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ABSTRACT 

This paper is concerned with integrating experimental and theoretical methods supported by numerical 

simulations to efficiently determine mechanical properties of carbon fibre-reinforced laminated composite panels. Ignition 

loss experiments were conducted for eight, sixteen, and twenty-four ply laminates to approximate fibre volume fractions by 

weights. Rule of mixture was utilised to approximate basic mechanical properties (Young’s and shear moduli and 
Poisson’s ratios) for a lamina. The mechanical properties were utilised to develop coefficients of stiffness and compliance 
matrices. The coefficient matrices are used in constitutive equations to align off-axis fibres and applied load to mid-plane 

direction in two-dimensional formulations. Based on the two-dimensional formulations stacking sequences of three-

dimensional laminate layupswere developed without resorting to three-dimensional micro-macro mechanics. The 

formulations laminates were then coded in commercial software MATLAB
TM 

to predict mechanical properties. Tensile and 

flexural physical tests of the laminates were also conducted to validate the simulation obtained mechanical properties. 

Comparisons of mechanical properties have shown good agreement (over 90%) between laminates having different types 

of stacking sequences. Based on comparison of the results an efficient and systematic two-dimensional methodology is 

proposed to predict mechanical properties of three-dimensional laminates.  

 
Keywords: A. composite laminates, B. mechanical properties, C. tensile test, D. bending test. 

 

1. INTRODUCTION 

The fibre-reinforced composite laminates are 

being increasingly used in structural design as a building 

block of modern commercial aircrafts parts due to their 

high specific strength, high specific stiffness, light weight, 

and superior in-plane properties [1] and [2]. When a 

material is characterised experimentally, engineering 

constants are measured instead of the stiffness or the 

compliance. This is because engineering constants can be 

easily defined and interpreted in terms of simple state of 

stress and strain used in design development and analysis. 

Mechanical properties of the test standard laminates are 

obtained from static testing before using them as a 

structural component. But laminates are anisotropic in 

nature and have to undergo series of experiments to obtain 

their properties. Moreover, parts have certain 

characteristics of shape, rigidity, and strengthhence their 

testing could be complicated [3]. Knowledge of 

mechanical properties to evaluate their performance and 

identify load bearing parameters that influence strength 

and response of laminates (fibre, matrix and interfaces) 

require efficient techniques [4]. In the literature common 

existing experimental methods consist of: tensile, 

compression, flexural, shear modulus, Iosipescu, and v-

notch-rail prevail. Most of the methods are detailed in 

(ASTM: D7264). A large number of factors affect 

property determination of laminates such as: dispersion 

and distribution of matrix and filler, compatibility, nature, 

and material processing technology [5] and [6].Hence 

series of tests are conducted for screening the properties 

before their integration in full scale structures or putting 

them into work. At the same time, physical testing of 

laminates is very inconvenient and resource consuming. 

Interfacial structural element and morphology also affect 

quality of the evaluated mechanical properties [7] and [8]. 

Thus larger span-to-depth ratios are used to reduce the 

adverse influence of the interfaces [9] and [10]. Many 

experimental test methods use different geometries and 

holding-fixtures for laminates that produce different data. 

Influence of shear effects in the displacements is another 

important factor [11] and [12]. The laminates subjected to 

off-axis loading system present tensile-shear interactions 

in its plies. The tensile-shear interactions lead to 

distortions and local micro-structural damage and failure, 

so in order to obtain equal stiffness in all off-axis loading 

systems, a composite laminate have to be balanced angle 

plies [13]. Some of the studies complement physical 

testing by using Rule of Mixture (ROM). The method 

could be useful approximate laminates with aligned 

reinforcement (stiff along the fibres) and very weak 

(transverse to the fibres direction). Furthermore, the ROM 

method relates material properties of the laminates into 

algebraic set of equations that are easier to code and solve 

using computer [14]. Still use of the method is limited for 

cases of tensile-shear interaction if the off-axis loading 

system does not coincide with the main axes of a single 

lamina or if the laminate is not balanced [15]. The solution 

to obtain equal stiffness of laminates subjected in all 

directions within a plane is presented by various authors 

by stacking and bonding together plies with different 

fibres orientations [16] and [17]. The allocation of the 

appropriate input engineering parameters such as the 

effective elastic moduli and the associated Poisson’s 
Ratios for the materials based on the theory of linear 

elasticity and their limitations are described in [18]. 

Theoretical approach to compute the elastic constants of 

laminates based on epoxy resin reinforced alternatively 

with glass, HM carbon, HS carbon and Kevlar49 fibres are 

reported in [19] and [20]. The laminates taken into account 

the plies sequence [0/45/90/-45/0] in order to obtain equal 

mailto:adalzai3@yahoo.co.uk
http://www.astm.org/Standards/D7136.htm
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stiffness in all loading systemssubjected to off-axis 

loading systems. The elastic constants were also 

determined for laminates have to present balanced angle 

plies [21]. 

Review of the literature revealed that most of the 

existing studies are experimental where many test methods 

have limitations with testing and data logging systems. 

Majority of the analytical studies are based on ROM 

methods and limited to simplified two-dimensional 

formulation. 

In the present study, effective mechanical 

properties for three-dimensional laminates were 

approximated utilising two-dimensional laminated plate 

theory. Quantities of volume fractions by weight were 

determined with ignition loss method. The volume 

fractions were utilised in ROM relations to approximate 

basic mechanical properties. The mechanical properties 

were utilised in laminated plate formulation to include 

load-deformation influence. The formulation was then 

coded in MATLAB
TM

 to approximate the mechanical 

properties. Tensile and flexural tests were also conducted 

to compare and validate the results. Comparisons of 

experimental and simulation results were found within 

acceptable agreement. The study demonstrated that two-

dimensional laminated plate formulation can be 

systematically and effectively utilised to evaluate a range 

of engineering constants of three-dimensional laminates.  

 

2. MATERIAL AND METHODS 

 

2.1 Geometric properties of the laminates 
Composites are heterogeneous materials hence 

full characterisation of their properties is difficult as 

various processing factors can influence the properties 

such as misaligned fibres, fibre damage, non-uniform 

curing, cracks, voids and residual stresses. These factors 

are assumed to be negligible when care is taken in the 

manufacturing process. It is for this reason that the 

purpose specific aerospace specialist fabricated laminates 

(manufacturers’ supplied) were used here. For a better 

understanding of the laminate, a brief illustration of the 

coordinate systems used is shown in Figure-1. The X-Y-Z 

system is the global coordinates system. The 1-2-3 system 

is the local material coordinates system defined foreach 

ply with the 1 axis representing the fibre direction, the 2 

axis representing the direction perpendicular to the fibre 

direction and the 3 axis representing the out-of-plane 

direction.

 

 
 

Figure-1. Coordinate systems convention. 

 

A typical 8-Ply laminate is shown in Figure-2. 

 

 
                a) Fibre angle                                                                 b) Satin-weave property 

 

Figure-2. Schematic of 8-Ply symmetric laminate. 

 

The laminates are also assumed to be void- free, 

linear elastic with plane dimensions 150mm x 120mm 

with fibre horns technique of every fourth layer. Average 

thicknesses of the laminates consisting of eight-, sixteen-, 

and twenty-four plies with layup sequence are given in 

Table-1. 
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Table-1. Measured thickness of laminates. 
 

Laminates Code: Fibredux 914C-833-40 

No. of ply Lay-up code Average thickness mm 

8 [0/90/45/-45]S 2.4 

16 [0/90/45/-45]2S 4.8 

24 [0/90/45/-45]3S 7.2 

 

The material properties are given in Table-2. 

 

Table-2. Material properties of the laminates. 
 

Property parameters Units 
Fibredux 

914C-833-40 

Tensile Modulus Exx, 

Eyy in 0
0
& 90

0
 and 

Gpa 230 

in 45
0
& -45

0
 Gpa 23 

Shear Modulus G12 Gpa 88 

Poisson’s Ratio (12)  0.21 

 

 

 

 

2.2 Volume fractions obtained from ignition loss  

       method 

Densities of fibres and resin–matrix contents 

were determined experimentally by weighing them in air. 

