
 VOL. 12, NO. 3, FEBRUARY 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 841

SIGNIFICANT FACTORS IN THE DESIGN OF AN EFFICIENT DYNAMIC
LOAD BALANCING ALGORITHM: AN EXPLORATION

V. Anand1, Narasimhan Renga Raajan2 and K. Anuradha2

1School of Computing, SASTRA University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India
2School of Electrical and Electronics Engineering, SASTRA University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India

E-Mail: anandwithah@gmail.com

ABSTRACT

This paper aims at studying various algorithms for dynamic load balancing pertinent to the significant issues
handled by them. When some of the nodes are overloaded and other nodes are moderately or even under loaded, the
process of load balancing redistributes the work load. By this means, utilization of resources and response time can be
enhanced. Numerous algorithms are available for dynamic load balancing. Based on the current position of the system,
these algorithms make the load balancing decisions. Several factors such as performance indices, load estimation, amount
of information exchanged among nodes, load levels comparison, system stability, choosing remote nodes, and estimation
of resource requirements should be taken into account. Consideration of these factors contributes a lot for developing an
efficient dynamic load balancing algorithm. Relevant to the design of efficient algorithms for dynamic load balancing, this
work brings into limelight the aforesaid factors.

Keywords: load balancing, distributed computer systems, load distribution, performance assessment, stability.

INTRODUCTION

Sharing of resources is a necessary requirement
in a distributed computer system environment. As defined
by P. Enslow Jr. [1], in a distributed computer system
environment, many independent systems are linked
through a communication network. To enhance the
performance, systems should share the power of
computation in addition to sharing the other resources
such as devices and data.

To improve the resource utilization and reduce
the response time, load balancing empowers the jobs to be
shifted from one system to another. Lot of work has been
done relevant to the load balancing in a distributed setup.
The work proposed in [2]-[18] clearly illustrates that load
balancing between systems in a distributed setup greatly
improves the utilization of resources and also enhances the
performance. By means of load balancing, the work load is
equally distributed between systems in a distributed
environment. This will end up in improving the
performance of the system globally.

Improving the system performance globally is a
merit of load balancing which cannot be done easily with
load sharing. In the distributed system, the work proposed
in [6], [19], [20] deals with systems, where certain nodes
are idle whereas other nodes are overloaded. But, the work
offered by P. Kruger and M. Livny [21] deals with load
balancing. P. Kruger and M. Livny [21] have presented
methods which minimize the standard deviation and mean
of response time than load sharing schemes.

As specified by A. Goscinski [8], the objectives
of a load balancing algorithm are (1) to accomplish a
globally improved performance of the system (2) to give
equal consideration for all jobs in the system (3) there
should be a fault tolerance strategy if there is a partial
failure (4) capable of adapting to changes in the distributed
setup (5) preserve the steadiness of the system.
Substantially

For developing an efficient dynamic load
balancing algorithm, several factors are to be considered.
This paper presents an insight into the following factors
for designing an efficient dynamic load balancing
algorithm: performance indices, load estimation, amount
of information exchanged among nodes, load levels
comparison, system stability, choosing remote nodes, and
estimation of resource requirements. The main aim of this
paper is to present an idea about these factors that should
be focused while developing an efficient algorithm for
dynamic load balancing.

An outline of load balancing

Load balancing has garnered significance and
focus because of the rapid developments in distributed
systems. Relevant to load balancing, lot of research were
done.

This section offers the key methods proposed to
accomplish load balancing in a distributed setup. To
explain the methods with much clarity, this study will
mention specific algorithms only on demand. A clear
categorization of algorithms for load balancing in
distributed systems were proposed in [8], [20], and [22].

Algorithms for load balancing are of two types,
viz., static and dynamic. They are distinguished by the
way that, decisions are taken based on the current state of
the system (dynamic) or not (static). The work proposed in
[3], [12], [24], [25], [27] have presented static methods.
These static methods should have prior information about
the job resource requirement, status of the distributed
system as a whole and communication time. To
accomplish load balancing, these methods allocate a set of
tasks to a set of processors. In the work proposed by D.L.
Eager et al. [6], these allocations were done by means of
probabilistic or deterministic methods without considering
the present state of the system. In the case of assignments
using deterministic methods, always node i assigns
additional jobs to node j. But, when using a probabilistic

 VOL. 12, NO. 3, FEBRUARY 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 842

method, node i assigns additional tasks to node j with
probability p and to node k with probability q. The main
problem with static methods is, the current state is not
considered while taking decisions about the assignment.

