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ABSTRACT  

Transverse vortex induced vibration of a spring-supported circular cylinder with mass ratio of 10 and zero 
damping translating near a plane wall at Re = 100 is numerically studied. The author investigates three gap ratios. Results 
show that the size of lock-in zone increases and the peak vibration amplitude decreases with decreasing gap ratio. The peak 
vibration amplitude occurs at a larger reduced velocity for a smaller gap ratio. The cylinder vibration in the lock-in zone is 
controlled by either the Strouhal frequency or the natural structure frequency in fluid, depending on the gap ratio and 
reduced velocity. The time-mean drag in the lock-in zone is always larger than that for an isolated non-vibrating (purely 
translating) cylinder. The time-mean lift is always positive. 
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INTRODUCTION 

Uniform flow over a stationary circular cylinder 
has attracted much interest among researchers. Vortex 
shedding in the wake of the circular cylinder frequently 
occurs and causes periodic forcing to the cylinder. If the 
cylinder is allowed to vibrate freely in the flow, the vortex 
shedding and the cylinder motion will influence each 
other, eventually reaching a state of balanced vibration, 
called vortex induced vibration (VIV). The term “lock-in” 
denotes the occurrence of large vibration amplitude in 
VIV. 

VIV of an isolated circular cylinder, rigid or 
flexible, has been studied extensively in the literature. The 
parameters involved are the mass ratio m*(= m/md), 
damping ratio ζ (= c/ccrit), reduced velocity U* (= U/fnwD), 
and Re (= UD/) where m = cylinder mass, md = displaced 
fluid mass, c = structural damping, ccrit=critical damping,U 
= free-stream velocity, fnw= natural structure frequency in 
fluid, D = cylinder diameter, and = kinematic viscosity. 
Much of the related research was reviewed by Sarpkaya 
[1] and Williamson and Govardhan [2]?.Williamson and 
Govardhan [3] briefly summarized fundamental results 
and discoveries related to VIV with very low mass-
damping product, m* ζ. Al Jamal and Dalton [4] reviewed 
some numerical studies on VIV of a circular cylinder. 

The characteristics of the lock-in zone and the 
wake vortex structure would change significantly when the 
cylinder is close to a plane wall. For the scenario of VIV 
near a fixed plane wall in a free stream, two additional 
parameters have to be considered for this problem. The 
first is the gap ratio, G, defined as the distance between the 
wall-side cylinder shoulder and the wall in the static 
equilibrium condition (i.e., when the spring force keeps 
zero with quiescent ambient fluid) normalized by D. The 
second is the wall boundary layer profile. Tsahalis and 
Jones [5], Jacobsen et al. [6], To̸rum and Anand [7] found 
that the presence of a plane boundary lowers the vibration 
amplitude. However, Yang et al. [8] reported that the 
vibration amplitude increases with decreasing gap ratio. 

Raghavan et al. [9] indicated that the vibration amplitude 
as function of gap ratio depends strongly on the Reynolds 
number and the wall boundary layer. Therefore, the 
correlation between the vibration amplitude and the gap 
ratio is still unclear due to insufficient exploration of these 
influential factors. On the other hand, the vibration 
frequency as a function of the reduced velocity also differs 
among various studies [9. 10]. Both Zhao and Cheng [11] 
and Wang et al. [12] reported significant vibration 
amplitudes even if G= 0.05, in contrast to the case of a 
stationary cylinder that vortex shedding is suppressed 
when G< 0.3. 

In the present work, the author studies by 
computational fluid dynamics techniques the 1-dof VIV of 
a transversely spring-supported zero-damping circular 
cylinder which is translating near a fixed plane wall with 
Re = 100. For numerical computations, the original 
scenario is replaced by an equivalent one where a uniform 
flow with the translating velocity passes a fixed cylinder 
above a plane wall which is moving with the same 
translating velocity. The effect of wall boundary layer thus 
can be separated out. All the quantities in this work are 
made dimensionless by taking D, U, and f(fluid density) 
as the characteristic length, velocity, and density 
respectively. Figure-1 depicts the configuration of the 
physical problem, computational domain, and boundary 
conditions. 
 

 
 

Figure-1. Schematic diagram of the physical problem, 
computational domain, and boundary conditions. 
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METHODOLOGY 
 
Fluid flow solver 

The Cartesian grid method with a cut cell 
approach [13] was selected to solve the coupled continuity 
and Navier-Stokes equations for two-dimensional 
incompressible flows. It is characterized by a cell-centered 
collocated finite volume Cartesian grid with AMR 
(Adaptive Mesh Refinement). The method is nominally 
second-order accurate in both time and space. 
 