The ignition loss method (ASTM: D2854-68) was used for 

polymeric matrix composites containing fibres that do not 

lose weight at high temperature. In this method, cured 

resin is burnt off from a small test at 585
0
C in a muffle 

furnace. After burning for three hours at 585
0
C the density 

of fibres comes down to 1.8g/cm
3
 and that of the matrix as 

2.09g/cm
3
. Three laminates were tested and fibre 

percentages (residue mass/sample mass) per unit volume 

(cm
3
) were calculated as shown in Table-3 given below. 

The density quantities shown in column 7 were then 

utilised in ‘Rule of Mixture’ to calculate volume fraction 
of carbon fibresas shown in column 8 of the same Table. 

  
Table-3. Fibre contents of laminates. 

 

Sample Heated up to 585 
0
C 

 Length Width Depth 
Sample 

mass g 

Residue 

mass g 

Density 

g/cm
3
 

Carbon fibre % 

8-Ply 22.40 2.13 5.89 0.4434 0.17 1.779 50.7 

16-Ply 13.4 5.84 11.56 1.4555 0.7396 1.816 50.8 

16-Ply 12.61 5.75 11.47 1.3924 0.7027 1.786 50.5 

 

3. METHODOLOGY TO DETERMINE 

MECHANICAL PROPERTIES 

 

Conventions used in this study:  

a) Elastic constants are expressed throughout in normal 

format rather than italic to keep uniformity with the 

other variables in equations. 

b) Micromechanics does not refer to mechanical 

behavior at the molecular level rather it looks at 

components of a composite (matrix and fibre) and 

tries to predict the behavior of the assumed 

homogeneous composite material.  

c) The behavior of the lamina is called “macro-

mechanics”. Most of the structural parts use laminates 

that consist of several plies with different orientations 

connected together through a bonding interface.  

 

3.1 Micro-mechanics methods   

A lamina (heterogeneous at the constituent level) 

forms the building block of laminated composites based 

structures. The mechanical and physical properties of the 

lamiae (reinforcement and matrix) and their interactions 

are examined on a microscopic level on various degrees of 

simplifications. Fibre and matrix densities are measured 

and converted into respective fibre volume fractions that 

form basis for approximation of engineering properties 

(see Figure-3). 

 

 

http://www.astm.org/Standards/D7136.htm
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Figure-3. Micro and macro-mechanics processfor 

property determination. 

 

The measured densities and fibre volume 

fractions of a laminate can be related to its ingredients 

using ‘Rule of Mixture’ and utilised to determine volume 
fractions by weight. The volume and weight fractions are 

given in Eq. (1) and Eq. (2) below:  

 Vc = Vf + V୫ + V୴ = ͳ = composite volume     (1) 

 

Where: Vf = ୚f୚c =fibre volume fraction; V୫ =୚m୚c = matrix volume fraction; and V୴ = ୚v୚c= void volume 

fraction 

The weight fractions are given with the relation: 

 Wc = Wf +W୫= composite weight (void weight is 

neglected)                                                              (2) 

 

Where: Wf = ୛f୛c  = fibre weight fraction and W୫ = ୛m୛c   = matrix weight fraction  

The density (ρ = ୛୚ ) is used to approximate 

volume fractions = density 

 ρc = ଵWfρf +Wmρm         (3) 

 ୛cρc = ୛fρf + ୛c−୛fρm         (4) 

 ͳ = (Wfρf )+ቀWc−Wfρm ቁWcρc        (5) 

  

ρcVc = ρfVf + ρ୫V୫(Rule of mixture for density)    (6) 

 

Eq. (1) can be rearranged as 

 Vc = ͳ − (Wfρf )+ቀWc−Wfρm ቁWcρc                     (7) 

 

Where:  

The symbols W, V, and ρ represent weight, 
volume, and density. The subscripts c, f, m, and v denote 

composite, fibre, matrix, and void, respectively.  

Fibre volume fraction from densities neglecting 

void contents zero is: 

 FVF = ሺρc−ρmሻሺρf−ρmሻ        (8) 

 

The fibre volume fraction from fibre weight 

fraction 

 FVF = [ͳ + ρFρm ቀ ଵ୊୛୊ − ͳቁ]−ଵ      (9) 

 

 Where 

ܨ𝑊ܨ  = ρF୶୊୚୊[ρm+ቀ(𝜌𝑓−𝜌𝑚).ி𝑉ிቁ]    (10) 

  

The cured ply thickness from ply weight 

(www.gurit.com): 

 CPTሺ୫୫ሻ = ୛Fଵ଴଴଴ρf୊୚୊                  (11) 

 

Where:  

FVF  = fibre volume fraction 

FWF  = fibre weight fraction 

ρc  = density of composite (g/cm
3
) 

ρm = density of cured resin/hardener matrix 

(g/cm
3
) 

ρf  = density of fibres (g/cm
3
) 

WF  = fibre area weight of each ply (g/m
2
)  

CPT (mm) = Cured ply thickness calculated from 

volume fraction. 

 

From the Eq. (9) and Eq. (10) fibre volume 

fraction by weight was determined as 54% using 

MATLAB
TM

 code Figure-4. 

 

 

 

 

 

 

 

 

 

 

 

http://www.gurit.com/
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% Computing values from mat lab 

% Effective Length = Length 120 mm – Grips 30 mm = 90 mm 

l =90;b =23; delta =0.4; 

ply=input('enter no of ply'); 

if(ply==8)% p is applied load 

p =25;   h =2.4; 

elseif (ply==16) 

p=190;    h=4.8 

else (ply==24) 

p=600;h = 7.2; 

end 

mom =p*l/2; i= 23*(h^3)/12; smax=(mom*(h/2))/i; elast=(p*l^3)/(48*delta*i; epsi=smax/elast; 

disp(mom);disp(i);disp(smax);disp(elast);disp(epsi) 

% Values computed from Matlab software for sample D 

% Average length 

l1= 12.84;l2=12.38;l=(l1+l2)/2; 

%Average width 

w1= 11.4;w2=11.54;w= (w1+w2)/2; 

%Average thickness 

t1= 6.84;t2=4.68;t=t1+t2; 

% Volume of sample D 

volume = l*w*t; 

disp('volume of the sample is'); disp(volume); 

% sample mass and density 

smass = 0.3672;denst1=smass/volume; 

disp('density of the sample is'); disp(denst1); 

% Residue mass and density 

residu = 0.1666; rmass = 0.1666; denst2 = rmass/volume; 

disp('density of the residue is ');disp(denst2) 

% Calculations for volume and weight fibre fractions 

imass = 1.3924; % initial mass fmass = 0.7027; % final mass 

ratio1 =fmass/imass; ratio1= 1/ratio1; ratio1=ratio1-1 

% values found from the Internet 

rowf = 1.8; % fibre density rowm = 2.09; % matrix density 

ratio2=rowf/rowm; denom1 = ratio1*ratio2; denom1 = denom1+1; 

fvf = 1/denom1; 

disp (fvf)= 0.5419 

% fibre weight fraction from fibre volume fraction 

rowf= 1.8;rowm=2.09;fvf = 0.5419; 

denom1 = rowm+(rowf-rowm)*fvf;fwf=rowf*fvf/denom1; 

disp(fwf) 

=0.5207 
 

Figure-4. MATLAB
TM

 code to compute volume fractions by weight. 