When using static methods, the performance of
the system is greatly affected because of the irregular
changes in the load. Certain static methods applied for
load balancing quoted by T. L. Casavant [22] are queuing
theoretic, graph theoretic, solution space enumeration and
search, and mathematical programming.

Some of the dynamic methods are presented in
[4], [6], [10], [14], [15], [18], [26], [28]-[38]. In dynamic
methods, decisions for load balancing are taken
dynamically (i.e.) tasks are shifted from an overloaded
node to an under-loaded node. The key advantage of
dynamic method is it is capable of reacting to changes in
the system.

When comparing the static and dynamic methods
for load balancing, attaining a solution in a dynamic
method is difficult than attaining a solution in a static
method. Since the decisions for load balancing are taken
relying on the current work load, dynamic methods can
yield a better performance as reported by D.L. Eager et al.
[6] and A. Goscinski [8]. Designing an efficient algorithm
always needs methods with improved performance. So,
this survey explores the algorithms for dynamic load
balancing.

Factors and methods for dynamic load balancing

Relevant to dynamic load balancing, this section
offers significant factors. This section also highlights
various methods which has handled these factors. A clear
structure of major factors deliberately discussed in this
paper is depicted by Figure-1.

Figure-1. Significant factors for an efficient dynamic load balancing algorithm.

The duty of control

While obtaining the results with a dynamic load
balancing algorithm, the control mechanism may
deteriorate the performance of the system by two means:
a) an additional overhead added by the algorithm and

b) fault tolerance of the system.

Two undesirable things for a load balancing
algorithm are it should not need lot of messages to take

 VOL. 12, NO. 3, FEBRUARY 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 843

decisions and the algorithm which does not have alternate
provisions for the repair of some of its components.

Dynamic load balancing can be done by means of
two dissimilar methods: distributed and non-distributed.
The distributed schemes proposed in [4], [14], [18], [28],
[29], [31, [37] were implemented in such a way that all the
nodes executes the algorithm and the nodes share the duty
of balancing the work load. In distributed schemes, the
nodes interact with each other through co-operative or
non-cooperative method. In a co-operative method, the
overall response time of the system is enhanced (i.e.)
global. In a non-cooperative method, response time of the
local task is improved (i.e.) local objective of each node.

A problem with distributed algorithms is it
generates lot of messages than non-distributed. The reason
is each node has to communicate with all other nodes to
make decisions for load balancing. But, still this is a gain.
Because, when some of the nodes fail, it will not affect the
process of load balancing. It will partially reduce the
performance only.

Distributed control is not efficient in all the
dynamic algorithms for load balancing. Distributed control
could be an overhead when each of nodes in the system
has to interact with all the nodes in the network. This
overhead may reduce the overall performance of the
system. At the same time, distributed control is a benefit
when each node is allowed to interact with some of the
nodes only if necessary. Practically, most of the dynamic
algorithms for load balancing need complete interaction
between nodes of the distributed system. So, a distributed
dynamic algorithm for load balancing which demands
least communication between nodes is required.

In contrast to distributed methods, the non-
distributed methods assign the duty of balancing the work
load to a particular node or few nodes only (i.e.) not to all
the nodes in the system. There are two types of non-
distributed methods for dynamic load balancing. They are
centralized and semi-distributed. The work proposed by
L.M. Ni and Kai Hwang [12], Y. Chow and W. Kohler
[40] deals with centralized non-distributed methods in
which the algorithm is executed by only one node of the
system (i.e.) the central node. The central node is merely
responsible for load balancing of the entire system. All the
other nodes have to interact with the central node only. In
a semi-distributed method presented by I. Ahmed and A.
Ghafoor [39], nodes of the system are divided into

clusters. In each cluster, load balancing is done in a
centralized manner. For each cluster, a central node is
chosen. The central node in each cluster is responsible for
load balancing in that cluster. With the co-operation of the
central nodes in each cluster, load balancing of the entire
system is accomplished. This method proposed by I.
Ahmed and A. Ghafoor [39] suits for distributed systems
with lot of nodes.

Since each of the nodes in the system interact
only with the central node, centralized methods for
dynamic load balancing needs only less number of
messages to take a decision for load balancing. At the
same time, centralized methods have the risk of reduced
performance when the central node fails. For networks
with a maximum of 100 nodes (small networks), the work
done by S. Zhou [17] has exhibited that centralized load
balancing is appropriate.

