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ABSTRACT  

In stereo vision, the fundamental matrix ܨ encapsulates the epipolar geometric information which relates 

corresponding points on two views of a scene. The eight-point algorithm is a frequently cited method for calculating the 

fundamental matrix. Some researchers criticized the performance of such algorithm as it is extremely susceptible to noise 

and hence virtually useless for most purposes. Such criticism prompted Richard Hartley to defend the algorithm. He 

asserted that preceding the matrix calculation with normalization of the coordinates of the matched points ensures a high 

performance of the algorithm. This paper presents an analysis showing that the raised question about the performance of 

the eight-point algorithm lies in the way by which the fundamental matrix equation is derived rather than in the eight-point 

algorithm itself. It demonstrates that ܨ calculated in the projection space is different of ܨ defined in the Euclidean space as 

a one-to-one correspondence.  
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INTRODUCTION 

The main goal of stereo vision is to acquire a 3D 

structure of a rigid scene using two images obtained from 

two different standpoints. The fundamental matrix 

encapsulates the epipolar geometric information that 

relates corresponding points on two images of the scene. 

The epipolar geometry; which can be depicted as in 

Figure-1 is described as follows:  

A world point ܯ = ሺܺ, ܻ, ܼሻ is defined in a world 

coordinate system and imaged by two pinhole cameras 

placed at two different positions �� and ��. Points �� and �� constitute the origins of the two cameras coordinate 

systems. 

 

 
 

Figure-1. Epipolar geometry defined for a single 3D point 

that is projected onto left and right camera planes. 

 

The point ݉� = ሺݔ� ,  ሻ is the retinal image of�ݕ

point ܯ acquired by the left camera; it belongs to the left 

camera plane �� and is defined in the left camera 

coordinate system. Similarly, the point ݉� = ሺݔ� ,  ሻ is�ݕ

the retinal image of the point ܯ captured by the right 

camera; it belongs to the right camera plane ��  and it is 

defined in the right camera coordinate system. The points ݉� and ݉� are called corresponding points.  

The relationship between points ݉� and ݉� 

through the essential matrix is expressed as ݉��݉ܧ� = Ͳ 

[9]. The relationship between the fundamental matrix and 

the essential matrix is ܨ = �� where ,��ܧ��  and ��  are the 

calibration matrices of the left and right cameras, 

respectively [7].  

The essential matrix encapsulates the epipolar 

geometry of the imaging configuration when the cameras 

are calibrated. In the case of uncalibrated cameras it has 

become customary to refer to the matrix as the 

fundamental matrix [6]. The analysis of this article is 

mainly about solving the equation ݉��݉ܧ� = Ͳ for ܧ or ݉��݉ܨ� = Ͳ for ܨ, we refer to both matrices as the 

same in this article.  

The eight-point algorithm is one of the most used 

methods to calculate the fundamental matrix. Its 

performance has been criticized by some researchers and 

defended by others.  

In this paper we show that the problem is in the 

development of the fundamental matrix equation rather 

than with the eight-point algorithm.  

The paper is organized as follows: Section 2 

presents the defense of the eight-point algorithm as 

described in [6]. Section 3 presents the derivation of the 

essential matrix equation as introduced to the computer 

vision community in [9]. Section 4 discusses the outcome 

of projecting the equation ܯܨ��ܯ� = Ͳ onto a projective 

space. In section 5 we consider solving the equation ݉��݉ܨ� = Ͳ in place of ܯܨ��ܯ� = Ͳ from an algebraic 

point of view. Section 6 is devoted to experimental results. 

Finally, the paper concludes in section 7. 

 

DEFENSE OF THE EIGHT-POINT ALGORITHM  

The eight-point algorithm is a frequently cited 

method for calculating the fundamental matrix through 

solving the equation ݉��݉ܨ� = Ͳ for eight or more 

corresponding points. It has the advantage of simplicity of 

implementation. If eight point matches are known, then 

the matrix ܨ is obtained by solving a set of linear 

equations. If the number of points’ matches is greater than 
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eight, ܨ is estimated through solving a linear least squares 

minimization problem.  

