
 VOL. 12, NO. 10, MAY 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 3214

TRANSLATION OF DIVISION ALGORITHM INTO VERILOG HDL

Yusmardiah Y.1, Darmawaty Mohd A.1, Abdul Karimi H.1, Abdul Aziz Abdul R.2 and Ahmad Kamsani S.2
1Faculty of Electrical Engineering, Universiti Teknologi Mara, Shah Alam, Malaysia

2Signal Processing Lab, Computational Science Division, TM Innovation Centre, Cyberjaya, Malaysia
E-Mail: ymardiahyusuf@gmail.com

ABSTRACT

This paper deals with the design of sixteen bit division algorithms, programmed by using Xilinx ISE 14.4
software for translating the arithmetic operation for division operation. In recent, many researchers have proposed the
algorithms to carry out the computation task in hardware instead of software, with the aim to increase the performance of
computation. We explained and translated the non-restoring method for division operation. This method is simple to
implement since it requires only adder or subtractor in each iteration. Hence, it does not require any other hardware
components such as multipliers and multiplexers. The algorithm is translated into Verilog Hardware Description Language
that simulated using Integrated Synthesis Environment (ISE) Simulator and then synthesized using Synopsys Design
Compiler. The system will only process unsigned binary division hence producing in fixed point value.

Keywords: division, non-restoring algorithm, verilog HDL, Xilinx.

INTRODUCTION

In the world of digital signal processing, the
division operation is in widely used, for example in
wireless signal processing, image processing, computer
graphics and etc. Mostly, the algorithms are implemented
using fixed point arithmetic due to expected area and
power savings [1]. In many computer applications,
division is less commonly used than multiplication,
subtraction or addition and takes much longer to compute.

Division is the most complicated of all the
elemental operations, whether to implement the algorithm
in hardware or software. However, it has been shown that
ignoring its implementation can result in significant
system performance degradation for many applications
[2]. There are number of binary division algorithm such as
Multiplicative Algorithm, Approximation Algorithms,
CORDIC Algorithm and Continued Product Algorithm.

Fixed-point arithmetic is regularly used in the
calculations because of the costing since floating point
calculations could significantly increase the size of the
design and make it more complex. However, the
existing solutions for the fixed-point division are limited
in terms of input and output widths of the modules.
Among the solutions is the Xilinx IP Core Divider which
is presented in [3]. There are radix 4, 8, 16 and even 256
algorithms which are faster but difficult to implement [4].

The disadvantages of floating-point
representation are slower and less precise than the fixed-
point. There are three basic components for floating-point
representation: mantissa, exponent and sign. Based on
Goldschmidt's algorithm, the division operations
associated with FMA designed for single precision
floating point have been proposed [5].

In this paper, the Verilog HDL code for non-
restoring algorithm is proposed. However, the size of bit is
limited to 16 bit value for the input dividend and divisor.
The non-restoring division gives the exact value of the
quotient and remainder, besides the implementation
required less hardware since the calculation only involves
shifting process, arithmetic addition and subtraction.

This paper is organized as follows. In section 2,
the restoring division, SRT division and Vedic
Architecture: Nikhilam Sutra algorithms are presented.
The Non-Restoring Division Algorithms is explained in
section 3. Section 4 presents the proposed Verilog code for
the algorithm. In section 5, the simulation result is
explained. Finally, the summarization and future
recommendations is presented in the last section.

DIVISION ALGORITHMS

In recent years, many researchers have proposed
different algorithms. They aimed to perform fast division
operation and at the same time enhancing the performance.
Some of the proposed division algorithms to include:

Restoring division

Restoring division functions on fixed-point
fractional numbers and depends on the following
assumptions [6], D < N and 0 < N, D < 1.

The quotient digits Q are formed from the digit
set {0, 1}. To begin the operation, the dividend and the
divisor is broke into the right half of the 2n-bit A register
and into the left half of the 2n-bit B register respectively.
The divisor B is subtracted from the remainder register A.
If the result of previous step is negative, set the quotient,
Q0 = 0 and restore the old remainder. This is the reason
why this method is called restoring division. Else, set Q0
to 1. In the next step, the divisor is shifted to the right,
aligning the divisor with the dividend for the next
iteration. Repeat the steps until there is no bit left

SRT division

The name of the SRT division stands for Dura W.
Sweeney, James E. Robertson and Keith D. Tocher who
proposed a fast algorithm for 2’s complement numbers
that use the technique of shifting over zeros for division.
[7].