Modules of an algorithm for dynamic load balancing

Relying on the current status of the work load,
decisions for load distribution should be taken by a
dynamic load balancing algorithm. These algorithms
should have two important methods. One method for
gathering and maintaining the status information. Another
method for helping the nodes in finding eligible jobs for
load balancing. A load balancing algorithm should choose
a target node to which a job is to be shifted.

Key strategies of a dynamic load balancing algorithm

The key strategies are information strategy,
transfer strategy, and location strategy. Information
strategy is collecting information about the nodes in the
system. Transfer strategy is about choosing a job for
transfer from local to a remote node. Location strategy is
selecting a target node for a shifted job.

Figure-2 clearly presents the communication
among modules of a dynamic load balancing algorithm.
First, the transfer strategy takes the incoming jobs as input.
This strategy decides whether the incoming tasks should
be allocated to a remote node for balancing the load. If
decision of the transfer strategy is to allocate the task, the
location strategy is activated to obtain a remote node for
the task. To make decisions, the information required for
the transfer and location strategy is offered by the
information strategy.

 VOL. 12, NO. 3, FEBRUARY 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 844

Figure-2. Communication between modules of a dynamic load balancing algorithm.

Information strategy

This strategy has the responsibility of offering
information about each node in the system to the location
and transfer strategies. This information helps the transfer
and location strategies in taking load balancing decisions.
An advanced information strategy maintains each node in
the distributed system updated on the overall state of the
system. As a result, additional traffic is created and an
increased overhead is introduced by the algorithm. So,
there is a compromise between the quantity of information
exchanged and how often the information is exchanged.

The research work proposed by D.L. Eager et al.
[6] and Y. Wang and R. Morris [20], have presented some
algorithms for dynamic load balancing. These algorithms
take decisions for load balancing depending on the
quantity of information. The outcome of the work
presented by D.L. Eager et al. [6] reveals those algorithms
which gather large amount of information does not have a
remarkable performance over algorithms which gather less
amount of information.

Transfer strategy

Choosing a job for load balancing is difficult, if
specific factors such as job size, job execution time,
memory, and I/O are not known. This issue has been
addressed by many methods.

One of the proposed methods has attempted in
taking decisions for transfer of jobs regardless of job’s
features. This method fixes a threshold value. In this
method, the job is shifted only if the size of the queue is
greater than the threshold value. If not, the job is
completed in the local node itself. Generality is the key
benefit of this method. The disadvantage of the method is
jobs of various sizes are treated differently. Algorithms of
this kind for load balancing were presented in [5], [6], and
[43].

A different set of methods proposed in [17], [19],
[41] applies information about the current behavior of a
job to evaluate the behavior of a job in the future. These
methods improve the way of choosing a suitable job for
load balancing. But, this works for certain workloads only.
The work presented by K. Goswami et al. [19] chooses
jobs for load balancing. This job selection is done,
depending on their resource needs in the future. This need
for resources was evaluated by applying a statistical
method developed by M. Devarakonda and R. Iyer [42]. A
technique presented by A. Svensson [41] uses execution
time of jobs to distinguish small and big sized jobs. By
doing so, the technique imposes the small jobs to be
completed in the local node itself.

A different class of method for load balancing
was presented by A. Karimi et al. [10]. An automated tool
was used by this method to assess the execution time of
jobs in the future. By using the trace of job’s behavior
under various loads, job’s execution time in the future was
assessed. The issue with the method is, the additional
overhead introduced by tracing the job’s behavior under
various conditions.

There two important problems related to load
balancing which relies on the transfer strategy. They are
(i) correct time to start the activity and (ii) tasks chosen for
the activity. Two techniques to initiate the load balancing
are: arrival time of a new task at a node and departure time
of the job after service from the node. Load balancing
algorithms can be categorized as sender-initiated and
receiver-initiated. Sender-initiated algorithms takes load
balancing decisions when a new task arrives at a node.
Receiver-initiated algorithms takes decisions for load
balancing when the task departs after the completion. In
sender-initiated methods, a node which is overloaded may
request the other nodes to take its load. But in receiver-
initiated methods, a node which is not heavily loaded
expresses its interest to take the load of other nodes.