Some researchers criticized the performance of 

such algorithm as it is extremely susceptible to noise and 

hence virtually useless for most purposes. Such criticism 

prompted Richard Hartley [6] to defend the algorithm by 

showing that by preceding the matrix calculation with a 

very simple normalization of the coordinates of the 

matched points; results are obtained comparable with the 

best iterative existing algorithms.  

 

Normalization procedure  

The normalization procedure consists of 

translating the coordinates in each image (by a different 

translation for each image) and scaling them in the 

following manner:  

 

a) “The points are translated so that their centroid is at 
the origin.  

b) The points are then scaled so that the average distance 

from the origin is equal to 2.  

c) This transformation is applied to each of the two 

images independently [6].”  
 

Purpose of normalization  

Given eight or more pairs of corresponding 

points, the equation ݉��݉ܨ� = Ͳ produces a set of 

equations of the form �݂ = Ͳ, where � is written in terms 

of the known homogeneous coordinates of ݉� = ሺݔ� , �ݕ , ͳሻ 

and ݉� = ሺݔ� , �ݕ , ͳሻ as  � = �ݔ�ݔ] �ݕ�ݔ �ݔ�ݕ�ݔ �ݕ�ݕ �ݔ�ݕ �ݕ ͳ ] and  ݂ = ଵଵܨ] ଵଶܨ ଶଵܨଵଷܨ ଶଶܨ ଷଵܨଶଷܨ ଷଶܨ ͳ ]  

The purpose of the normalization transformations 

is that the matrix �̅ , constructed from the normalized 

image coordinates, in general has a better condition 

number than � has before normalization. This means that 

the solution ݂ ̅is more well-defined as a solution of the 

homogeneous equation �݂̅̅ = Ͳ than ݂ calculated from �݂ = Ͳ [6].   

  

Performance evaluation procedure  

The general evaluation procedure in [6] consists 

of the following points:  

 

a) Matching points were computed by automatic 

techniques, and outliers were detected and removed.  

b) The fundamental matrix was computed using a subset 

of all points.  

c) In the case of algorithms, such as the eight-point 

algorithm, that do not automatically enforce the 

singularity constraint (i.e. the constraint that ݀݁� ܨ =Ͳ) this constraint was enforced a posteriori by finding 

the nearest singular matrix to the computed 

fundamental matrix.  

d) For each point ݉�, the corresponding epipolar 

line ݉ܨ� was computed and distance the line ݉ܨ�  
from the matching point ݉� was calculated. This was 

done in both directions (that is, starting from points 

݉� in the first image and also from ݉�in the second 

image). The average distance of the epipolar line from 

the corresponding point was computed, and used as a 

measure of quality of the computed Fundamental 

matrix. This evaluation was carried out using all 

matched points, except outliers, and not just the ones 

that were used to compute ܨ.  

 

Performance of the 8-point algorithm before and 

after normalization  
For the purpose of comparing the performance of 

the eight-point algorithm before and after normalization, 

Hartley [6] considered a set of images. He concluded that 

the effect of normalization is not so great in the case of 

images with matched points known with extreme 

accuracy, whereas, in the case of images were matches are 

less accurate the advantage of normalization is dramatic.  

 

DEVELOPMENT OF THE ESSENTIAL MATRIX 

EQUATION  

The essential matrix was introduced to the 

computer vision community by Longuet-Higgins through 

his article published in Nature in 1981 [9] as follows:  

A world point is defined in the left camera’s 
coordinate system by the vector ܯ� = ሺ �ܺ , �ܻ , ܼ�ሻ and in 

the right camera’s coordinate system by ܯ� = ሺܺ� , �ܻ , ܼ�ሻ.  