 

3.1.1 Mechanical properties of a lamina 

By the rule of mixtures, the modulus of a 

composite is defined as the combination of the modulus of 

the fibre and the modulus of the matrix that are related to 

the volume fractions of the constituent materials [11]: 

 Ec = EfVf + E୫V୫     (12) 

 

Where: Ec is the modulus of elasticity of the 

composite Assuming perfect bonding very small modulus 

of matrix, the equations for calculating ply moduli are 

written as: 

 Eଵ = EfVf + E୫V୫(Longitudinal Young’s modulus)  (13) 

 

Eଶ = ୉m୚f+୉f୚m୉m୉f  (Transverse Young’s modulus)  (14) 

 Gଵଶ = ୋfୋmୋm୚f+ୋf୚m (In-plane shear modulus)   (15) 

 νଵଶ = νfVf + ν୫V୫(Poisson’s ratios)      (16) 

 

3.2.1 Determination of critical volume fractions  

Fibre volume fraction using Eq. (9) and Eq. (10) 

can be re-written as:  

 Vf = ୛fρf [ቀ୛fρf + ሺͳ −Wfቁ ρ୫]−ଵ    (17) 
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ρc = ͳx [ቀ୛fρf + ሺͳ −Wfቁ ρ୫]−ଵ    (18) 

 

In terms of fibre volume fraction,𝐕𝐟, the 

composite density, 𝛒𝐜, can be written as   

 ρc = ρfVf + ρ୫ሺͳ − Vfሻ     (19) 

 
From the assumption of perfect bonding between 

fibres and matrix, we can write: 

 εf = ε୫ = εc      (20) 

 

Since both fibres and matrix are elastic, the 

representative longitudinal systems can be calculated as  

 σf = Efεf = Efεc      (21) 

 σ୫ = E୫ε୫ = E୫εc     (22) 

 

Comparing Eq. (21) and Eq. (22) and knowing 

from material properties that Ef ≫ E୫ we conclude that 

the fibre stress σf > σ୫. The total tensile load P applied 

on the composite lamina is shared by fibres and matrix so 

that 

 P = Pf + P୫                   (23) 

 

Equation (23) can be written as σcAc = σfAf +σ୫A୫ (24) 

 

or 

 σc = σf AfAc + σ୫ AmAc      (25) 

 

Since𝐕𝐟 = 𝐀f𝐀c and 𝐕𝐦 = 𝐀m𝐀c , the Eq. (25) gives  

 σc = σfVf + σ୫V୫     (26) 

 

=σfVf + σ୫ሺͳ − Vfሻ     (27) 

 

Dividing both sides of the Eq. (27) by εc and 

using Eq. (21) & (22), we can write the longitudinal 

modulus for the composites as  

 Eଵ =  EfVf + E୫ሺͳ − Vfሻ     (28) 

 

Equation (28) is called the rule of mixture that shows that 

the composite’s longitudinal modulus is intermediate 
between fibre and matrix moduli. The fraction of load 

carried by fibres in a unidirectional continuous fibre 

lamina is 

 PfP = σfVf[σfVf + σ୫ሺͳ − Vfሻ]−ଵ = EfVf[EfVf + E୫ሺͳ − Vfሻ]−ଵ    (29) 

 

In general, fibre failure strain is lower than the 

matrix failure strain. Assuming all fibres have the same 

strength, the tensile rupture of fibres will determine the 

rupture in the composite. In polymeric matrix composite 

is
𝐄f୉m > ͳͲ. Thus, even for 𝐕𝐟 = Ͳ.ʹ, fibres carry more than 

70% of composite load. Thus, using Eq. (28), the 

longitudinal tensile strength σL୲୳of a unidirectional 

continuous fibre can be estimated as    

 σL୲୳ = σf୳Vf + σ୫୳ሺͳ − Vfሻ    (30) 

 

Where: σf୳is fibre tensile strength; σ୫୳is matrix stress at 

fibre failurestrain (ε୫ = εf୳).  

For effective measurement of the reinforcement 

of the matrix (𝛔𝐋ܝܜ ൒ 𝛔𝐦ܛܝሻ, the fibre volume fraction in 

the composite must be greater than a critical value. This 

critical volume fraction is calculated by setting 𝛔𝐋ܝܜ = 𝛔𝐦ܛܝ. Thus, from Eq. (30), the value can be calculated as:  

 Vf_C୰i୲ica୪ = [σ୫୳ୱ − σ୫୳][σf୳ − σ୫୳ୱ]−ଵ   (31) 

 

The fibre weight fraction was computed as 50% 

using the computer code given in Figure-4 agrees with the 

major requirement of the acceptable range of (±5%) fibre 

contents to determine elastic constants before using them 

in the investigation.  

 

3.1.3 Formulations for coefficients of stiffness and  

         compliance matrices  
The relationships of composite material 

properties, relative volume contents, and geometric 

arrangement of the constituent materials are useful in 

mechanics of materials models. Engineering constants 

measured from rule of mixture are used to determine 

components of lamina the stiffness matrix [ܳ] and 

compliance matrix [ܳ]−ଵ from Eq. (13)-(16): 

 ଵܳଵ = ாభଵ−జభమజమభ     

  

ଵܳଶ = ߭ଵଶܧଶͳ − ߭ଵଶ߭ଶଵ = ߭ଶଵܧଵͳ − ߭ଵଶ߭ଶଵ = ଵܳଷ ܳଶଶ ଶͳܧ = − ߭ଵଶ߭ଶଵ ܳସସ ଶଷ ܳହହܩ = = ଵଷܩ = ଵଷܩ = ܳ଺଺ ܳଶଷ = జమయாమଵ−జమయజమయ = జయమாయଵ−జయయజయయ     (32) 

 

The five engineering constants in 

stiffness/compliance matrices are very useful in the 

analyses of laminates having multiple laminae in non-

principal coordinates. Simple relationships of 

transformation of stress components between coordinate 

local-global axes for the wedged-shape differential 

element can be applied to the equations of static 

equilibrium of loaded laminates. 
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3.2 Macro-mechanics methods 
 

3.2.1 Formulations for orthotropic lamina 

The ‘macro-mechanical’ stress-strain relations of 

the lamina can be expressed in terms of an equivalent 

homogeneous material. However, the properties of the 

composites are usually anisotropic. In the angle-ply 

laminates the principal directions of the orthotropy of each 

individual ply do not coincide with the generalised 

coordinate system. Components of the lamina stiffness 

matrix need to be transformed into a global form with 

different angles. A unidirectional composite has three 

mutually orthogonal planes of material property symmetry 

(i.e., the 12, 23, and 13 planes) and is the orthotropic 

material. The 123 coordinates are referred as the principal 

material coordinates since they are associated with 

reinforcement directions. The lamina is in a two-

dimensional state of stress (plane stress). The stress-strain 

relationships can be simplified by letting out-of-plane 

shear stresses zero (𝜎௭௭ = ߬௫௭ = ߬௬௭ = Ͳሻ of a thin elastic 

lamina.The elastic constants influence from in-plane 

deformations have strain-stress relationships as: 

௫௫ߝ  = ଵா (𝜎௫௫ − ߭𝜎௬௬)  ߝ௬௬ = ͳܧ (−߭𝜎௫௫ + 𝜎௬௬) ߛ௫௬ = ଵீ (߬௫௬)      (33) 

 

Stresses in the xy-coordinate system can be 

transformed for an orthotropic lamina using the local-

global coordinate transformation matrix:  

 { 𝜎ଵ𝜎ଶ߬ଵଶ} = [𝑇] { 𝜎௫𝜎௬߬௫௬}      (34) 

 

Where:[𝑇] = [ ݉ଶ ݊ଶ ʹ݉݊݊ଶ ݉ଶ −ʹ݉݊−݉݊ ݉݊ ݉ଶ − ݊ଶ]; ݉ =cos 𝜃 𝑎݊݀݊ = sin 𝜃 

 

The elastic constants (ܧ௫௫ܧ௬௬߭௫௬ and ߭௬௫)in 

global coordinates may be determined to relate properties 

of a lamina in which continuous fibres are aligned at angle 𝜃 as shown in Figure-5.  