 VOL. 12, NO. 3, FEBRUARY 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 845

The work presented by D.L. Eager et al. [43]
makes it clear that, choosing receiver-initiated or sender-
initiated methods depends on the amount of load in the
system. Sender-initiated methods are appropriate for
systems which are not heavily loaded. But, receiver-
initiated methods can be used for the systems with heavy
work load.

Another important consideration should be the
selection of qualified jobs for transfer. There are two
techniques to ascertain the qualified jobs. These
techniques are consider-all and consider-new-only. The
consider-all technique proposed by K. Goswami et al. [19]
ponders all the qualified jobs for load balancing. This
technique is complicated than the consider-new-only. The
reason is, it uses an additional method for the choosing a
suitable job from a list of active jobs. The consider-new-
only technique presented in [5], [6], [28], [40] takes into
account the newly arrived tasks only for load balancing.
This technique is widely used. As proposed by K.
Goswami et al. [19], consider-all technique has shown
improved results than consider-new-only technique when
there is a great difference between the job size and the
resource requirements.

Location strategy

Relevant to load balancing, an algorithm should
correctly choose the target node to which the job should be
transferred. The location strategy helps a node with
overload in finding a node with a less load.

Relying on the current load at the node, a remote
node is chosen. Usually, the queue length of the processor
in a node estimates a node’s load. A queue length is the
task in service and the number of tasks waiting for service.
To choose a target node for shifting the task, the quantity
of information used by the location strategy is important.
This paper also gains an insight into various techniques of
location strategy. The widely used techniques of location
strategy for choosing a target node are negotiation, random
and probing.

Negotiation technique: This type of location
strategy is commonly used in dynamic distributed
algorithms, where each node negotiates with the other
nodes in the system for taking load balancing decisions.
Two negotiation-based location strategies are bidding and
drafting. Bidding technique was proposed by J. A.
Stankovic and I. S. Sidhu [14] and drafting technique was
presented by L.M. Ni et al. [30].

The bidding technique makes a node with heavy
load to start the load balancing. This technique is related
with sender-initiated algorithms. An overloaded node
broadcasts request-for-bid message to the nodes in the
network. The request-for-bid message comprises
information about the current load of the origin node and
the tasks to be shifted. After the message is received, a
target node equates the information in the message with its
current status. If the load of the target node is lesser than
the load of the origin node, the target node responds with a
bid-message. If not, the target node will not make any
response. The content of a bid message encompasses the

current load of the target node and the extra load this node
could handle. On receiving the bid messages from all the
nodes, the origin node chooses the target node with the
best bid. Best bid is determined by the node with the least
load. The key issue with bidding technique is a node with
least load may be overloaded. To overcome this issue, a
limit on the count of accepted bids could be enforced.

Contrast to bidding technique, the drafting
technique makes node with a light load to start load
balancing. This drafting technique is associated with
receiver-initiated algorithms. Based on the current load,
the drafting technique groups nodes into three classes.
They are H-load (heavily loaded), N-load (neutrally
loaded) or L-load (lightly loaded).

Each of the nodes in the system maintains a status
table. This table is periodically updated by all the nodes in
the system with the changes in their load.Each node
checks its state periodically. If a node is in L-load, it finds
the H-load nodes and transmits a draft-request message.
By sending such messages, an L-load node shows its
readiness to receive more load. On receiving the draft-
request message, a target node responds by transmitting a
draft-response message if it is in the H-load state.

The content of a draft-response message is, the
qualified jobs for transfer at the target node (drafted). If
the original node has received many draft-response
messages or in case of time-out, a target node is chosen
relying on a specific criteria. Then, the information is
conveyed to the drafted node by means of draft-select
message. If the drafted node is still in H-load state, the
drafted node shifts some tasks to the origin node. On
comparison of bidding and drafting techniques in a similar
setup, the outcome of the methods presented in L.M. Ni et
al. [30] shows that the drafting technique outclasses the
bidding technique.

Random technique: The method proposed by
D.L. Eager et al. [6] and [43] shows that, a target node is
chosen randomly by a node whose task is to be transferred.
The target node executes the received task, based on a
condition that its work load is less than the threshold
defined for the queue length. If the condition is not
satisfied, the target node will choose a new target node for
this task. To overcome the problem of having the task
passed between nodes, a maximum limit is set for the
number of hops. When the number of hops reaches this
limit, the node finally receives the task should execute the
task irrespective of its work load. The work presented by
D.L. Eager et al. [6] reveals that this technique of location
strategy has shown enhanced results when compared to
systems without any load balancing methods.