Longuet-Higgins [9] defined the image points ݉� 
and ݉� of the world point ܯ in the coordinate systems of 

the two cameras as   

 { ሺݔ� , ሻ�ݕ = ሺ �ܺ ܼ�⁄ , �ܻ ܼ�⁄ ሻሺݔ� , ሻ�ݕ = ሺܺ� ܼ�⁄ , �ܻ ܼ�⁄ ሻ      (1) 

 

Given the translation vector of the right camera 

with respect to the left camera’s coordinate system � = [�௫   �௬   �௭] and given the rotation matrix of the right 

camera’s coordinate system with respect to the left 
camera’s coordinate system ܴ, the relationship between 

the three-dimensional vectors representing the world point ܯ may be expressed as  

�ܯ  = ܴሺܯ� − �ሻ         (2) 

 

The rotation ܴ satisfies the relation  

 ܴܴ� = ܴ�ܴ = ͳ and ݀݁�ሺܴሻ = ͳ       (3) 

 

Longuet-Higgins [9] defines the essential matrix as  

ܧ  =  ܴܵ         (4) 

 

where ܵ is the skew-symmetric matrix  

 ܵ = [ Ͳ −�௭ �௬�௭ Ͳ −�௫−�௬ �௫ Ͳ ]       (5)
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and the author adopted the length of the vector � as the 

unit of distance  

 �ଶ = �௫ଶ + �௬ଶ + �௭ଶ = ͳ        (6) 

 

Longuet-Higgins [9] then constructed the 

expression ܯܧ��ܯ� and used (2) to (6) to conclude ܯܧ��ܯ� = Ͳ. Dividing by ܼ�ܼ� establishes the equation for 

the essential matrix that relates image points ݉� and ݉� 

�݉ܧ��݉  = Ͳ         (7) 

 

The essential matrix is defined when the used 

cameras are calibrated. Latter, it has been proved to be 

applicable when the cameras are not calibrated and only 

pixels information about the images are available, and it 

has been renamed the fundamental matrix [4] ܨ.   

The definition of the fundamental (essential) 

matrix has been approached in a number of ways [4, 8, 9]. 

In all cases, the equation ݉��݉ܨ� = Ͳ is derived from the 

relationship between the vectors ܯ� and ܯ� representing a 

3D point ܯ in the two cameras coordinate systems. 

  

THE FUNDAMENTAL MATRIX EQUATION IN 

THE EUCLIDEAN AND PROJECTIVE SPACES  

In [2], the author discussed the relationship 

between the two equations ܯܨ��ܯ� = Ͳ and ݉��݉ܨ� = Ͳ. 

He considered a case represented by Figure-2 where two 

3D points ܯ and ܰ lying on the same epipolar plane П. 

The points ݉� and ݉� are the image points of ܯ and the 

points ݊� and ݊� are the image points of ܰ, on the two 

views represented by the planes �� and �� . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure-2. 3D points M and N lie on the same epipolar 

plane, their image points are projected on the same 

epipolar line on each camera plane. 

 

He stated that Hartley and Zisserman [7] asserted: 

“The mapping from a point in one image to a 
corresponding epipolar line in the other image may be 

decomposed into two steps. In the first step, the point  ݉� 
is mapped to some point ݉� in the other image lying on 

the epipolar line ݈� . This point ݉� is a potential match for 

the point ݉�.  
In the second step, the epipolar line ݈�  is obtained 

as the line joining the point ݉� to the epipole ݁�.  

Step 1: Point transfer via a plane. Consider a 

plane П in space not passing through either of the two 

camera centres. The ray through the first camera centre 

corresponding to the point ݉� meets the plane П in a point ܯ. This point ܯ is then projected to a point ݉� in the 

second image. This procedure is known as transfer via the 

plane П. Since ܯ lies on the ray corresponding to ݉�, the 

projected point ݉� must lie on the epipolar line ݈�  

corresponding to the image of this ray.  

The set of points ݉� in the first image and the 

corresponding point ݉� in the second image are 

projectively equivalent, since they are each projectively 

equivalent to the planar point set ܯ. Thus, there is a 2D 

homography �� mapping each ݉� to ݉�.  

Step 2: Constructing the epipolar line. Given the 

point ݉�, the epipolar line ݈�  passing through ݉� and the 

epipole ݁� can be written as ݈� = ݁� × ݉� = [݁�]×݉�. 

