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ABSTRACT 

This paper introduces a new portable camera-based method for helping blind people to recognize indoor objects. 
Unlike state-of-the-art techniques, which typically perform the recognition task by limiting it to a single predefined class of 
objects, we propose here a completely different alternative scheme, defined as coarse description. It aims at expanding the 
recognition task to multiple objects and, at the same time, keeping the processing time under control by sacrificing some 
information details. The benefit is to increment the awareness and the perception of a blind person to his direct contextual 
environment. The coarse description issue is addressed via two image multilabeling strategies which differ in the way 
image similarity is computed. The first one makes use of the Euclidean distance measure, while the second one relies on a 
semantic similarity measure modeled by means of Gaussian process estimation. To achieve fast computation capability, 
both strategies rely on a compact image representation based on compressive sensing. The proposed methodology was 
assessed on two indoor datasets representing different indoor environments. Encouraging results were achieved in terms of 
both accuracy and processing time. 
 
Keywords: assistive technologies, blind people, compressive sensing (CS), Gaussian processes (GPs), indoor scene description. 
 
1. INTRODUCTION 

A recent revision of visual impairment definitions 
in the international statistical classification of diseases, 
carried out in 2011, has revealed that visual acuity and 
performance are categorized according to one of the 
following four levels, namely, normal vision, moderate, 
severe, and blindness [3]. Regardless of such 
terminologies, visual impairment in general and blindness 
in particular, as any other pathology, have their adverse 
impacts as regards to both physical and moral aspects. In 
spite of the remarkable medical efforts being dedicated to 
cope with vision disability, the big prospective leap to full 
sight recovery has not yet been met. Nonetheless, 
supportive solutions could be a means toward a partial 
recovery. Consequently, assistive rehabilitation 
technologies have been finding their way for satisfying 
such need to a reasonable extent. 

In quest of visual disability rehabilitation, several 
prototypes and designs have been proposed so far, and 
have dealt with different issues. From the literature, one 
can deduce that the overwhelming majority of the 
contributions could be highlighted under one of the two 
categories confined to navigation (i.e., by allowing more 
freedom in terms of mobility, orientation, and obstacle 
avoidance) and recognition (i.e., by providing the blind 
person with information related to the nature of objects 
encountered in his/her context). Regarding the navigation 
issue, which has been devoted the biggest part of interest 
as compared with the recognition aspect, different 
contributions have been carried out, and generally two 
main groups are considered in the literature. 

The first one relies on active devices, in which 
case some sort of signal or beam is sent and subsequently 

received back and the duration consumed between both 
processes defined as time of flight is exploited, as 
proposed for instance in [4]-[8]. However, the main 
drawbacks of such devices are their size on the one hand 
and their power consumption on the other hand, which 
reduce their suitability for daily use by a visually impaired 
individual. However, thanks to the ever-increasing interest 
witnessed in computer vision, such issues have become 
retractable. As a consequence, recent works are oriented 
toward computer vision, such as for instance [9]–[12]. As 
for the recognition aspect, relatively few contributions 
could be found in the literature and are mostly computer 
vision based. In [13], for instance, a banknote recognition 
system for the blind was proposed. It relies basically on 
the well-known speeded-up robust features (SURF). 
López-de-Ipiñaet al. [14] suggested a supported 
supermarket shopping, which incorporates navigational 
tips for the blind person through Radio frequency 
identification technology, and camera-based product 
recognition via Quick response codes placed on the 
shelves. A product barcode detection as well as reading 
was developed in [15]. In [16], a travelling assistant was 
proposed. It takes advantage of the text zones depicted in 
the frontal side of buses (at bus stops) for further 
extraction of information related to line number and the 
coming bus. The system processes a given image acquired 
by a portable-camera, and then notifies the outcome to the 
user vocally. In another computer vision-based 
contribution [17], assisted indoor staircases detection 
(within 1-5 m ahead) was suggested. Also proposed in 
[18] is an algorithm intended to help visually impaired 
people to detect as well as read text encountered in natural 
scenes. Yang and Tian [19] proposed to assist blind 
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persons to detect doors in unfamiliar environments. 
Assisted indoor scene understanding through indoor 
signage detection and recognition was also considered in 
[17], through the use of the popular scale invariant feature 
transform.  

