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ABSTRACT 

The paper considers practical problem solving in passive bus safety and particularly modeling of the strain-stress 
state of bus body elements under the safety and structural strength conditions. The authors of the paper present the results 
of the pursuance of numerical research in supporting capacity of the side window bus body pillars. The paper evaluates the 
detailed finite element model of a bus body pillar with account for geometrical nonlinearity. The realization of finite 
element analysis of the strain-stress state of a bus body pillar is presented for simple and compound bending. Modeling 
was made by using the opportunities of ANSYS packaged programs. 
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BASES OF ACCOUNTING ESTIMATE 
OF STRUCTURES ACCOUNTING FOR 
CONDITIONS AND ASSUMPTIONS 

Accounting estimate of body structures means the 
consideration of their component behavior in emergencies 
influenced by arising elasto-plastic and large plastic strains 
[1]. 

The sequence of the evaluation of any accounting 
estimate by the finite-element method is standard [12]. 
This paper presents some approaches to accounting 
estimate of the strength properties of the bus body 
elements by the finite-element method [13]. 

The evaluation by the finite-element method 
demands any structure (geometrical model) being a finite 
number of elementary volumes. All elements have a 
simple form and the simplified strain-stress state. 

Mechanical behavior of elements, as well as the 
whole structure, can be described from the three 
perspectives. These perspectives are based on estimate of 
physical behavior of strained bearing structure 
components and are presented as follows: 
 imposed and internal forces should be in balance [2]; 

 adjacent elements after deformation should not vary 
from each other and interpenetrate, and the boundary 
nodes of the considered parts should follow the 
boundary conditions [3]; 

 connection between tension and strains is determined 
by physical relation of the theory of elasticity and 
plasticity [4, 12]. 

The structure evaluation presents two types of 
nonlinearity [12]. The first one is physical nonlinearity 
connected with nonlinearity of the dependency  = f (ε) 
that characterizes the structure material in the elasto-
plastic part. The second one is geometrical nonlinearity 
that takes place when the structure displacement causes 

significant changes of its configuration. The consideration 
of these types of nonlinearity leads to the resolving set of 
equations containing nonlinear terms of fractional 
definable main unknown values.  

When estimating of body structures [5, 6] both 
static nonlinear and dynamic problem solving is possible. 
Static problems are solved if estimation of supporting 
capacity of the body structure in the conditions of static 
loading is necessary [7, 8]. Dynamic problems are solved 
in theoretical estimating of safety and supporting capacity 
of structures influenced by shock stress [9, 10]. 

The present research offers static problem solving 
in nonlinear putting with account for geometrical 
nonlinearity by using the ANSYS packaged programs 
[11]. 
 
LINEAR STABILITY ANALYSIS BY THE FINITE-
ELEMENT METHOD 

The equation of balance of the finite-element 
model in matrix form is as follows [12]: 
 

0}W{]]K[]K[[  г , 
 

where ][ K  and 
]K[ г  - are global matrixes of total and 

geometrical stiffness; 
  - is a loading parameter (scalar quantity); 

}W{  - is a vector of nodal displacement of an assemblage 
of elements. 

After the loss of stability nodal displacement 
becomes uncertain.  A mathematical criterion of the loss 
of stability is the determinant equal to zero: 

0]]K[]K[[det  г
 

Thus, the determinant excludes the “excess” lines 
and columns, rising to node numbers to which constraints 
are imposed. Thus, the order of a resulting set of equations 
is always lower than the order of a global stiffness matrix. 
From the computational viewpoint, the determination of 
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the parameter  by the disclosure of a determinant of the 
high order and the solution of the corresponding 
transcendental equation is unreal. Therefore, analysis of 
the finite-element model stability as the generalized 
problem of its values, allowing the direct solution of the 
following equation will be conducted [12]: 
 

}X{]K[}X{]K[ min г
,                   (1) 

 

where min
- is an unknown smallest eigen value; 

}{ X  - is an eigenvector vector, characterizing a possible 
form of the loss of stability. 

In this formulation the value min
 that makes a 

geometrical stiffness matrix compensate the total stiffness 
matrix influence should be determined. From the physical 

viewpoint, the value min  is the critical load крР
, 

corresponding to the loss of stability.  
The solution of this mixed set of algebraic 

equations demands the two special iterative algorithms. 
The first algorithm is based on the Rayleigh quotient [12]: 
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where 
S210  , S - is a demanded number of 

significant figures that calculates the value (usually S =3). 
The second algorithm of the critical load 

determination is based on the linear subspace iteration 
method (LSIM) [12]. According to the algorithm of this 
method at the end of each iterative cycle we form the 
matrix projections are stated: 

)k(
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where
]}u{}u{}u[{)k( q21

)qn(

]u[ 
  - is a matrix of iterated 

vectors which number of lines is equal to the order of 

matrixes ]K[  and ]K[ г , and the number of columns 
nq   corresponds to the number of simultaneous 

iterated vectors. The problem of eigenvalues is solved by 
the Jacobi algorithm: 

)k(
min)k()k()k( }X{]K[}X{]K[ г

 
The norms of mistakes are used as a criterion of 

the iterative cycle termination: 
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The nodal critical load vector is determined by 

the formula:  
}P{}P{ minкр . 