Since ݉� may be written as ݉� = ��݉�, we have ݈� = [݁�]×��݉� = ܨ where we define �݉ܨ = [݁�]×�� as 

the fundamental matrix. The point ݉� lies on the epipolar 

line ݈� = �݉ܨ�݉ ,�݉ܨ = Ͳ.”  
An epipolar line is the intersection of an epipolar 

plane with the image plane [7]. The points ܯ and ܰ in 

Figure-2 belong to the same epipolar plane П. This 

epipolar plane intersects the left image plane in the 

epipolar line ݈� and it intersects the right image plane in the 

epipolar line ݈� .  

It follows that the points ݊� and ݉� lie on the 

right epipolar line ݈� = �݉ܨ��݉ which implies �݉ܨ = Ͳ, ݊��݉ܨ� = Ͳ. And the points ݊� and ݉� lie on the left 

epipolar line ݈� = �݉�ܨ��݊ which implies ,�݉�ܨ = Ͳ, and 
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�݉�ܨ��݉ = Ͳ. The two latter equations are equivalent to ݉��݊ܨ� = Ͳ and ݉��݉ܨ� = Ͳ, respectively. Thus, we have ݊��݉ܨ� = Ͳ and ݉��݊ܨ� = Ͳ and neither ݉� and ݊� nor ݊� 
and ݉� are corresponding points.  

The author [2] then stressed that a 3D point ܯ is 

represented in the two cameras coordinate systems by 

exactly two vectors ܯ� and ܯ�, therefore ܨ in ܯܨ��ܯ� = Ͳ 

is a one-to-one correspondence between the pairs of 

vectors ሺܯ� , �݉ܨ��݉ ሻ. However, the equation�ܯ = Ͳ 

holds in the following cases:  

 

a) ݉� and ݉� are corresponding points,  

b) ݉� is a correspondent to more than a point ݉�, and ݉� is a correspondent to more than a point ݉�; this is 

referred to as the occlusion phenomenon,  

c) ݉� and ݉� are not corresponding points, simply they 

are images of two 3D points lying on the same 

epipolar plane.  

 

Point 2 asserts that ܨ calculated from ݉��݉ܨ� =Ͳ is not injective and consequently not bijective, i.e. not a 

one-to-one correspondence, as is the case of ܨ in ܯܨ��ܯ� = Ͳ. 

Point 3 affirms that the equation ݉��݉ܨ� = Ͳ not 

only holds for corresponding points which are images of 

the same 3D point ܯ, but also for points that are not 

correspondents. These two facts affirm that ܨ defined by ݉��݉ܨ� = Ͳ is different of ܨ defined by ܯܨ��ܯ� = Ͳ.  

 

ANALYSIS OF THE DERIVATION OF THE 

ESSENTIAL MATRIX EQUATION  

The equation ܯܧ�ܯ� = Ͳ holds for any 3D point ܯ which is defined by a distinct vector ܯ� = ሺ �ܺ , �ܻ , ܼ�ሻ in 

the left camera coordinate system and a distinct vector ܯ� = ሺܺ� , �ܻ , ܼ�ሻ in the right camera coordinate system, 

i.e., no other 3D point shares these vectors with ܯ.  

Up to this level, the matrix ܧ is a one-to-one 

correspondence between the vectors ܯ� and ܯ�. In 

deriving the essential matrix equation, Longuet-Higgins 

[9] divided the equation ܯܧ�ܯ� = Ͳ by ܼ�ܼ� therefore 

replacing a relationship between the distinct vectors 

representing the 3D point in the Euclidean space by a 

relationship between two homogeneous image points in 

the projective space. Consequently, the distinctiveness 

property is lost as each projective (homogeneous) point [ݔ, ,ݕ ͳ] is considered to be equal to an equivalence class 

of 3D points that belong to the 3D line passing through the 

Cartesian point ሺܺ, ܻ, ܼሻ and the origin ሺͲ,Ͳ,Ͳሻ; the 

relationship between the projective and Cartesian points is [ݔ, ,ݕ ͳ] = [ܺ ܼ⁄ , ܻ ܼ⁄ , ܼ ܼ⁄ ] [3].  

In other words, a number of 3D vectors 

representing different world points could be projected onto 

the same homogeneous point. And many 3D points are 

projected on the same epipolar lines as they belong to the 

same epipolar plane.  