 ଵ୉౮౮ = c୭ୱరθ୉భభ + ୱi୬రθ୉మమ + ଵସ [ ଵୋభమ − ʹ νభమ୉భభ] sinଶʹɅ   (35)

  

 ଵ୉౯౯ = ୱi୬రθ୉భభ + c୭ୱరθ୉మమ + ଵସ [ ଵୋభమ − ʹ νభమ୉భభ] sinଶʹɅ   (36) 

 ଵୋ౮౯ = ଵ୉భభ + ଶνభమ୉భభ + ଵ୉మమ − ቀ ଵ୉భభ + ଶνభమ୉భభ + ଵ୉మమ − ଵୋభమቁ cosଶʹɅ  (37) 

 ν୶୷ = E୶୶ [νభమ୉భభ − ଵସ ቀ ଵ୉భభ + ଶνభమ୉భభ + ଵ୉మమ − ଵୋభమቁ sinଶʹɅ]  (38) 

 

ν୷୶ = ୉౯౯୉౮౮ ν୶୷      (39)  

 

 
 

Figure-5. Unidirectional lamina reinforced with 

rotated fibres. 

  

There is no coupling between the shear stresses 

and normal stress for an orthotropic. The strain-stress 

relations for a lamina in a plane stress form become: 

௫௫ߝ  = 𝜎௫௫ܧ௫௫ − ߭௬௫ 𝜎௬௬ܧ௬௬ −݉௫߬௫௬ ߝ௬௬ = −߭௫௬ 𝜎௫௫ܧ௫௫ + 𝜎௬௬ܧ௬௬ −݉௬߬௫௬ ௫௬ߛ  = −݉௫𝜎௫௫ −݉௬𝜎௬௬ + ఛೣ೤ீೣ೤    (40) 

 

Coefficients of mutual influence (݉௫ and ݉௬) for 

an angle-lamina in global coordinates can be determined 

from the equations:  

 ݉௫ = ሺsinʹ 𝜃ሻ [𝜈భమாభభ + ଵாమమ − ଵଶீభమ − ሺܿݏ݋ଶ𝜃ሻ ቀ ଵாభభ + ଶ𝜈భమாభభ +ଵாమమ − ଵீభమቁ]                                              (41) 

 ݉௬ = ሺsinʹ 𝜃ሻ [𝜈భమாభభ + ଵாమమ − ଵଶீభమ − ሺ݊݅ݏଶ𝜃ሻ ቀ ଵாభభ + ଶ𝜈భమாభభ +ଵாమమ − ଵீభమቁ]                                              (42)  

 

The symmetry presented by the unidirectional 

lamina makes it so-called orthotropic material. For an 

especially orthotropic lamina (𝜃 = Ͳ଴andͻͲ଴), the stress-

strain relations yield:  

௫௫ߝ  = ଵଵߝ = 𝜎௫௫ܧଵଵ − ߭ଶଵ 𝜎௬௬ܧଶଶ ௬௬ߝ  = ଶଶߝ = −߭ଵଶ 𝜎௫௫ܧଵଵ + 𝜎௬௬ܧଶଶ ௫௬ߛ  = ௬௫ߛ = ଵଶߛ = ଶଵߛ ఛೣ೤ீೣ೤     (43)  

 

Using Eq. (32), the relations may be written in 

local coordinates as: 

 { 𝜎ଵ𝜎ଶ߬ଵଶ} = [ ଵܳଵ ଵܳଶ Ͳଵܳଶ ܳଶଶ ͲͲ Ͳ ܳ଺଺] {
ଶ𝛾భమଶߝଵߝ }    (44) 
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Similarly, for the general orthotropic lamina 

(𝜃 ≠ Ͳ଴andͻͲ଴), the complete set of transformation 

equations for the stresses in the xy-coordinate system can 

be developed using the local-global coordinate 

transformation matrix. The generally orthotropic laminate 

creates fully populated, the reduced transformed stiffness 

matrix:  

 { 𝜎௫𝜎௬߬௫௬} = [ܳ̅ଵଵ ܳ̅ଵଶ ܳ̅ଵ଺ܳ̅ଵଶ ܳ̅ଶଶ ܳ̅ଶ଺ܳ̅ଵ଺ ܳ̅ଶ଺ ܳ̅଺଺] {
 ௫௬}    (45)ߛ௬ߝ௫ߝ

 

Where matrices: [ܳ̅] =  [𝑇]−ଵ[ܳ][ܴ][𝑇][ܴ]−ଵ and Reuter 

transforms  [ܴ] = [ͳ Ͳ ͲͲ ͳ ͲͲ Ͳ ʹ]for strains can be performed in the 

same manner using tensor strain as engineering shear 

strain. It is not a tensor quantity and is twice the tensor 

shear strain ( ߛଵଶ =  .ଵଶሻߝʹ
The models given in Eq. (45) are complicated 

hence semi-empirical models have been developed for the 

design purposes. They can be used over a wide range of 

elastic properties and fibre volume fractions. The 

equations are semi-empirical in nature since involved 

parameters in the curve fitting carry physical meaning. 

The sharp drop in modulus as the angle changes slightly 

from 0
0
is its limitation since over much of the range of 

lamina orientation the modulus is very low which requires 

transverse reinforcement in most composites. The shear-

coupling effects are the generation of shear strains by off-

axis normal stresses and the generation of normal strains 

by off-axes shear stresses. The degree of shear coupling is 

defined by dimensionless shear-coupling ratios or mutual 

influence coefficients or shear-coupling coefficients. The 

mutual influence coefficients can be found from:  

 Ʉ୶,୶୷ = γ౮౯ε౮౮      (46) 

 

Similarly, when the state of stress is defined as σ୷୷ ≠ Ͳ, σ୶୶ = τ୶୷ = Ͳ, the ratio Ʉ୷,୶୷ = γ౮౯ε౯౯      (47)  

 

Pure shear stresses τ୶୷ ≠ Ͳ, σ୶୶ = σ୷୷ =Ͳ, the ratio Ʉ୶୷,୷ characterises the normal strain response 

along the y direction due to a shear stress in the x-y plane. 

The ratio can be found as:  

 Ʉ୶୷,୷ = τ౮౯ୋ̅౮౯      (48) 

 

Superposition of loading, stress-strain relations in 

terms of elastic constants are:  

 

𝑠ߛ௬௬ߝ௫௫ߝ} } = [  
  ଵாೣೣ − 𝜈೤ೣா೤೤ 𝜂𝑠ೣீೣ೤− 𝜈೤ೣாೣೣ ଵா೤೤ 𝜂𝑠೤ீೣ೤𝜂𝑠ೣீೣ೤ 𝜂𝑠೤ீೣ೤ ଵீೣ೤]  

  {𝜎௫௫𝜎௬௬߬𝑠 }    (49)  

The modulus of elasticity and tensile strength of a 

laminate under a uniaxial load applied in the x-direction at 

an angle θ to the fibres 1-direction may be determined 

from the transformed reduced stiffness matrix. The 

moduli: E୶୶, E୷୷, G୶୷, andν୶୷ in global coordinates can be 

written as: 

 E୶୶ = ͳ [୫మ୉భభ ሺmଶ − nଶνଵଶሻ + ୬మ୉మమ ሺnଶ −mଶνଵଶሻ + ୫మ୬మୋభమ ]⁄   (50) 

 E୷୷ = ͳ [ ୬మ୉భభ ሺnଶ −mଶνଵଶሻ + ୫మ୉మమ ሺmଶ − nଶνଶଵሻ + ୫మ୬మୋభమ ]⁄   (51)  

 G୶୷ = ͳ [ସ୫మ୬మ୉భభ ሺͳ + νଵଶሻ + ସ୫మ୬మ୉మమ ሺͳ + νଶଵሻ + ሺ୫మ−୬మሻమୋభమ ]⁄   (52)  

 ν୶୷ = E୶୶ [୫మ୉భభ ሺmଶνଵଶ − nଶሻ + ୬మ୉మమ ሺnଶνଵଶ −mଶሻ + ୫మ୬మୋభమ ]⁄   (53)  

 ν୷୶ = E୷୷ν୶୷ E୶୶⁄       (54)  