Fluid-solid interaction 

The cylinder is rigid, streamwise-fixed, and 
transversely supported by linear springs with uniform 
structural damping. A fluid-solid interaction is therefore 
involved in this physical problem. The dimensionless 
equation of motion for the 1-dof motion of the circular 
cylinder is 
 

c c c ,hydroymy cy ky F                                                   (1) 
 

where yc denotes the coordinate of the centroid of 
the cylinder in the transverse direction relative to the static 
equilibrium position and the dot symbol represents the 
time derivative. The cylinder, which has mass m, is 
supported by a spring of constant stiffness k. The uniform 
structural damping of the supporting system is c. The 
ambient fluid exerts the transverse hydrodynamic force 
Fy,hydro to the cylinder. The trapezoidal method, which is a 
classical second-order implicit method, was used to 
integrate the equations of motion. 
 
Structural parameters 

A mass-spring-damper system is usually 
characterized by another set of three parameters: mass 
ratio, m*, natural structure frequency in fluid, fnw, and 
damping ratio, . Their definitions are 
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From the definition of reduced velocity, 
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we can obtain U* = 1 / fnw as a result of the 
present procedure of nondimensionalization. Therefore, 
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where mA is the nominal added mass simply set to md. 
 
Cylinder impact with wall 

The cylinder occasionally hits the wall, causing 
the cylinder to bounce back. The author assumed that the 
bounce-back is fully elastic and changes only the vertical 
velocity of the cylinder. That is, c cV V    where cV   and 

cV  are the vertical velocities of the cylinder before and 

after bouncing back, respectively. The bouncing back 
process is completed in one time step. To avoid numerical 
difficulties, the bouncing back must be actuated when the 
gap between the cylinder bottom and the wall is smaller 
than 0.02. Similar treatments were used by Zhao and 
Cheng [11]. 
 
RESULTS AND DISCUSSIONS 

Introduced below are a number of physical 
quantities in terms of which the results will be presented. 
The maximal and minimal amplitudes of the vertical 
displacement, Amax and Amin, are defined as the maximum 
and minimum among all local amplitudes, respectively. 
The predominant frequency of cylinder vibration, fcyl, is 
defined as the average of all the local frequencies. The 
phase lag, , is defined as the phase lag of the oscillation 
of the vertical displacement behind that of the lift force. 
The drag and lift coefficients are defined as 
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where Fx,hydro and Fy,hydro are respectively the 
streamwise and transverse hydrodynamic forces exerted 
on the cylinder surface by the ambient fluid. The 
quantities CD,mean, and CL,mean denote the corresponding 
time-mean values of CD and CL. Finally, fL denotes 
respectively the predominant frequency and the amplitude 
of the lift coefficient variation. The Strouhal frequency, f0, 
denotes the dimensionless frequency of vortex shedding 
for a stationary isolated circular cylinder. 

The origin of the coordinate system is the static 
equilibrium position of the cylinder center. The initial 
position of the cylinder center is (0, 0.02) to rapidly trigger 
the alternative vortex shedding. The computational domain 
[-22, 42][-32, 32] was used with the smallest mesh size 
of 1/128 clustered near around the cylinder surface. 

To validate the present method, the author 
performed simulations with Re = 200, m* = 10, and  = 
0.01, the same as used in [14] and [15]. As shown in 
Figure-2, the present prediction of the peak of Amax, 0.5, is 
nearly the same as that of [14] and both results exhibit the 
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phenomenon of a sharp decrease of Amax at the upper end 
of the lock-in zone. The peak value of Amax occurs near the 
lower end of the lock-in zone in each study. All the three 
result are consistent with each other. 
 

 
 

Figure-2. Variation of Amax with U* for an isolated 
cylinder with m* = 10,  = 0.01, Re = 200. Also 
shown are results from previous contributions. 

 
Near-wall cases 

With m* = 10 and  = 0, the author examined the 
effects of the gap ratio on various aspects of 
hydrodynamic and structural responses, including their 
interactions, by setting G = 0.06, 0.3, and 31.5. The cases 
with G = 31.5 can be regarded as for an isolated cylinder. 
The Reynolds number was fixed at 100. 