Algebraically, solving the projection equation ݉��݉ܧ� = Ͳ for ܧ instead of ܯܧ��ܯ� = Ͳ results in the 

following:  

 

a) Two points ܯ and ܰ occluded on right camera plane, 

the equation ܯܧ��ܯ� = Ͳ is replaced by ݉�݉ܧ� = Ͳ 

and the equation �ܰ�ܧ �ܰ = Ͳ is replaced by ݉�݊ܧ� =Ͳ, where two points from the left camera plane are 

related to a single point ݉ from the right camera 

plane.  

b) Two points ܯ and ܰ occluded on left camera plane,  ܯܧ��ܯ� = Ͳ and �ܰ�ܧ �ܰ = Ͳ could be replaced by 

equations ݉��݉ܧ = Ͳ and ݊��݉ܧ = Ͳ, where two 

points from the right camera plane are related to a 

single point ݉ from the left camera plane.  

c) Some ݉��݉ܧ� = Ͳ equations hold for non-

corresponding points where the points ݉� and ݉� are 

images of two different 3D points lying on the same 

epipolar plane. This is a very serious consequence of 

replacing ܯܧ��ܯ� = Ͳ by ݉��݉ܧ� = Ͳ. 

 

In terms of solving equations over different 

domains, equation (7) is derived to some extent in a 

similar way to relaxing an integer programming problem 

(IP) to a linear one (LP), i.e. solving the same problem in 

two different domains.  

To illustrate this point more clearly, let us 

consider the following IP problem where the objective is 

to minimize a function that depends to a certain number of 

variables. These variables are subject to constraints. Some 

of these constraints require the variables to be integer (i.e. 

0 or 1),  

 ܼ = ݉�݊ ∑ ܿ��  (8)                                                              �ݔ

Subject to { �ݔ�ܽ ൑ ܾ� , � = ͳ, ⋯ , �ݔ݊ = Ͳ ݋� ͳ, � = ͳ, … , ݊      

 

By relaxing the integrality constraints on the 

variables ݔ�, the resulting problem will be  

 ܼ = ݉�݊ ∑ ܿ��  (9)                                                               �ݔ

Subject to {ܽ�ݔ� ൑ ܾ� , � = ͳ, ⋯ , �ݔ݊ ൒ Ͳ , � = ͳ, … , �ݔ݊ ൑ ͳ , � = ͳ, … , ݊   

 

Problem (9) is a linear programming problem 

which can be solved easily by the Simplex method. And, 

the obtained objective function value is even better (less) 

than the optimal solution value of problem (8). However, 

real-valued solutions of (9) violate the integrity constraint 

of problem (8), ݔ� = Ͳ ݋� ͳ, � = ͳ, … , ݊.  

To conclude, solving a problem in two different 

domains may have a solution in the one which is not a 

solution in the other. And this is what happened to the 

essential matrix equation. First the equation ܾܽܧ = Ͳ is 

defined in the Euclidean space where ܽ, ܾ are 3D vectors 

having three variable components ሺܺ, ܻ, ܼሻ, and then it is 

solved in a projective space where ܽ, ܾ are defined by two 

variable components [ݔ, ,ݕ ͳ], the third is constant and 

equal to 1 for all projective points.   
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EXPERIMENTAL RESULTS  

 

Data and programs 

In this paper, experiments were conducted on real 

images. The images consist of an apartment-building 

imaged from two different positions by the same camera. 

In the middle between the camera and the apartment-

building there exists a separate small playhouse as shown 

in Figure-3. The points on the images were detected and 

used as input for the program we used to calculate the 

fundamental matrix. 

 

 
Left image 

 
                     Right image 

 

Figure-3. Two images of a scene captured from two different positions. 

 

The program we used is coded in MATLAB and 

having the following components:  

a) A corner detection algorithm developed by Harris [5] 

to detect points of the two images.  

b) A procedure in MATLAB to input the points detected 

by Harris algorithm. The points are represented by a 

matrix of four columns: the first two columns contain 

the coordinates of the right image points and the last 

two contain the coordinates of the left image points.  

c) A MATLAB Toolbox [11] that contains a number of 

methods for estimating the fundamental matrix using 

the eight-point algorithm.  