 Ʉ୶ୱ E୶୶⁄ = Ʉୱ୶ G୶୷⁄ = [ଶ୫య୬୉భభ ሺͳ + νଵଶሻ − ଶ୫୬య୉మమ ሺͳ + νଶଵሻ −୫୬(୫మ−୬మ)ୋభమ ]                                              (55)  

 Ʉ୷ୱ E୷୷⁄ = Ʉୱ୷ G୶୷⁄ = [ଶ୫୬య୉భభ ሺͳ + νଵଶሻ − ଶ୬୫య୉మమ ሺͳ + νଶଵሻ +
୫୬(୫మ−୬మ)ୋభమ ]                                              (56)  

 

The Eq. (55) and (56) illustrate an angle-ply 

laminate in which the various plies are orientated at ± θ to 
the plate element axes, in this case the x-axis. The 

laminates which have an equal member of + θ and -θ plies 
are balanced about their mid-plane are orthotropic in 

nature. In the case stresses and strains related by the 

transformed reduced stiffness matrix: 

 

{  
  σ୶σ୷σ୸σ୷୸σ୶୸σ୶୷}  

  =
[  
   
 Q̅ଵଵ Q̅ଵଶ Q̅ଵଷ Ͳ Ͳ Q̅ଵ଺Q̅ଵଶ Q̅ଶଶ Q̅ଶଷ Ͳ Ͳ Q̅ଶ଺Q̅ଵଷ Q̅ଶଷ Q̅ଷଷ Ͳ Ͳ Q̅ଷ଺Ͳ Ͳ Ͳ Q̅ସସ Ͳ ͲͲ Ͳ Ͳ Ͳ Q̅ହହ ͲQ̅ଵ଺ Q̅ଶ଺ Q̅ଷ଺ Ͳ Ͳ Q̅଺଺]  

   
 
{  
  ε୶ε୷ε୸γ୷୸γ୶୸γ୶୷}  

  
(57) 

 

The thirteen constants ܳ̅௜௝are related to nine ௜ܳ௝ through the following transformation the components 

of the transformed stiffness matrix defined as follows:  
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 ܳ̅ଵଵ =  ܳଵଵܿݏ݋ସ𝜃 + ܳଶଶ݊݅ݏସ𝜃 + ʹሺܳଵଶ + ʹܳ଺଺ሻ݊݅ݏଶ𝜃ܿݏ݋ଶ𝜃 Q̅ଵଶ =  ሺQଵଵ + Qଶଶ − ͶQ଺଺ሻsinଶɅcosଶɅ + QଵଶሺcosସɅ + sinସɅሻ ܳ̅ଵଷ = ଵܳଷܿݏ݋ଶ𝜃 + ܳଶଷ݊݅ݏଶ𝜃 Q̅ଶଶ = QଵଵcosସɅ + QଶଶsinସɅ + ʹሺQଵଶ + ʹQ଺଺ሻsinଶɅcosଶɅ ܳ̅ଶଷ = ଵܳଷ݊݅ݏଶ𝜃 + ܳଶଷܿݏ݋ଶ𝜃 ܳ̅ଷଷ = ܳଷଷ Q̅ଵ଺ =  ሺQଵଵ − Qଵଶ − ʹQ଺଺ሻ sin Ʌ cosଷɅ− ሺQଶଶ − Qଵଶ − ʹQ଺଺ሻ cos Ʌ sinଷɅ ܳ̅ଶ଺ = ሺܳଵଵ − ܳଵଶ − ʹܳ଺଺ሻ cos 𝜃 −ଷ𝜃݊݅ݏ ሺܳଶଶ −ܳଵଶ − ʹܳ଺଺ሻ sin 𝜃 ଷ𝜃  ܳ̅ଷ଺ݏ݋ܿ = ሺ ଵܳଷ − ܳଶଷሻ sin 𝜃 cos 𝜃 ܳ̅ସସ = ܳସସܿݏ݋ଶ𝜃 + ܳହହ݊݅ݏଶ𝜃  ܳ̅ସହ = ሺܳସହ − ܳସସሻ sin 𝜃 cos 𝜃 ܳ̅ହହ = ܳହହܿݏ݋ଶ𝜃 + ܳସସ݊݅ݏଶ𝜃 ܳ̅଺଺ = ሺ ଵܳଵ + ܳଶଶ − ʹ ଵܳଶ − ʹܳ଺଺ሻ݊݅ݏଶ𝜃ܿݏ݋ଶ𝜃 +ܳ଺଺ሺܿݏ݋ସ𝜃 +   ସ𝜃ሻ                                             (58)݊݅ݏ

 

Although the transformed - matrix now has the 

form as that of anisotropic material with nine nonzero 

coefficients, only four of the coefficients are independent 

because they can all be expressed in terms of the four 

independent stiffness of the specially orthotropic material. 

The lamina engineering constants can also be transformed 

from principal material axes to the off-axes coordinates. 

The effects of lamina orientation on stiffness are difficult 

to assess from inspection stiffness transformation 

equations. In addition, the eventual incorporation of 

lamina stiffness over the laminate thickness, and 

integration of such complicated equations is also difficult. 

In view of the difficulties, a more convenient form of 

lamina stiffness transformation equations has been 

proposed in [12]. By using trigonometric identities to 

convert from power functions to multiple angle functions 

and then using additional mathematical manipulations. 

The invariants are simply linear combinations of the Qij, 

are invariant to rotations in the plane of the lamina. Thus, 

the effects of lamina orientation on stiffness are easier to 

interpret. Invariant formulations of lamina compliance 

transformations are also orthogonal. From Eq. (29) it 

appears that there are six constants that govern the stress-

strain behaviour of a lamina. However, the equations are 

linear combinations of the four basic elastic constants, and 

therefore are not independent. Elements in stiffness 

matrices can be expresses in terms of five invariant 

properties of the lamina using trigonometric identities in 

[21]. 

The invariants to rotations are simply linear 

combinations in plane of the lamina. There are four 

independent invariants, just as there are four independent 

elastic constants. In all the stiffness expressions (except 

coupling) consist of one constant term which varies with 

lamina orientations. Thus, the effects of lamina orientation 

on stiffness are easier to interpret very useful in computing 

elements of these matrices. The element of fibre-

reinforced composite material with its fibre oriented at 

some arbitrary angle exhibits a shear strain when subjected 

to a normal stress, and it also exhibits an extensional strain 

when subjected to a shear stress. The state of stress is 

defined as whereσ୶୶ ≠ Ͳ, σ୷୷ = τ୶୷ = Ͳ. 
 

3.2.2 Formulation for effective constants of laminates 

The quantities of the elastic constants of every 

plies in material coordinates were utilised to approximate 

effective elastic constants for laminated structural element 

of thickness H made of N plies in global coordinates:  

ଵܧ̅  = ଵு𝑁∑ ଵሺ𝜃௜ሻ𝑁௜=଴ܧ ଶܧ̅  (59)      = ଵு𝑁∑ ଶሺ𝜃௜ሻ𝑁௜=଴ܧ      (60) 

ଵଶܩ̅  = ଵு𝑁∑ ଵଶሺ𝜃௜ሻ𝑁௜=଴ܩ      (61) 

 𝜈̅ଵଶ = ଵு𝑁∑ 𝜈ଵଶሺ𝜃௜ሻ𝑁௜=଴      (62)  

 𝜈̅ଶଵ = ଵு𝑁∑ 𝜈ଶଵሺ𝜃௜ሻ𝑁௜=଴      (63)  

 

The effective elastic constants in the x-axis 

direction Ex, in the y-axis direction Ey, the effective 

Poisson’s ratios νxy and νyx, and the effective shear 

modulus in the x-y plane Gxy are computed. As symmetric 

balanced laminates were considered therefore the 

following three average laminate stresses were defined [1]: 

 σ୶ = ଵு ∫ σ୶ୌ ଶ⁄−ୌ ଶ⁄ ݀𝑧     (64) 

 σ୷ = ଵு ∫ σ୷ୌ ଶ⁄−ୌ ଶ⁄ ݀𝑧     (65) 

 τ୶୷ = ଵு ∫ τ୶୷ୌ ଶ⁄−ୌ ଶ⁄ ݀𝑧     (66) 

 

Where: H is the thickness of the laminate. 