It is common knowledge that linear analysis of 
trussed structure stability gives the overestimated value of 
the critical load. It is connected with the computational 
scheme idealization (the lack of initial camber of truss 
members and the central application of forces), and also 
with the fact that in the global stiffness matrix the block of 
axial deformation is independent of the block of bending 
deformation. Real truss elements have initial geometrical 
imperfections which cause interrelation between axial and 
bending reactions. 

At the same time the considered numerical 
method allows to give upper estimate of the critical load 
which value can be specified by using the FEM stepwise 
procedure. 
 
ITERATIVE STABILITY ANALYSIS BY 
USING THE STEP PROCEDURE OF THE 
FINITE-ELEMENT METHOD 

Elements of the geometrical stiffness matrix 
]K[ г are nonlinear functions of compression stress. 

Therefore, the FEM computation process has to be 
organized according to the schedule of the step load 
increment when simultaneous updating of the matrix 
elements and control load-bearing capacity of the structure 
by the determined displacement values w at the end of 
each load step [12]. 

We think that the load increment iP
 at the i - step 

occurs in quasi-static manner and by a small amount. The 
solution of a geometrically nonlinear task at each step will 
be made by the Newton’s iteration method that 
consistently calculates of additional displacement in 
element nodes, caused by fastening to forces. Figure-1, a) 
graphically presents such an approach (for the three load 
steps) where the computational solution is shown as the 
step saw-toothed line. 
    

 
a)                                            b) 

 

Figure-1. Graphic imaging of the FEM computation 
process organized according to the schedule of the 

step load increment. 
 

The FEM iterative algorithm on the example of 
the first load step (Figure-1, b) will be considered now. To 
simplify it Figure-1 omits curved and square brackets in 
vector and matrix notations. 

The computational process is organized as 
follows: 
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a) The initial vector of nodal displacement by 
using the balance equation without regard to the 
geometrical stiffness matrix is calculated as follows: 
 

}P{]K[}w{ 1
1

0
 

, 
 

where ]K[  - is the total stiffness matrix; 
}P{ 1  - is a vector of nodal forces at the first load step. 

b) The beginning of an iterative cycle 

maxn,...,2,1i 
 ( i  - is the iteration index, maxn

 - is the 
maximum iteration indexes set by a computing engineer). 

By the determined values 
}w{ 1i


  axis nodal reactions in 

compression finite elements are calculated and the 

geometrical stiffness matrix ])}w({K[ 1i

г  is formed. In 

notation 
])}w({K[ 1i


г  the value in round brackets 

specifies that elements of the geometrical stiffness matrix 
depend on nodal displacement. 

c) The sectional stiffness matrix 
]K[ i  relating to 

current iteration is formed: 
]})w({K[]K[]K[

1ii



 г . 

d) Nodal reactions corresponding to the nodal 

displacement vector 
}w{ *

1i  are calculated as follows: 
}w{]K[}P{ *

1ii
*

1i  
. 

e) The vector of fastening to nodal reactions is 
calculated as follows: 

}P{}P{}{ *
1i1i 

. 
f) The additional nodal displacement vector 

}w{ i  caused by the vector of fastening 
}{ i : 

}{]K[}w{ i
1

ii  
. 

g) The nodal displacement vector is corrected as 
follows: 

}w{}w{}w{ i
*

1i
*
i   . 

h) Starting on the 2i  , estimate of iterative 
procedure convergence with the following condition: 
 

  1ii ww
,                                   (2) 

 
 

where }ww{}ww{ww 1ii
T

1ii1ii     - is an 
additional nodal displacement difference norm at 
complementary iterations; 

810  - is a positive small quantity used for the end of 
the iterative process of refinement of solution. 

The steps 2 - 8 repeat until the condition (2) is 

met or the number of iterations will not exceed maxn
. 

Graphically the minimization of fastening to forces is a 

certain trajectory in the form of the saw-toothed line that is 
close to the desired point of solution (Figure-1, b). 

The start of the second load step begins with the 
solution of a set of equations: 

}P{}w{]})]w({K[]K[[ 201  
г , 

where 
}w{ 1 - is the nodal displacement vector formed on 

the first load step; 
}P{ 2  -  is the vector of additional nodal forces 

corresponding to the second load step. 
At the 3rd stage of the iterative process the secant 

stiffness matrix ]K[ i taking into account the data obtained 
at the first load step. 