Accordingly, from the state of the art reported so 
far, it is possible to make out that object detection and/or 
recognition for the blind is approached in a class-specific 
manner. In other words, all the contributions tend to 
emphasize on the recognition of one specific category of 
objects. Such strategy (i.e., focusing the interest on one 
class of objects), despite its effectiveness, conveys useful 
but limited information for the blind person. By contrast, 
extending the interest to recognizing multiple different 
objects at once can be looked at as an alternative approach 
to make the recognition task more generalized and 
informative. It is also aiming at bringing closer the indoor 
scene description to the blind person, yet fostering his/her 
imagination. This is, however, not an easily achievable 
task due to the number of algorithms that would be 
invoked simultaneously (in case of setting up one 
algorithm per specific object), and may result in an 
unwanted high processing overcharge, thus making a real-
time or even a quasi-real-time implementation infeasible.  

In the general computer vision literature, several 
works dealing with multiobject recognition can be found 
in [20]-[24]. In [20], for instance, a novel approach for 
semantic image segmentation is investigated. The 
proposed scheme relies on a learned model, which derives 
benefits from newly proposed features, termed texture-
layout filters, incorporating texture, layout, and context 
information. Presented in [21] is a scalable multiclass 
detector, in which a shared discriminative codebook of 
feature appearances is jointly trained for all object classes. 
Subsequently, taxonomy of object classes is built based on 
the learned sharing distributions of features among classes, 
which is thereupon taken as a means to lessen the cost of 
multiclass object detection. Following a scheme that 
combines local representations with region segmentation 
and template matching, in [22], an algorithm for 
classifying images containing multiple objects is 
presented. Generative model-based object recognition is 
proposed in [23]. It makes use of a codebook derived from 
edge based features. Pantofaruet al. [24] introduces an 
object recognition approach that starts from a bottom-up 
image segmentation and analyzes the multiple 
segmentation levels of the image. In general, it emerges 
that most of the contributions deal with the 
multirecognition issue as an image segmentation problem 
and propose solutions not particularly adapted to the 
context of blind assistance because of tight time 
processing requirements. 

In this regard, this paper proposes an alternative 
approach meant to solve the problem of multiobject 
detection in images acquired in indoor environments. The 
underlying idea is to trade computation time with object 
information details, such as the position of the objects 
within the field of view and their number (i.e., number of 
times a same object appears in the image). In other words, 
we propose a new way to perceive the objects in the 

surrounding environment by means of a coarse but broad 
and fast description of the scene. The proposed approach 
will be implemented through image multilabeling. Given a 
query image (acquired by a portable chest-mounted 
camera), as a first step it is represented as a compact 
sequence of coefficients by means of the compressive 
sensing (CS) representation [23], [24]. To fulfill the 
multilabeling task, the most resembling images are picked 
up from a library of images (constructed offline), and then 
combined to identify the objects characterizing the query 
image. As to cope with image similarity assessment, in 
alternative to the Euclidean distance, we present a 
semantic-based similarity measure accomplished through a 
statistical prediction model as described further. The 
algorithms were tested on datasets corresponding to two 
different public sites and revealed encouraging results in 
terms of accuracy and processing time. 

The remainder of this paper is outlined as 
follows. Section II presents the basic insight underlying 
the image multilabeling procedure. Section III describes 
the CS image representation technique. Section IV 
presents the proposed semantic similarity measure. 
Experimental part is conducted in Section V. Ultimately; 
we summarize the conclusion in Section VI. 
 
2. COARSE IMAGE DESCRIPTION 

The purpose in this project is to coarsely describe 
a given camera-grabbed image of an indoor scene, whose 
description consists of checking the presence/absence of 
different objects of interest (determined a priori) and turns 
out to convey the list of the objects that are most likely 
present in the scene regardless of their position within the 
image. The reason behind such a framework is to enrich 
the perception and the imagination of the blind person 
regarding the surrounding environment. The proposed 
image multilabeling process is shown in Figure-1.  

The underlying insight as hinted earlier is to 
compare the considered query image with an entire set of 
training images. These lasts are captured and stored offline 
along with their associated binary descriptors, which 
encode their content, as shown in Figure-2.  