Integration through-thickness in Eq. (64)-(66) with was 

approximated as a summation to obtain the average 

stresses and related to the force resultants 

(N୶, N୷,andN୶୷ሻ as: 

 σ୶ = ଵுN୶                   (67) 

 σ୷ = ଵுN୷      (68) 

 τ୶୷ = ଵுN୶୷      (69) 

 

To relate strains to the stresses: 

 { ௬଴߬௫௬଴ߝ௫଴ߝ } = [
𝑎ଵଵܪ 𝑎ଵଶܪ Ͳ𝑎ଵଶܪ 𝑎ଶଶܪ ͲͲ Ͳ 𝑎଺଺ܪ]{ 𝜎௫𝜎௬߬௫̅௬}   (70) 

 

The effective elastic constants can be obtained for 

the laminate using 3 x 3 balanced matrix at RHS in Eq. 

(70):   
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௫ܧ̅  = ଵ𝑎భభு      (71) 

௬ܧ̅  = ଵ𝑎మమு      (72) 

௫௬ܩ̅  = ଵ𝑎66ு      (73) 

 𝜈̅௫௬ = − 𝑎భమ𝑎భభ      (74) 

 𝜈̅௬௫ = − 𝑎భమ𝑎మమ      (75) 

 

The effective Poisson’s ratios 𝜈̅௫௬and 𝜈̅௬௫ are 

inter-dependent and related by the following reciprocal 

relations: 

 𝜈̅ೣ೤ா̅ೣ = 𝜈̅೤ೣா̅೤       (76) 

 

Where  

 

𝑎ଵଵ = ஺మమ஺భభ஺మమ−஺భమమ       (77) 

 𝑎ଶଶ = ஺భభ஺భభ஺మమ−஺భమమ       (78) 

 𝑎ଵଶ = ஺భమ஺భభ஺మమ−஺భమమ       (79) 

 𝑎଺଺ = ଵ஺66      (80) 

 

Where: 

 

௜௝ܣ  = ∑ [ܳ̅௜௝]௞ሺ𝑧௞ − 𝑧௞−ଵሻ,    ݅ = ͳ, ʹ, 6; ݆ = ͳ, ʹ, 6.௡௞=ଵ  

 

4. NUMERICAL RESULTS AND DISCUSSION 
The three-dimensional formulations (Equation 

(45)-(51), Equation (56)-(60), Equation (59)-(63), and 

Equation (71)-(75) were implemented in MATLAB
TM

V 

7.10a code to approximate the elastic constants (see 

Figure-6). Input properties shown in Table-2 were 

assigned to the respective parameters. 

 

clear 

clc 

%Enter input data 

e11=input(‘Enter Ex’, ‘e11’); e22=input(‘Enter Ex’, ‘e22’); 
nu12=input(‘Poisson’s ratio’, ‘nu12’); g12=input(‘Shear-modulus’, ‘g12’);   
laminate=input(‘Enter no of plies in laminate’, ‘d’); 
diary Elastic_moduli_ply8.out 

Q = ReducedStiffness(e11, e22, nu12, g12) 

Qbar1=Qbar(Q,0);Qbar2=Qbar(Q,90); Qbar3=Qbar(Q,45); Qbar4=Qbar(Q,-45); 

Qbar5=Qbar(Q,-45); Qbar6=Qbar(Q,45);Qbar7=Qbar(Q,90);Qbar8=Qbar(Q,0);  

z1=-1.2;z2=-0.9;z3=-0.6;z4=-0.3;z5=0.0;z6=0.3;z7=0.6;z8=0.9;z9=1.2; 

A=zeros(3,3); 

A=Amatrix(A,Qbar1,z1,z2);A=Amatrix(A,Qbar2,z2,z3);A=Amatrix(A,Qbar3,z3,z4); 

A=Amatrix(A,Qbar4,z4,z5);A=Amatrix(A,Qbar5,z5,z6);A=Amatrix(A,Qbar6,z6,z7); 

A=Amatrix(A,Qbar7,z7,z8);A=Amatrix(A,Qbar8,z8,z9); 

a = inv(A);y = 1/(H*a(2,2));H=2.4; 

Exx= Ebarx(A,H) 

Eyy=Ebary(A,H) 

Nu12=NUbarxy(A,H) 

Gxy=Gbarxy(A,H)  

diary off 

function y = ReducedStiffness(E1,E2,NU12,G12) 

%This function returns the reduced stiffness matrix size 3 x 3. 

NU21 = NU12*E2/E1; 

y = [E1/(1-NU12*NU21) NU12*E2/(1-NU12*NU21) 0 ; 

    NU12*E2/(1-NU12*NU21) E2/(1-NU12*NU21) 0 ; 0 0 G12]; 

function y = Qbar(Q,theta) 

%This function returns the transformed reducedstiffness matrix size 3 x 3. 

m = cos(theta*pi/180);n = sin(theta*pi/180); 

T = [m*m n*n 2*m*n ; n*n m*m -2*m*n ; -m*n m*n m*m-n*n]; 

Tinv = [m*m n*n -2*m*n ; n*n m*m 2*m*n ; m*n -m*n m*m-n*n]; 

y = Tinv*Q*T; 

function y = Amatrix(A,Qbar,z1,z2) 

%This function returns the matrix after the layer k with stiffness is %assembled. 

     for i = 1 : 3 

     for j = 1 : 3 
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A(i,j) = A(i,j) + Qbar(i,j)*(z2-z1); 

end 

end 

y = A; 

function y = Ebarx(A,H) 

%This function returns the average laminate modulusin the x-direction.  

a = inv(A);y = 1/(H*a(1,1)); 

function y = NUbarxy(A,H) 

%This function returns the average laminate Poisson’s ratio NUxy.  
a = inv(A);y = -a(1,2)/a(1,1); 

function y = Ebary(A,H) 

%This function returns the average laminate modulus 

a = inv(A); y = 1/(H*a(2,2)); 

function y = Gbarxy(A,H) 

%This function returns the average laminate shear  modulus. 

a = inv(A);y = 1/(H*a(3,3)); 
 

Figure-6. MATLAB
TM

 code to compute engineering constants. 

 

The data obtained from the simulations were 

plotted against fibres rotated plies in the laminates. The 

plots highlight the relation between elastic constants at 

various angles. The code for plots of effective values of 

four elastic constants as a function of orientation angle in 

the range: Ͳ ൑ 𝜃 ൑ 𝜋 ʹ⁄   at the difference of 10 degrees is 

shown Figure-7.  

 

clear 

clc 

%Enter input data 

e11=input(‘Enter Ex’, ‘e11’); e22=input(‘Enter Ex’, ‘e22’); 
nu12=input(‘Poisson’s ratio’, ‘nu12’); g12=input(‘Shear-modulus’, ‘g12’); 
laminate=input(‘Enter no of plies in laminate’, ‘d’); 
diary Elastic_Constants.out 

fprintf('====== Angle and Elastic constants ======\n'); 

fprintf('      -----------------------\n\n') 

fprintf('Angle    \tExx         v12         Eyy       Gxy \n'); 

fprintf('=====   \t=======  \t=======  \t=======      ========    \n'); 

i=0; 

for ii = 0:10:90 

i=i+1; 

ex1(i) = Ex(e11,e22, nu12, g12, ii); 

nuxy(i) = NUxy(e11,e22, nu12, g12, ii); 

ey2(i) = Ey(e11,e22, nu12, g12, ii); 

nuyx(i) = NUyx(e11,e22, nu12, g12, ii); 

gxy(i) = Gxy(e11,e22, nu12, g12, ii); 

 

fprintf('%2d \t\t%5.2f\t\t%5.2f\t\t%5.2f\t\t%5.2f\n',ii, ex1(i),nuxy(i),ey2(i), gxy(i)) 

disp('Elastic constant') 

disp(ex1(i)) 

plot(ii,ex1(i)); 

xlabel('Angle, \theta (degree)'); 

ylabel('E_{xx}(GPa)'); 

title('Elasitic modulus E_{xx} v Rotation','FontSize',14) 

plot(ii,nuxy(i)); 

xlabel('Angle, \theta (degree)'); 

ylabel('\nu_{xy}'); 

title('Elasitic modulus \nu_{xy} v Rotation','FontSize',14); 

plot(ii,ey2(i)); 

xlabel('Angle, \theta (degree)'); 

ylabel('E_{yy}(GPa)'); 

title('Elasitic modulus E_{yy} v Rotation','FontSize',14'); 

plot(ii,gxy(i)); 
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xlabel('Angle, \theta (degree)'); 

ylabel('G_{xy}(GPa)'); 

title('Shear modulus G_{xy} v Rotation','FontSize',14); 

diary off 
 

Figure-7. MATLAB
TM

 code to plot engineering constants v rotations. 