 

In total, 282 pairs of points were collected from 

the two images. Before used to estimate the fundamental 

matrix, these points have been cleaned in a sense that 

points in one view without images in the other view are 

removed. The robust estimation method functions are 

selected for the estimation process between other available 

methods as they considered performing better than the 

others: 

 

a) M-Estimator using least squares,  

b) M-Estimator using least squares with an Eigen 

analysis,  

c) M-Estimator proposed by Torr, 

d) Least Median of Squares (LMedS) using least 

squares, 

e) Least Median of Squares using least squares with an 

Eigen analysis, 

f) RANSAC  

g) MLESAC implemented by Torr  

h) MAPSAC implemented by Torr
 
[11].  

In the literature, the average distance between 

image points and epipolar lines is used as a measure in 

evaluating the performance of the eight-point algorithm [1, 

6].  

“For each point ݉�, the corresponding epipolar 

line ݉ܨ� was computed and distance the line ݉ܨ� from the 

matching point ݉� was calculated. This was done in both 

directions (that is, starting from points ݉� in the first 

image and also from ݉� in the second image). The 

average distance of the epipolar line from the 

corresponding point was computed, and used as a measure 

of quality of the computed fundamental matrix. This 

evaluation was carried out using all matched points, except 

outliers, and not just the ones that were used to compute ܨ 

[6].”  
Besides the above mentioned measure, we opt to 

use a measure that directly evaluates how much the matrix ܨ satisfies the equation ݉��݉ܨ� = Ͳ for any pair of 

corresponding points ሺ݉� , ݉�ሻ. For such purpose, three 

arbitrarily pairs of corresponding points were selected 

from the main building and one point from the playhouse 

as shown in Figure-3 and in Table-1.  

First we used the 282 pairs of corresponding 

points from the main building to estimate the matrix ܨ. 

Once ܨ is available we calculated the expression ݉��݉ܨ� 
for the four pairs of points of Table-1, Point 4 is from the 

playhouse.  
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Table-1. Corresponding points to evaluate ݉�݉ܨ� 
 

,ܠሺ�࢓ # ,ܠሺ࢒࢓ ሻܡ  ሻܡ

1 (487,284) (423,370) 

2 (820,825) (796,907) 

3 (464,1092) (440,1189) 

4 (723,1680) (1402,1758) 

 

 

 

 

 

RESULTS AND COMMENTS  

Regarding normalization, the program is run in 

three different modes; without normalization, with 

normalizing the points’ coordinates in the interval [−ͳ ͳ], and with a normalization proposed by Hartley in 

[6]. The values reported in Tables 2-4 are the values of the 

expression ݉�݉ܨ� for each of the points 1, 2, 3, and 4 of 

Table 1 along with the outliers detected by the methods we 

used. As indicated by their captions, Table 2 contains the 

values of ݉�݉ܨ� generated by the program without 

normalization, Table 3 with normalizing the points in the 

interval [−ͳ ͳ], and Table 4 with the normalization 

proposed by Hartley. 

 

Table-2. No normalization. 
 

Method 1 2 3 4 outliers 

1 0.299 0.023 0.000 0.256 75/282 

2 0.299 0.023 0.000 0.256 75/282 

3 0.319 0.004 0.010 0.203 64/282 

4 0.001 0.000 0.002 1.973 111/282 

5 0.002 0.003 0.001 4.036 105/282 

6 0.028 0.002 0.001 0.290 76/282 

7 0.388 1.463 1.244 138.286 266/282 

8 0.061 1.290 8.353 145.809 267/282 

 

Table-3. Normalization in [-1 1]. 
 

Method 1 2 3 4 outliers 

1 0.184 0.218 0.013 0.346 61/282 

2 0.000 0.007 0.001 0.499 99/282 

3 0.020 0.009 0.021 0.189 58/282 

4 0.002 0.002 0.004 7.516 67/282 

5 0.006 0.001 0.001 5.800 50/282 

6 0.002 0.004 0.009 1.819 0/282 

7 0.013 0.022 0.009 0.178 21/282 

8 0.014 0.020 0.007 0.289 21/28 

 

Table-4. Hartley normalization. 
 