Probing technique: This technique of location
strategy finds a target node, by making the local node to
choose a subset of nodes randomly and polls each of the
nodes in the subset to identify an appropriate target node.
The identified node will offer service to the shifted task
with an improved response time. The location strategies
based on probing technique were proposed by D.L. Eager
et al. [6] and S. Chowdhury [5]. The techniques proposed

 VOL. 12, NO. 3, FEBRUARY 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 846

by D.L. Eager et al. [6] relied on threshold value and
shortest queue length. The method developed by S.
Chowdhury [5] was based on greedy technique.

In the work proposed by D.L. Eager et al. [6], a
technique based on threshold was developed. A probe is
done by the local node on the randomly chosen target
node, which checks whether shifting a task to the target
node does not affect the threshold of the target node. If the
local node finds that the threshold of the target node is not
affected, the task is shifted to the target node. If the
threshold is affected, a new target node should be chosen
at random and it has to be probed. This algorithm fixes a
limit on the number of times the probing should be done
by the local node. If the limit is reached, the task should be
executed by the local node itself.

The shortest location strategy technique
developed by D.L. Eager et al. [6] randomly chooses a
subset of target nodes and examines the members of the
subset to get their current work load. The target node with
the minimum queue length (i.e) work load is chosen. If
this node’s work load is less than the threshold, the task is
shifted to the target node. If not, the task is executed in the
local node. From the results of the approach presented by
D.L. Eager et al. [6], it is clear that the shortest location
strategy is wiser than the threshold in choosing target
nodes. To choose a target node, the greedy location
strategy offered by S. Chowdhury [5] examines the nodes
in a cyclic manner. On comparing the threshold and
greedy probing techniques of location strategy, greedy
technique has not shown better performance than the
threshold technique.

Important factors

Algorithms developed for dynamic load
balancing includes a lot of factors. Stability of the system,
load measurement and performance evaluation are the key
factors to be considered. This section presents these
important factors.

Stability of the system: An algorithm for
dynamic load balancing should preserve the stability of the
system. A stable algorithm for load balancing should
possess the following features: (1) as presented by R. M.
Bryant and R. A. Finkel [4] and D.L. Eager et al. [6],
nodes in the system should not enter a thrashing state; (2)
any two nodes in the system does not vary by more than
x% of their load (3) as mentioned by A. Goscinski [8] and
T. L. Casavant [22], response time should not exceed the
specific limit.

Load measurement: An algorithm for dynamic
load balancing algorithm takes decisions based on the
current work load. Load descriptor is a key parameter
applied by a load balancing algorithm. This load descriptor
defines the current load in each node. Few load descriptors
are context switch rate, queue length of CPU, percentage
of idle time, utilization of CPU, quantity of unfinished
work and resource requirements for each job.

Queue length of CPU offers a good assessment of
job response time. Most of the algorithms for dynamic

load balancing applies the load descriptor. The work
proposed by K. Goswami et al. [19] illustrates that,
resource requirement is a good load descriptor. Because,
tasks can be serviced in a correct sequence when the
resource requirement is foreseen.

Performance evaluation: The main goal of an
algorithm is enhancing the performance of the system. The
algorithms for load balancing should assume an index for
performance. By this way, the performance improvement
can be evaluated.

The work proposed in A. Goscinski [8] reveals
that, an index for performance could be user-oriented,
system-oriented or both. Some of system-oriented indices
are utilization of resources and throughput. User-oriented
indices are mean execution time of the task and mean
response time. Some of the performance indices such as
job wait ratio, standard deviation of a job wait time and
job mean wait time could be applied to produce the
performance as per the expectations.

CONCLUSIONS

This paper explores important factors pertinent to
the development of algorithms for dynamic load
balancing. Important factors such as choosing target
nodes, choosing tasks for shifting, performance indices,
load estimation, amount of information exchanged among
nodes, load levels comparison, stability of the system and
estimation of resource requirements are studied. The
ultimate aim of this paper is gain an insight into significant
factors that should be focused for developing an efficient
algorithm for dynamic load balancing. By studying
various algorithms for dynamic load balancing, this paper
has identified some of the key problems viz. passing the
task between nodes without a limit on the number of hops,
additional overhead introduced by tracing the job’s
behavior under various conditions for estimating the
execution time of jobs. By bridging the identified gaps, an
efficient algorithm for dynamic load balancing can be
developed.