 

Plots of the effective engineering constants of 

an8-ply laminate as a function of angle orientations in the 

range: Ͳ ൑ 𝜃 ൑ 𝜋 ʹ⁄   at the difference of 10 degrees are 

selected for discussion. The plot in Figure-8 illustrates 

quantities of Young’s modulus in parallel to fibre (x-axis) 

directions. Variation of the curve shows maximum value 

around 230GPa as expected when fibres were aligned at 

zero-directions. It shows severe drop as angle increases 

from 0
0
 and this trend continues until angle reaches 90

0
 

where value of the modulus drops to around 23GPa. 

Changes in quantities of Young’s moduli with respect to 
rotations indicate that simulation obtain values are 

realistic. 

 

 
 

Figure-8. Yong’s moduli in fibre direction 

v ply orientation. 

 

Figure-9 illustrates quantities of Poisson’s ratios. 
Variation of the curve shows gradual drop of the values 

from 0.2 maximum when fibres are aligned at 0
0
 rotations 

and minimum around 0.02 fibres were aligned at 90
0
. The 

curve shows decreasing trend as angle increases from 0
0
 

and this trend continues until angle reaches 90
0
. Changes 

in quantities of Young’s moduli with respect to rotations 
support the arguments that simulations obtain values are 

realistic. 

 

 
 

Figure-9. Poisson’s ratios v ply orientation. 

 

Figure-10 illustrates quantities of Young’s 
modulus in perpendicular to fibre (y-axis) directions. 

Variation of the curve shows minimum value around 

23GPa as expected when fibres were aligned at 90
0
. It 

shows increasing trend as angle increases from 0
0
 and this 

trend continues until angle reaches 90
0
 where value of the 

modulus reaches to around 230GPa. Changes in quantities 

of Poisson’s ratio with respect to rotations confirm that 
simulation obtain values are realistic. 

 

 
 

Figure-10. Young’s moduli in perpendicular to fibres v 

ply orientation. 

 

Figure-11 illustrates quantities of shear moduli. 

Variation of the curve follows parabolic path. Maximum 

values of 88GPa at fibre directions 0
0
 can be seen which 

gradually to minimum around 20GPa at fibre direction 45
0
 

and then reverse trend begins up to 90
0
 where it again 

reaches to 88GPa. Such types of variations were expected 

and that confirmed that the predicted quantities are 

realistic and genuine. Changes in quantities of shear-

moduli with respect to rotations also confirm that 

simulation obtain values are realistic. 
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Figure-11. Shear moduliv ply orientation. 

Since elastic constants are interdependent hence 

elastic constants were computed for all the laminates. For 

the especially orthotropic and transversally isotropic the 

constants are G12, G13; E2 = E3; 21 =31, and23 = 32.In 

addition, the relationship among the isotropic engineering 

constants Eq. (61) is valid associated with the 23 plane, so 

that Gଶଷ = ாమଶሺଵ+𝜈యమሻ. Effective values for Young’s moduli 
for all the laminates are shown in Table-4.  

 

 

Table-4. Simulation obtained Young’s moduli. 
 

Laminate Lay-up 
Effective Young’s 

moduli 

No of ply Code GPa 

8-Ply [0/90/45/-45]S 56 

16-Ply [0/90/45/-45]2S 48.6 

24-Ply [0/90/45/-45]3S 45.8 

 

5. VALIDATION OF SIMULATION OBTAINED 

ENGINEERING CONSTANTS 

 

5.1 Rule of mixture   

The elastic properties were calculated utilising 

the respective volume fractions in Eqns. (25)-(28) for 8-, 

16-, and 24-Ply laminates. Identical averaged Young’s 
moduli E1 and transverse E2were obtained due to quasi-

isotropic configuration of the laminates with fibre volume 

fraction for all the laminates with three different 

thicknesses. Quantities of the Poisson’s ratios and in-plane 

shear-moduli also computed and good agreement of the 

intra-simulated values for every laminate was found. Since 

engineering constants are inter-dependent Young’s moduli 
suffice the requirements. Hence Young’s moduli 
calculated from the volume fraction equations are given in 

Table-5.  

 

Table-5. Young’s moduli computed using 

‘Rule of Mixture’. 
 

Laminate 
Young’s 
modulus 

Lay-up 

No of ply GPa Code 

8-Ply 58.5 [0/90/45/-45]S 

16-Ply 58.6 [0/90/45/-45]2S 

24-Ply 58.8 [0/90/45/-45]3S 

 

5.2 Hart smith rule 
The Hart Smith Rule used to calculate the elastic 

modulus of the laminates. The determined elastic constant 

for the quasi-isotropic configuration is calculated and 

shown in Table-6. 

  

Table-6. Young’s modulus determined from Hart Smith rule. 
 

Supplied elastic modulus 230 GPa comes down to GPa for 54% contents. 

Sequence: [45/0/-45/90] Hart Smith Rule 

Angle (degree) Multiple Modulus 

45 .1 12. 

0 1 124. 

-45 .1 12. 

90 .1 12. 

Modulus of the 4-ply quasi-isotropic laminate (12.+124+12+12)/4 

Equivalent to the unidirectional GPa 

 

5.3 Tensile test experiment 
Three laminates from each of the coupon types 

were prepared in I-shapes in line with the testing standard 

for tensile tests (ASTM: D3039). Average span and width 

of each laminate was 120 mm and 20 mm, respectively. 

Thicknesses (t = 2.4, 4.8, and 7.2 mm) from each of the 

lay-up of 8-, 16-, and 24-Ply varied due to number of plies 

within the stacks. Load transfer tabs were adhesively 

bonded to the ends of the laminates in order that the load 

may be transferred from the grips of the tensile testing 

machine to the laminate without damaging the laminate. 

Laminates were gripped at both ends. Approximate 

dimensions and relevant spans to depth ratios are shown in 

Figure-12.

 

http://www.astm.org/Standards/D7136.htm
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Figure-12. Schematic of beam laminates with cross-section. 

 

The effective beam length (L) used for all 

calculations was length (120 mm) - both the grips (30 mm) 

= 90 mm. Average geometrical dimensions can be seen in 

Table-7 below. 

 

Table-7. Beams lay-up configuration and geometrical dimensions. 
 

Configuration 
Grip: d Grip: c Thickness: t Effective length: L 

Mm 

[45/90/0/-45]s 3 15 2.4 90 

[45/90/0/-45]2s 3 15 4.8 90 

[45/90/0/-45]3s 3 15 7.2 90 

 

Photographs of the laminates selected for the tests 

are shown in Figure-13(a). The laminates were inserted 

within in the fixture holders of the machine by metal grips 

as shown in Figure-13(b) and loaded axially at a rate of 

1mm/min. The applied tensile load produced tensile 

stresses through the holding grips that results elongation of 

the laminate in loading direction.  

 

 
 

Figure-13. Photographs of: a) laminate and b) 

INSTRONTM 5585H machine. 