For each gap ratio, the author performed a series 
of simulations with varied reduced velocities (3 U*  10). 
Figure-3 shows the variation of Amax and Amin with U* for 
the three gap ratios. The sizes of the lock-in zone are 
approximately 5 U* 7.5 and 3.5 U* 7.5 for G = 31.5 
and 0.3 respectively, i.e., increasing with decreasing gap 
ratio. There does not exist a lock-in zone for G = 0.06 due 
to too small vibration amplitudes. The gap ratio has a 
strong influence on the peak of Amax, which decreases to 
0.06 with the gap ratio decreasing to 0.06. The onset of 
lock-in occurs at lower reduced velocities than for an 
isolated cylinder. The reduced velocity where Amax occurs, 

peakU  , increases with decreasing gap ratio and the rate at 

which Amax changes with U* near the two ends of the lock-
in zone is slower for a smaller gap ratio. The phenomenon 
well known for an isolated cylinder with high-mass ratio is 
reconfirmed in this study: the rate of Amax varying with U* 
near the onset of the lock-in zone exceeds that near the 
upper end of the lock-in zone. However, this characteristic 
disappears when the VIV occurs near a moving wall. 
Conversely, the rate of Amax varying with U* near the 
lower end is smaller than that near the upper end of the 
lock-in zone for G = 0.3. In most cases Amin follows 
exactly the same curve as that of Amax. The only two 
exceptions occur at U* = 5 and 8 for G = 31.5 which are 
caused by the beating-like phenomena in the unshown 
time history of yc. The cylinder vibration thus exhibits 
strong regularity in the lock-in zone. 
 

 
 

Figure-3. Variation of Amax and Amin for three gap ratios. 
 

Figure-4 shows the variation of fcyl/fnw and fL/fnw 
with U* for the three gap ratios, in comparison with the 
straight line representing the Strouhal frequency at Re = 
100. For all the three gap ratios, the author finds that fcyl = 
fL in the whole range of U* studied (3 U* 10). fcylfLfnw 
throughout the lock-in zone, if any. This is consistent with 
many previous results indicating that the vibration 
frequency of a high-mass-ratio cylinder tends to be close 
to the natural structure frequency in fluid. The frequency 
ratio at peakU  exceeds 1 for each gap ratio and increases 

with decreasing gap ratio. 
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Figure-4. Variation of fcyl/fnw and fL/fnw with U* for three 
gap ratios. Solid symbol: occurrence of the peak of Amax. 

 
Figure-5 shows the average phase lag, , of the 

cylinder response behind the hydrodynamic lift. For an 
isolated cylinder, the phase lag exhibits a sharp jump from 
approximately 0 to 180 at U* between 7 and 7.5 and 
remains at 0 and 180 for a lower and higher reduced 
velocity, respectively. For G = 0.3, the phase lag jump is 
slightly smoother than that for an isolated cylinder and 
followed by an overshoot-undershoot variation. For G = 
0.06, the phase lag remains nearly constant at 200. For 
each gap ratio, the jump area ends at a reduced velocity 
larger than peakU  . 

 

 
 

Figure-5. Variation of  with U* for three gap ratios. 
Solid symbol: occurrence of the peak of Amax. 

 
Figure-6 shows the variation of CD,mean with U* 

for the three gap ratios. The time-mean drag is larger than 
that for an isolated fixed cylinder in all cases except those 
for G = 31.5 with reduced velocities higher than the 
upperend of the lock-in zone; the maximal CD,mean occurs 
at or not far from peakU   for those gap ratios exhibiting 

significant vibration amplitudes, G = 31.5 and 0.3. The 
maximal CD,mean differs significantly among the three gap 
ratios and peaks for an isolated cylinder. Also shown in 
Figure-6 are the variations of CL,mean with U*. The time-
mean lift is always positive and the small-gap-ratio 
cylinder acquires a higher time-mean lift than the large-
gap-ratio cylinder in the entire range of reduced velocity. 

 
 

 
 

Figure-6. Variation of CD,mean and CL,mean with U* for three 
gap ratios. Solid symbol: occurrence of the peak of Amax. 

 
CONCLUSIONS 

The characteristics of 1-dof VIV of a zero-
damping circular cylinder with the mass ratio of 10 near a 
moving wall at Re = 100 was numerically examined in this 
study. The major findings and conclusions are collected as 
below. 

The peak vibration amplitude decreases 
significantly with decreasing gap ratio. With decreasing 
gap ratio, both the onset smoothness and size of the lock-
in zone increases and the onset of lock-in occurs at lower 
reduced velocities. The steep-rise-and-soft-decline profile 
characteristic of high-mass-ratio VIV for an isolated 
cylinder disappears while approaching a moving wall. The 
local amplitude of vibration hardly changes with time. 

The predominant vibration frequency is always 
equal to the predominant lift frequency, which is close to 
the natural structure frequency in fluid in the lock-in zone. 
For a cylinder near the wall, the phase lag jump is slightly 
smoother than that for an isolated cylinder. 

The time-mean drag is larger than that for an 
isolated fixed circular cylinder in the lock-in zone for all 
cases investigated in this study. The maximal time-mean 
drag changes significantly and occurs at a higher reduced 
velocity as the gap ratio decreases. The time-mean lift is 
always positive for all near-wall cases investigated in this 
study. A smaller gap ratio causes a higher time-mean lift at 
a given reduced velocity. 
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