≤2.5x at 0≤x≤ 0.4, y≤1.02 at 0.4≤ x ≤ xout 

and is treated as a solid sidewall of a channel. The upper 
parts are endowed with a symmetry condition and 
considered as an interface between the flow in the domain 
0<z<1 and the ambient flow in domains z<0 and z>1. The 
incoming flow is parallel to the x-axis. For the expansion 
corner location xc=0.4, the obtained shock positions are 
illustrated by curve 2 in Figure-5. The coordinate xsh of 3D 
shock was calculated at the height y=0.17 in the midspan 
section of the channel z=0.5. Figures 6 and 7 show the 
shock and sonic surfaces locations for M∞=1.16. In 
addition to the sonic surface connecting the plate and 
corner region, Figure-6 demonstrates the sonic surface 
M(x,y,z)=1  in the boundary layers. 
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Figure-6. Surfaces M(x,y,z)=1 in the 3D flow at  
M∞=1.16,   xc=0.4. 

 

 
 

Figure-7. Surface p(x,y,z)=p* in 3D flow at  M∞=1.166,  
xc=0.4, where the static pressure p*  is related to p∞ and 

M=1 by the isentropic formula. 
 
6. BEHAVIOR OF THE SHOCK GENERATED BY A  
    BAR  

 Now we replace the plate (2) by a short bar of 
the same thickness  
 
 0.4<x<0.44,   1<y<1.02,                           (8) 
 
see Figure-8. Computations showed that the replacement 
entails only small changes in the shock location on the 
wall, cf. curves 1 and 3 in Figure-5.   

The shock position as a function of the expansion 
corner angle θ turns out to depend crucially on the Mach 
number M∞. If M∞ =1.17, then the dependence xsh(θ) is 
linear when θ  increases from 0  to 2° (curve 1 in Figure-
8). Meanwhile if θ further increases to 20°, then xsh 
become almost fixed; the shock foot remains on the 
horizontal part of wall and does not reach the sonic line.  

For M∞ =1.175 and θ≥7°, transonic flow over the 
corner is non-unique, see curve 2 in Figure-9. Apart from 

the flow with a shock on the horizontal part of wall, there 
exists a flow regime with an oblique shock that reaches a 
vicinity of the expansion corner. The latter can be obtained 
by solving the problem with the uniform flow for initial 
data. The shock position xsh persists when 7°≤ θ ≤ 20°. 
However, when θ becomes less than 7°, the supersonic 
region ruptures and the shock wave jumps upstream. 

At  M∞ =1.18,  if the expansion angle  θ  
increases from 0 to 4.5° (curve 3 in Figure-9), then the 
shock shifts downstream, being located on the horizontal 
part of wall. However, when θ exceeds 4.5°, the shock 
jumps to the position xsh≈0.363 and intersects the sonic 
line.  
 

 
 

Figure-8. Mach number contours in 2D flow at M∞=1.16, 
xc=0.4.  The plate (2) is replaced by the bar (8). The 

expansion angle is 16°. 
 

 
 

Figure-9. Shock wave coordinate xsh versus  the expansion 
corner angle  θ  in 2D flow at xc=0.4. The plate (2) is 

replaced by the bar (8):   1 – M∞ =1.17, 2 – M∞ =1.175, 3 
– M∞ =1.18. 
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6.  CONCLUSIONS 
The numerical simulations of 2D shock wave 

behavior over an expansion corner showed the existence 
of corner angles and free-stream Mach numbers M∞ at 
which there are abrupt jumps of the shock leg position. 
The flow hysteresis with respect to variation of M∞ is 
small in contrast to transonic flow in channels with a slope 
of the upper wall [5, 6]. However, in a narrow range of 
M∞, there exist non-unique solutions whose realization 
depends on the time history of boundary conditions. The 
shock instability is one of the key factors governing flow 
oscillations under unsteady perturbations in the free 
stream. Simulations of the 3D flow confirmed the 
findings.  
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