The applied tensile loading and corresponding 

voltage output values were recorded by the software 

installed on the data acquisition system at specified load 

increments so that the curve is plotted for each and every 

test data. Measurements for the strains were correlated 

from the recorded voltage ranges and scaled by the gain 

from the formula - given ߝ = ସ∆𝑒஻𝑣𝐾. Where:∆݁ is out-put 

voltage (needs to be divided by gain of 341), ܤ𝑣 is bridge 

excitation voltage (its value is: 5v), K is the gain-factor 

(equal to: 2.13).  

Behaviour of the laminate was observed while 

load was being applied through variation in out-put 

voltage quantities during the tests of every laminate. Most 

of the results have shown consistency and linearity for the 

longitudinal strain response through system built-in 

display screen. A slight nonlinearity in the strain response 

was observed due to the influence of the matrix properties. 

Measurements of the strains and loads were used to 

determine the elastic modulus. Stresses were calculated 

from the applied loads on the respective areas. The 

recorded strains and calculated stresses were used to 

determine the Young’s modulus as shown in Table-8. 

Mean moduli were calculated for the every laminate. 

Independent tests for every laminate were carried out for 

each of the laminates.  
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Table-8. Tensile test results. 
 

Laminate 
Voltage 
(range) 

Micro-

strain 

Cross-sectional 

area mm
2
 

Load KN 
Stress 

GPa 

Elastic 

modulus 

GPa Test 
Thickness 

mm 

T-1 
2.4 

3.14 3458 48 7.6 158.3 45.8 

T-2 3.1 3414 48 7.4 154.6 45.2 

T-3 
4.8 

2.6 2863 96 12.50 130.2 46.5 

T-4 2.7 2973 96 13. 135.4 46.8 

T-5 
7.2 

2.5 2753 144 16. 111.1 49.4 

T-6 1.9 20921 144 15. 90.28 53. 

 

 

 

5.4 Flexural test experiment 
There is a wide variety of test methods available 

for flexure testing described (ASTM: D7264) addressing 

the particular needs of heterogeneous non-isotropic 

materials. In general, flexure test type tests are applicable 

to quality control and material selection where 

comparative rather than absolute values are required. 

Flexural properties of the laminates were determined using 

the standard three point bending test method. For flexure 

test, there is no involvement of end-tabs or changes in the 

laminate shape. Tests can be conducted on simply 

supported beams of constant cross-sectional area. A 

schematic of simply supported beam at close to ends flat 

rectangular laminate is shown in Figure-14(a). The 

laminate is centrally loaded representing three-point 

bending test. Dimensions of the three laminates with 

cross-sectional areas having constant width but different 

thicknesses are shown in Figure-14(b).  

 

 
 

Figure-14. Schematics: a) laminate bending and b) cross-sectional area. 

 

Approximate dimensions and relevant simple 

support of span to depth ratios provides base to 

formulation the calculation of Young’s modulus from the 
load-displacement relation given in Table-9. 

 

Table-9. Formulation used to calculate young’s modulus. 
 

Bending 

moment 

Moment of 

area 
Max bending stress Load Young’s modulus 

ܯ = ܲ ܫ Ͷܮ = 𝑤ݐଷͳʹ  𝜎௠𝑎௫ = ܯ ቀʹݐቁܫ = ͵ʹ ܲ ଶݐ𝑤ܮܲ = ͵ʹ 𝜎𝑤ݐଶܮ ܧ  =  ߜܫଷͶͺܮܲ

 

The machine shown in Figure-13 is used with 

changed testing chamber. Two laminates from the three 

types of laminates were selected and atypical one is shown 

in Figure-15(a) with test chamber in (b). The laminates 

were placed in the fixture and gradually loaded. The 

laminates were held in place in the machine in flexural test 

chamber and gradually loaded. During flexural tests all of 

the laminates experienced deflection under increased 

loading. The deflection typically occurred at the middle of 

the laminates, which was in contact with the machine 

head, therefore considered to be a loaded edge. The 

loading produces the maximum bending moment and 

maximum stress under the loading nose. The vertical load 

could deflect (bend) the laminate and even fracture the 

outer fibres of the laminate under excessive loading. 

http://www.astm.org/Standards/D7136.htm
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Figure-15. a) Test laminate b) test chamber of 

INSTRONTM 5585H. 

 

The strain values and the other data were 

recorded by software installed on the data acquisition 

system at specified load increments so that the curve is 

plotted for each laminate. In the beginning of the bending 

test the load-deflection curves show slightly erratic 

behaviour, but along the course of the curves there is a 

definable linear portion. Independent tests for every 

laminate were carried out and mean moduli were 

calculated for the every laminate. Measurements of the 

strain values, deflections and loads were used to determine 

the Young’s modulus.   
As shown in Table-10 below the recorded voltage 

range was scaled by gain factor and strains values were 

calculated. Stresses were calculated from the recorded 

applied load divided by the corresponding cross-sectional 

area. Young’s moduli were then calculated using the strain 
and stress values and have been shown in column 8 of 

Table-10. 

 

Table-10. Flexural test results. 
 

Test Laminate Bridge factor Micro-strain Load N Stress GPa 
Elastic modulus 

GPa 

B-1 
8-Ply 

0.4 440. 20 26.04 52.1 

B-2 0.39 429. 20 26.04 50.2 

B-3 
16-Ply 

0.52 572. 80 26.04 45.5 

B-4 0.5 550. 80 26.04 45.28 

B-5 
24-Ply 

0.54 594. 170 24.59 41.35 

B-6 0.53 583. 170 24.6 41.13 

 

5.5 Overall comparison of approximated elastic moduli 

Selected young’s moduli for all the 8-, 16, and 

24-Ply laminates obtained from simulation, rule of 

mixture, Hart Smith, tensile, and flexural testing 

methodologies are compared in Table-11. Good agreement 

of the predicted values of Young’s moduli for every 
laminate was found. The comparisons confirmed that 

results of the mechanical properties (physical plus elastic 

stiffness) delivered from the MATLAB
TM

 programs are 

reliable. 

 

Table-11. Comparison of Young’s moduli from different methods. 
 

Laminate 

Methodologies applied 

Simulation 
Rule of 

mixture 

Hart 

Smith 
Tensile Flexural 

Young’s modulus GPa 

8-Ply 56 58.5 40.4 45.6 52 

16-Ply 48.6 58.6 40.1 46.7 45 

24-Ply 45.8 58.8 40. 52.2 41 

 

6. CONCLUSIONS 

In this investigation, engineering properties of 

quasi-isotropic 8-, 16-, and 24-Ply carbon fibre-reinforced 

laminated composite panels were determined applying 

simulation methodology based on micro-macro mechanics 

of the laminates. Physical properties were determined and 

ignition loss tests were conducted to evaluate volume 

fractions quantities from the rule of mixture. The rule of 

mixture and inverse rule of mixture were utilised to 

approximate engineering constants. Then two-dimensional 

stress-strain relation and micro-macro mechanics methods 

were applied to formulate lamina, angle lamina, and three-

dimensional laminate elements. Computer codes were 

developed to determine range of the engineering constants. 

Selected data obtained from the simulations were verified 

with tensile and flexural physical testing. Based on 

comparison of the results the following conclusions can be 

extracted:  
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 Micro-macro mechanics of a lamina were utilised to 

approximate effective elastic constants for three-

dimensional laminates.  

 Simulation produced results were validated against 

the values obtained by volume fractions and Hart 

Smith rules, tensile, and flexural testing and were 

found to be within acceptable range with (±10%) 

deviations.  

 Elastic constants determined from MATLAB
TM

 

simulations were also compared to the intra-

simulation values as a function of fibre rotations and 

were found to be in good agreement.  

Based on comparisons of the results it is 

proposed that three-dimensional (full range) of effective 

elastic constants can be efficiently determined from 

information of the volume fraction, two-dimensional 

micro-mechanics laws, and computer simulations with 

reduced physical testing.  
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