The binary descriptors of the k most similar 
images are considered for successive fusion to multilabel 
the given query image. This fusion step, which aims at 
achieving better robustness in the decision process, is 
based on the simple majority-based vote applied on the k 
most similar images (i.e., an object is detected in the query 
image only if, amongst the k training images, it exists once 
for k = 1, at least twice for k = 3, and at least thrice for k = 
5). For that purpose, each training image in the library 
earns its own binary multilabeling vector (or simply image 
descriptor), which feeds the fusion operator.  

The routine for establishing such vector for a 
given training image is to visually check the existence of 
each object within a predefined list in the image. If an 
object exists within a given depth range ahead assessed by 
visual inspection of the considered training image (e.g., 4 
m), then a 1 is assigned to its associated bin in the vector, 
otherwise a 0 value is retained, as shown in Figure-3. 
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3. SPARSE IMAGE REPRESENTATION 
As aforesaid, the underlying idea is to multilabel 

a given query image by fusing the content of the most 
similar training images in the library. Hence, the way the 

matching is performed represents a decisive part. This 
implies the adoption of two main ingredients: 1) a suitable 
image

 

 
 

Figure-1. General block diagram of the proposed framework for coarse scene description 
(image multilabeling). 

 

 
 

Figure-2. Relationship between the binary descriptor and the predefined set of objects. 
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Figure-3. Procedure for constructing binary image descriptors for the training images. 
 
representation and 2) a similarity measure. Regarding the 
former ingredient, there is a need for an appropriate tool to 
represent the images dealt with in a compact way for being 
able to achieve fast image analysis. Among recent possible 
compact representations is the CS theory [1], [2], which 
has gained an outstanding position and become a 
significant tool in the signal processing community. In the 
following, we will, respectively, provide foundational 
details outlining the main CS concepts, and describe how 
it is exploited in our work for compact image 
representation. 
 
A. Compressive Sensing Theory 

CS, also known as compressive sampling, 
compressed sensing or sparse sampling, was recently 
introduced in [1] and [2]. CS theory aims at recovering an 
unknown sparse signal from a small set of linear 
projections. By exploiting this new and important result, it 
is possible to obtain equivalent or better representations 
using less information compared with traditional methods 
(i.e., lower sampling rate or smaller data size). CS has 
been proved to be a powerful tool for several applications, 
such as acquisition, representation, regularization in 
inverse problem, feature extraction, and compression of 
high-dimensional signals, and applied in different research 
fields, such as signal processing, object recognition, data 
mining, and bioinformatics [25]. In these fields, CS has 
been adopted to cope with several tasks like recognition 
[26]-[28], image super-resolution [29], segmentation [30], 
denoising [31], inpainting and reconstruction [32], [33], 
and classification [34]. Note that images are a special case 
of signals which hold a natural sparse representation, with 
respect to fixed bases, also called dictionary (i.e., Fourier 
and wavelet) [35].  

CS is, thus, a way to obtain a sparse 
representation of a signal. It relies on the idea to exploit 
redundancy (if any) in the signals [1], [2]. Usually, signals 
like images are sparse, as they contain, in some 

representation domain, many coefficients close to or equal 
to zero. The fundamental of the CS theory is the ability to 
recover with relatively few measurements V = D ·  α by 
solving the following L0-minimization problem: 
 
min || α ||0s.t. V = D . α                                                    (1)         
 
whereD is a dictionary with a certain number of atoms 
(which in our case, are images converted into vectors), V 
is the input image (converted into vector) which can be 
represented as a sparse linear combination of these atoms, 
α is the set of coefficients intended as a compact CS-based 
representation for the input image V. The minimization of 
|| . || 0, the L0-norm, corresponds to the maximization of 
the number of zeros in α, following this formulation: || α ||0 
= # {i = αi ≠ 0}. Equation (1) represents an NP-hard 
problem that means that it is computationally infeasible to 
solve. Following the discussion in [36], it is possible to 
simplify the evaluation of (1) in a relatively easy linear 
programming solution. They demonstrate that, under some 
reasonable assumptions, minimizing L1-norm is equivalent 
to minimizing L0-norm, which is defined as || α ||1∑ |𝑎௜௜ |. 
Accordingly, it is possible to rewrite (1) as 
 
min || α ||1s.t. V = D . α                    (2) 
 