The basic algorithm for binary (radix 2) SRT
division is initially by inserting dividend and divisor into
A and B registers respectively. If register B has k leading

 VOL. 12, NO. 10, MAY 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 3215

zeros, shift all the registers (B and A) positions left k bits.
Then, the following steps are repeated n times. If the top
three bits of the A register are equal, shift the A registers
one position left and set Qi = 0. If the top three bits of the
A register are unequal and negatives, shift the A registers
one position left, set Qi = –1 and add B to A. Otherwise,
shift A one bit left, set Qi = 1 and subtract B. After the
steps are repeated by n times and the final remainder is
negative, correct the remainders by adding B also correct
the quotient by subtracting 1 from Qi. Shift remainder k
bits right.

Vedic architecture: Nikhilam Sutra

Vedic Sutra, Nikhilam [8] algorithm is started by
loading the dividend and divisor into A and B register.
Firstly, set the incrementer/quotient with ‘0’. Then,
determine the complement B with respect to 2n. Add B
with A. If the carry is ‘1’, then feed the result to the adder
(remainder). Next, increment the content of the
incrementer by one. Repeat the steps until the result is less
than the divisor, B. To sum up, the result of the addition is
the remainder and the incrementer is the quotient.

NON-RESTORING DIVISION ALGORITHM

The non-restoring algorithm comes from
restoring division and it calculates the remainder by
successively subtracting the shifted divisor from the
dividend until the remainder is in the appropriate range.
The method is [9]:

Assume that we have dividend, D and divisor, X
as an input data, quotient, Q as division result and R as
remainder. The steps of the non-restoring algorithm are
calculated as visible in Figure-1.

Figure-1. Steps to calculate binary non-restoring
division algorithm.

As illustrated in Figure-1, the process starts by
subtracting from the most significant bit of dividend with
divisor. After making the subtraction process, bring down
the next MSB of dividend and attached to the results from
the first step. These steps are repeated until all the bits of
dividend are calculated as well as the bits of quotient are
determined.

From the algorithm, it can be concluded that if
the result of subtraction is negative, 0 is selected as the
quotient Q. On the other hand, if the result of subtraction
is positive which gives 0 as a different, quotient, Q is
selected as 1. In summary, Table-1 provides the steps to
calculate the binary number for non-restoring division
algorithm.

Table-1. Methods to solve binary non-restoring
division algorithm.

Step Method

1
Subtract the divisor, X from the most significant
bit (MSB) of the dividend, D.

2
Bring down the next MSB (left) of the divisor
and attach it to the result of step 1

3

Check the sign for the result of step 2. If the
result of step 2 is positive:
a. Set the next MSB of the Q to 1.
b. Subtract the divisor from the result to
produce a new result.
If the result from step 2 is negative:
a. Set the next MSB of the quotient, Q to 0.
b. Add the divisor to the result to produce a new
result.

4
Repeat steps 2 and 3 until all bits of the quotient
are determined.

PROPOSED VERILOG HDL

This paper proposed a Verilog HDL coding of
non-restoring division algorithm as shown in Figure-1.
The clk is the input clock signal, means that the process is
begin to calculate the division operation in the first clock
cycle and signal is ready when the iteration is done.
However, the size of bit is limited to 16 bit value for the
input dividend and divisor. In this implementation, the
divisor is shifted to right by one bit until there is no bit
left.

 VOL. 12, NO. 10, MAY 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 3216

Figure-2. Verilog HDL for division.

In this paper, the Verilog HDL codes for division
are generated and simulate using Xilinx ISE 14.4. The
Verilog HDL code is broken down into modules which
deal with the division of 16 bit dividend and 16 bit divisor.
We chose the non-restoring algorithm because it is simple
to implement since it requires basic adder or subtractor
operation and the shifting process, which is to the left or
right in each stage of calculation. Hence, it does not
involve other hardware components such as multipliers
and multiplexors. The top module connects all of the
inputs and produces output as shown in Figure-2.

Figure-3. Top RTL view of division algorithm.

RESULTS AND DISCUSSIONS

Simulation

The simulation result of 16 bit fixed point
division algorithm is shown in Figure-3. It is clearly
shown that the system needs 17 clock cycles, so that the
output for 16-bit input is in the ready state. READY state

here means that the enumeration stage is completed. We
consider the division of 16 bits two fixed point numbers,
which are 32768 (1000000000000000) and 158
(0000000010011110) fed as the input dividend and divisor
respectively. The desired output of quotient = 207
(0000000011001111) and remainder 62
(0000000000111110) is shown in Figure-4.