]})w{}w({K[]K[]K[
1i1i




 г . 

At the 7th stage 7 the nodal displacement vector 
correcting is conducted by the formula: 

}w{}w{}w{}w{ i
*

1i1
*
i   . 

By analogy with the previous formula the 
calculations at the subsequent load steps by using the 

vectors
...},P{},P{ 43  are carried out. 

At each iteration in the course of the stepwise 

load process behavior of the vector 
}w{ i

 is controlled. 
Usually while nonlinear stability analyzing the value 

decrease 
}w{ i

 between complementary iterations 
testifies to the achievement of the stabilized condition by 
the system (process meets). The fact of loss of stability is 
the state when sizes increase from iteration to iteration (the 
process goes separate ways). 

It should be noted that many elastic systems 
having achieved the bifurcation point can enter into a new 
steady state with the further load growth.  

In passing to the next load step the studied 
structure configuration is automatically carried out. 
 
MODELING AND ESTIMATE OF THE STRAIN-
STRESS STATE OF A BUS BODY PILLAR WITH 

ACCOUNT FOR GEOMETRICAL NONLINEARITY 
To determine the most dangerous section of bus 

body pillars and to study their strain-stress state under the 
influence of emergency load a mathematical model in the 
form of the thin-walled rectilinear rack of box-shaped 
section working for a bend will be developed [13]. Stress-
strain behavior of the pillar material (steel): the elasticity 
modulus E=2.05∙105 mPa; the Poisson ratio   =0.28; the 

yield stress Т  =283 mPa. Figure-2 presents the 
configuration and the analytical model of a half of a pillar 
that is rigidly fixed by one end and loaded with the 

uniform load p  on a site 40 mm in diameter. The gage is 

t  = 2 mm. Numerical experiment has taken maxp
 = 8 

mPa. On the parting site boundary conditions xu
 =0; y

 

=0 were used (there are no displacement along the axis x  
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and the rotational angle about the axis
y

). Figure-3 
presents the schedule of division of a half of a pillar into 
finite elements. Pillar site sampling is executed by plate 
finite SHELL43 [11] elements. In grid generating the 
options smart and tri were used. On a loaded site the 
thickness of elements is synthetically increased to 10 mm.  

The numerical solution taking into account 
geometrical nonlinearity is obtained by the Newton’s 
iteration method together with the stepwise load algorithm 
(N=50 steps). 
Figure-4 presents the results of finite-element modeling in 

the form of the schedule displacement~ load ( zu~p
) 

[14]. Displacement zu
 was calculated in the site center of 

the application of load. The dashed line 1 corresponds to 
the linear solution; the line 2 describes a pillar bending 
with account for large displacements. 
 

 
                                 a)                               b) 
 

Figure-2. Configuration: a) and the analytical model; b) of 
a half of a pillar that is rigidly fixed by one end and loaded 

with the uniform load p  on a site 40 mm in diameter. 
 

 
 

Figure-3. The schedule of division of a half of a pillar 
into finite elements. 

 

 
1 - a pillar bending in linear solving; 2 - a pillar bending 

with account for geometrical nonlinearity 
 

Figure-4. Results of finite-element modeling in the form 

of the schedule displacement~ load ( zu~p
). 

 
Figures 5 and 6 present the pictures of the pillar 

deformation for load steps 10, 20, 30, 40 kN. Figure 6 
shows the pillar sites which take with bedding-in for load 
steps 30 and 40 kN in detail. 

As Figures 5 and 6 show that with increased load 
there is the local stability loss on the compressed pillar 
part that is shown in buckling of the corresponding surface 
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distortion. In the graph zu~p
 (Figure-4) in this place the 

line 2 runs the originally rectilinear direction out [15]. The 
calculations have showed the further load growth provides 
the monotonous beam deflection increase. Thus, the line 2 
runs the line 1 more and more out. The warping effect 
amplifies that is shown in the growth of local deformations 
on the compressed pillar surface. 
 

 
 

Figure-5. Pictures of pillar deformation for load steps 
10, 20, 30, 40 kN. 

 

 
 

Figure-6. Enlarged pictures of the pillar deformation 
for load steps 30 and 40 kN. 

 
Analysis of the obtained results allows us to draw 

a conclusion on adequate modeling of a bend of a the thin-
walled pillar bending taking into account large 

displacements, namely,  when in the course of the 
structure deformation there is a change of its analytical 
model. At the same time this type of numerical analysis 
leaves open the question of the influence of the material 
plastic response to the process of internal effort 
redistribution at large displacements. 
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