Method 1 2 3 4 outliers 

1 0.151 0.184 0.020 0.299 39/282 

2 0.000 0.007 0.001 0.498 99/282 

3 0.021 0.010 0.018 0.255 63/282 

4 0.003 0.007 0.004 1.392 83/282 

5 0.003 0.002 0.002 1.187 84/282 

6 0.006 0.006 0.008 1.190 0/282 

7 0.014 0.020 0.009 0.319 31/282 

8 0.018 0.021 0.013 0.154 42/282 
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Whereas the slight difference of ݉�݉ܨ� values as 

well as the difference in the number of outliers in Tables 

2-4, the values for point 4 are very large when compared 

to the values for the other three points especially after 

normalization. Also the values for point 4 are far away 

from zero as they should be.  

The depths of the points 1, 2 and 3 in Table 1 and 

the depths of points used to estimate ܨ are in the same 

range, whereas the depth of point 4 is substantially 

different. This distinguishing feature of point 4 confirms 

that the value of the expression ݉�݉ܨ� depends to the 

depth of the world points being projected onto the cameras 

planes.  

Figures 4-6 show a similarity in the average 

distance of points from the epipolar lines in all 

normalization modes. Method number 1 performs badly in 

the three modes, methods 6 and 7 came in second category 

and the other methods perform well except the second 

method in the no normalization mode.  

 

 
 

Figure-4. No normalization: the average distance of points 

from the epipolar lines. 

 

 
 

Figure-5. Normalization in [-1 1]: the average distance of 

points from the epipolar lines. 

 

 
 

Figure-6. Hartley normalization: the average distance of 

points from the epipolar lines. 

 

CONCLUSIONS 

There is no doubt that the normalization 

procedure produced a considerable improvement on the 

quality of the fundamental matrix ܨ. The matrix ܨ 

calculated from normalized homogeneous points is more 

well-defined compared to ܨ calculated from unnormalized 

image points. The empirical results in [6] indicates that the 

improvement was dramatic in the case where the image 

points’ matches are less accurate.  
Based on experimental results, researchers 

including Longuet-Higgins [10] himself have criticized the 

performance of the eight-point algorithm to an extent that 

some of them concluded that it is virtually useless for most 

purposes [6]. In reality, the problem lies in the way in 

which the equation ݉��݉ܨ� = Ͳ is derived rather than in 

the eight-point algorithm performance. The matrix ܨ is 

defined primarily by the equation ܯܨ��ܯ� = Ͳ as a one-to-

one correspondence between the unique vectors ܯ� and ܯ� representing a 3D point ܯ on the two cameras 

coordinate systems in the Euclidean space. However, 

when ܨ is calculated from the equation ݉��݉ܨ� = Ͳ, the 

“one-to-one correspondence” feature of ܨ is lost. The new ܨ is not injective as one point ݉� which is the projection 

of 3D points lying on the same ray from the right camera 

center is related to all projections ݉� of these 3D points 

onto the left camera plane through the equation ݉��݉ܨ� =Ͳ. And similarly, a point ݉� that is the projection of 3D 

points lying on the same ray from the left camera centre, is 

related to all projections ݉� of these 3D points onto the 

right camera plane through the equation ݉��݉ܨ� = Ͳ. 

Furthermore, in the projective space, the system of 

equations ݉��݉ܨ� = Ͳ holds for corresponding and non-

corresponding points. It holds for an image point ݉� of a 

3D point ܯ on the left view and an image point ݊� of a 3D 

point N on the right view, simply because ܯ and ܰ lie on 

the same epipolar plane, i.e., ݊��݉ܨ� = Ͳ. Consequently, ܨ 

calculated from ݉��݉ܨ� = Ͳ is different from ܨ calculated 

from ܯܨ��ܯ� = Ͳ. In general, the matrix ܨ calculated 

from ݉��݉ܨ� = Ͳ does not satisfy ܯܨ��ܯ� = Ͳ. As a 

matter of fact, the occurrence of 3D points lying on the 
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same epipolar plane increases for scenes containing 

objects at different depths which is certainly one of the 

features of 3D scenes.  
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