REFERENCES

[1] Enslow Jr. P. 1978. What is a.” Distributed” Data

Processing System? Computer. 11(1): 13-21.

[2] Z. Khan, R. Singh, J. Alam, R. Kumar. 2010.
Performance Analysis of Dynamic Load Balancing
Techniques for Parallel and Distributed Systems.
International Journal of Computer and Network
Security. 2(2).

[3] Xueyan Tang, Samuel T. Chanson. 2000. Optimizing
Static Job Scheduling in a Network of Heterogeneous
Computers. In: Proceedings of the Intl. Conf. on
Parallel Processing. pp. 373-382.

[4] Raymond M. Bryant et al, 1981. A Stable Distributed
Scheduling Algorithm. In: Proceedings of the 2nd Int.
Conf. Dist. Comp. pp. 314-323.

 VOL. 12, NO. 3, FEBRUARY 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 847

[5] Chowdhury. S. 1990. The Greedy Load Sharing
Algorithms. Journal of Parallel and Distributed
Computing. 9: 93-99.

[6] Derek L. Eager, Edward D. Lazowska, John Zahorjan.
1986. Adaptive Load Sharing in Homogeneous
Distributed Systems. IEEE Trans. Software Eng. SE-
12(5): 662-675.

[7] Efe. K. 1882. Heuristic Models of Task Assignment
Scheduling in Distributed Systems. Computer. 15(6):
50-56.

[8] Goscinski. A. 1991. Distributed Operating Systems.
Addison-Wesley, Sydney.

[9] Miron Livnyand, Myron Melman. 1982. Load
Balancing in Homogeneous Broadcast Distributed
Systems. In: Proceedings of the ACM Comput.
Network Performance Symp.) pp. 47-55.

[10] Karimi, A. F. Zarafshan, A. b. Jantan, A. R. Ramli,
M. I. Saripan. 2009. A New Fuzzy Approach for
Dynamic Load Balancing Algorithm. International
Journal of Computer Science and Information
Security. 6(1): 001-005.

[11] R. Mirchandaney, D. Towsley, J. Stankovic. 1990.
Adaptive Load Sharing in Heterogeneous Distributed
Systems. Journal of Parallel and Distributed
Computing. 9: 331-346.

[12] L.M. Ni, Kai Hwang. 1985. Optimal Load Balancing
in a Multiple Processor System with Many Job
Classes. IEEE Transactions on Software Engineering.
SE-11 pp. 491-496.

[13] N.G. Shivaratri, P. Krueger, M. Singhal. 1992. Load
Distributing for Locally Distributed Systems.
Computer. 25(12): 33-44.

[14] J. A. Stankovic, I. S. Sidhu. 1984. An Adaptive
Bidding Algorithm for Processes, Cluster and
Distributed Groups. In: Proceedings 4th Int. Conf.
Distributed Compu. Systems. pp. 49-59.

[15] J. Stankovic. 1984. Simulations of Three Adaptive,
Decentralized Controlled, Task Scheduling
Algorithms. Computer Networks. 8(3): 199-217.

[16] H. S. Stone. 1990. High-Performance Computer
Architecture. 2nd ed., Addison Wesley, Reading, MA.

[17] S. Zhou. 1988. A Trace-Driven Simulation Study of
Dynamic Load Balancing. IEEE Transactions on
Software Engineering. SE-14(9): 1327-1341.

[18] A. Barak, A. Shiloh. 1985. A Distributed Load-
balancing Policy for a Multicomputer. Software-
Practice and Experience. 15(9): 901-913.

[19] K. Goswami, M. Devarakonda, R. Iyer. 1993.
Prediction-Based Dynamic Load-Sharing Heuristics.
IEEE Transactions on Parallel and Distributed
Systems. 4(6): 638-648.

[20] Y. Wang, R. Morris. 1985. Load Sharing in

Distributed Systems. IEEE Trans. Comput. C-34(3):
204-217.

[21] P. Kruger, M. Livny. 1987. The Diverse Objectives of
Distributed Scheduling Policies. In: Proceedings of
the Seventh International Conference in Distributed
Computing Systems. pp. 242-249.

[22] T. L. Casavant. 1988. A Taxonomy of Scheduling in
General-Purpose Distributed Computing Systems.
IEEE Trans. Software Eng. 14(2): 141-154.