This proved that the calculation executed by the
Verilog HDL code is valid. The simulation performed the
calculation through the iteration per bit value until all the
bits for quotient and remainder is determined.

Figure-4. Simulation result of 16 bit fixed point
division (zoom out).

Figure-5. Simulation result of 16 bit fixed point
division (zoom in).

Synthesis

Verilog HDL Code for division is then
synthesized using the XC6VLX240T device with the
package of Vertex 6 FPGA family implementation and the
implementation clock frequency is 10 MHz. The
characteristic of the device [10] is listed in Table-2.

Table-2. XILINX VIRTEX-6 XC6VLX240T features.

Device
CLBs arrays
(Total slices)

Maximum
I/O

XC6VLX240 37,680 720

The translation of the division algorithm is quite

simple and the implementation is done using the Xilinx
Vertex-6. The FPGA implementation’s result for the 16 bit
Non-Restoring divider is shown in Table-3.

Table-3. FPGA Implementation for 16 bit Divider.

No. of slices No. of LUTs No. of bonded IOBs

95 166 160

 VOL. 12, NO. 10, MAY 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 3217

Table-3 shows the total hardware required for the
implementation in FPGA. The 16 bit non-restoring method
only utilizes small resources as compared to the SRTs
division proposed in [11]. In conclusion, the computation
time is faster but difficult to implement since it consumed
a lot of hardware resources.

CONCLUSIONS

The non-restoring division algorithm is presented
in this paper. This algorithm is implemented in Verilog
HDL and synthesized by using Xilinx ISE 14.4. The aim is
to focus on the simplicity of the algorithm which is easy to
translate into Verilog codes. This is because the non-
restoring method only involved the basic addition and
subtraction and shifting process, which is either left or
right. Hence, this method can be implemented for any
value of binary numbers for division operations.

However, this algorithm has limitation on the
latency because the hardware needs to calculate the
number in sequence (per bit) to converge. Means that the
higher the bit being processed, the longer it takes to
calculate the output. Later in the future, the parallel
method will be implemented for division algorithm so that
the hardware is improved in terms of speed’s calculation.

ACKNOWLEDGEMENT

This research was supported by University
Teknologi MARA (UiTM) and Kementerian Sains,
Teknologi dan Inovasi (MOSTI).

REFERENCES

[1] Bhoyar R., Palsodkar P. and Kakde S. 2015. Design

and implementation of Goldschmidts algorithm for
floating point division and square root. In: IEEE
International Conference on Communications and
Signal Processing. pp. 1588-1592.

[2] S. F. Oberman and M. J. Fiynn. 1997. Division
algorithms and implementations. IEEE Transaction on
Computers. 46(8): 833-854.

[3] N. Sorokin. 2006. Implementation of high-speed
fixed-point dividers on FPGA. Journal of Computer
Science and Technology. 6(1): 8-11.

[4] Ercegovac M. D. and Muller J. M. 2005. Variable
radix real and complex digit-recurrence division. In:
IEEE International Conference on Application-
Specific Systems, Architecture and Processors. pp.
316-321.

[5] Floating-Point Working Group. 1987. IEEE standard
for binary floating-point arithmetic. In: ACM Special
Interest Group on Programming Languages. pp. 9-25.

[6] S. Kaur, Suman, M. S. Manna and R. Agarwal. 2013.
VHDL implementation of non-restoring division
algorithm using high speed adder/subtractor.
International Journal of Advanced Research in
Electrical, Electronics and Instrumentation
Engineering. 2(7): 3317-3324.

[7] Harris D. L., Oberman S. F. and M Horowitz. A.
1997. SRT division architectures and
implementations. In: 13th IEEE Symposium on
Computer Arithmetic. pp. 18-25.

[8] Jain S., Pancholi M., Garg H. and Saini S. 2014.
Binary division algorithm and high speed
deconvolution algorithm. In: 11th IEEE International
Conference on Electrical Engineering/Electronics,
Computer, Telecommunications and Information
Technology. pp. 1-5.

[9] Ghatte N., Patil S. and Bhoir D. 2014. Single
precision floating point division. In: 5th IRF
International Conference. pp. 34-38.

[10] Xilinx. 2015. Virtex-6 family overview.
https://www.xilinx.com/support/documentation/data_s
heets/ds150.pdf.

[11] M. R. Patel, T.V. Shah and D. H. Shah. 2012.
Implementation and analysis of interval SRT radix-2
division algorithm. International Journal of
Electronics and Computer Science Engineering. 1(3):
971-976.