[23] C. Kim, H. Kameda. 1992. An Algorithm for Optimal
Static Load Balancing in Distributed Computer
Systems. IEEE Trans. Comput. 41(3): 381-384.

[24] H. Stone. 1977. Multiprocessor Scheduling with the
Aid of Network Flow Algorithms. IEEE Transactions
on Software Engineering, SE-3(1): 85-93.

[25] A. N. Tantawi, D. Tawsley. 1985. Optimal Static
Load Balancing in Distributed Computer Systems. J.
of Assoc. Comput. 32(2): 445-465.

[26] B. Blake. 1992. Assignment of Independent Tasks to
Minimize Completion Time. Software-Practice and
Experience. 22(9): 723-734.

[27] S. H. Bokhari. 1979. Dual Processor Scheduling with
Dynamic Reassignment. IEEE Trans. Software Eng.
SE-5(4): 341-439.

[28] D. Evans, W. Butt. 1993. Dynamic Load Balancing
Using Task-Transfer Probabilities. Parallel
Computing. (19): 897-916.

[29] R. Mirchandaney, J. Stankovic. 1986. Using
Stochastic Learning Automata for Job Scheduling in
Distributed Processing Systems. Journal of Parallel
and Distributed Computing. pp. 527-552.

[30] L.M. Ni, C. Xu, T. Gendreau. 1985. A Distributed
Drafting Algorithm for Load Balancing. IEEE
Transactions on Software Engineering. SE-11(10):
1153-1161.

[31] J. Stankovic.1985. Bayesian Decision Theory and Its
Application to Decentralized Control of Task
Scheduling. IEEE Transactions on Computers. C-
34(2): 117-130.

[32] S. Penmasta, A. T. Chronopoulos. 2007. Dynamic
Multi-User Load Balancing in Distributed Systems.
2007 IEEE International Parallel and Distributed

 VOL. 12, NO. 3, FEBRUARY 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 848

Processing Symposium pp. 1-10, Long Beach, CA,
USA. 2007.

[33] L. M. Campos, I. Scherson. 2000. Rate of Change

Load Balancing in Distributed and Parallel Systems.
Parallel Computing. 26(9): 1213-1230.

[34] C.C. Hui, S. T. Chanson. 1999. Improved Strategies
for Dynamic Load Balancing. IEEE Concurrency.
7(3): 58-67.

[35] A. Corradi, L. Lenoardi, F. Zamboelli. 1999.
Diffusive Load Balancing Policies for Dynamic
Applications. IEEE Concurrency. 7(1): 22-31.

[36] S. Dhakal, M. M. Hayat, J.E. Pezoa, C. Yang, D.
Bader. 2007. Dynamic Load Balancing in Distributed
System in the Presence of Delays: A Regeneration-
Theory Approach. IEEE Transactions on Parallel and
Distributed Systems. 18(4).

[37] D. Grosu, A. T. Chronopoulos. 2005. Noncooperative
Load Balancing in Distributed Systems. Journal of
Parallel and Distributed Computing. 65(9): 1022-
1034.

[38] Z. Zeng, B. Veeravalli. 2004. Rate-based and Queue-
based Dynamic Load Balancing Algorithms in
Distributed Systems. In: Proceedings of the 10th Int.
Conf on Parallel and Distributed Systems. pp. 349-
356.

[39] I. Ahmed, A. Ghafoor. 1991. Semi-Distributed Load
Balancing for Massively Parallel Multicomputers.
IEEE Trans. Software Eng. 17(10): 987-1004.

[40] Y. Chow, W. Kohler. 1979. Models for Dynamic
Load Balancing in Heterogeneous Multiple Processor
System. IEEE Transactions on Computers, C-28 pp.
354-361.

[41] A. Svensson. 1990. History, an Intelligent Load
Sharing Filter. Proceedings of the 10th International
Conference in Distributed Computing Systems). pp.
546-553.

[42] M. Devarakonda, R. Iyer. 1989. Predictability of
Process Resource Usage: A measurement-Based
Study on Unix. IEEE Transactions on Software
Engineering. 15(12): 1579-1586.

[43] D.L. Eager, E. Lazowski, J. Zahorjan. 1986. A
Comparison of Receiver-Initiated and Sender Initiated
Adaptive Load Sharing. Performance Evaluation. 6,
pp. 53-68.