In the literature, there exist several algorithms for 
solving optimization problems similar to the one expressed 
in (2). In the following, we briefly introduce an effective 
algorithm called stagewise orthogonal matching pursuit 
(StOMP) [37], which will be used in our work. By contrast 
to the basic orthogonal matching pursuit (OMP) algorithm, 
StOMP involves many coefficients at each stage 
(iteration), while in OMP only one coefficient can be 
involved. In addition, StOMP runs over a fixed number of 
stages, whereas OMP may take numerous iterations. 
Hence, StOMP was preferred in our work because of its 
fast computation capability. 
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B. CS-based image representation 
The use of the CS theory for image representation 

in our work is thus motivated by its capability to concisely 
represent a given image. For such purpose, a bunch of NC 

learning images representing the indoor environment of 
interest is first acquired. All images (if in Red, Green, and 
Blue format) are converted in grayscale and into vectors. 
Their column-wise concatenation forms the dictionary D 
(composed of NC atoms). Given a query image V, its 
compact representation α (whose dimension is reduced to 
the number of learning images) is achieved by means of 
the procedure summarized below: 
 
Step 1: Consider an initial solution α0= 0, an initial 

residual r0= V, a stage counter s set to 1, and an 
index sequence denoted as T1,…,TS, which 
contains the locations of the nonzeros in α0. 

Step 2: Compute the inner product between the current 
residual and the considered dictionary D 

 
CS = DT .r(S-1)                                                                    (3) 
 
Step 3: Perform a hard thresholding to find out the 

significant nonzeros in CSby searching for the 
locations corresponding to the large coordinates 
JS 

 
JS = {j: C(j) >tSσS                                                                                              (4) 
 
where σS represents a formal noise level and tS is a 
threshold parameter taking values in the range 2 ≤ tS≤ 3. 
 
Step 4: Merge the selected coordinates JS with the 

previous support 

TS = TS-1Ս JS                                                                                                         (5) 
 
Step 5: Project the vector V on the columns of D that 

correspond to the previously updated TS. This 
yields a new approximation αS 

 
(αS)TS = ሺDTSt ሻ-1 DTSt  V                                                         (6) 

 
Step 6: Update the residual according to rS= V − D ·  αs. 
Step 7: Check whether a stopping condition (e.g., smax= 

10) is met. If so, αSis considered as the final 
solution. Otherwise, the stage counter s is 
incremented and the next-stage process is 
repeated starting from Step 2. 

 
The procedure for generating the vector of CS 

coefficients is shown in Figure-4. 
 
4. SEMANTIC IMAGE SIMILARITY MEASURE 

As mentioned above, the second ingredient to be 
adopted for image matching is the similarity measure. In 
this project, we will interpret the term similarity in two 
different ways. The first one is the distance between two 
images in a given image domain representation, in our 
case in the CS coefficient domain. For measuring the 
distance, we will make use of the well-known Euclidean 
distance. The second way of interpretation consists to 
compare the images in a semantic domain. This means that 
two images are semantically close if they contain the same 
objects, regardless of the apparent image resemblance. To 
that end, we propose in this project a semantic-based 
framework for quantifying the similarity between images. 
Its underlying 
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Figure-4.Flowchart of the proposed SSCS image multilabeling strategy. 
 
idea is to go through a semantic similarity predictor, 
learned a priori on a set of training images to predict the 
extent up to which two given images are semantically 
close. Among the variety of existing predictors, we will 
opt for the Gaussian process (GP) regression model 
because of its good generalization capability and short 
processing time. In the following sections, more details 
about the proposed semantic similarity prediction and the 
GP regression are provided, respectively. 
 
A. Semantic similarity 

Given two images I1 and I2 together with their 
corresponding binary descriptors b1 and b2, we define the 
quantity SSI1,I2 as the semantic similarity between I1 and I2. 
In particular, this measure expresses the ratio inclusion of 
I2 in I1, that is the number of objects of I2 (represented as 
ones in b2) present also in I2 (i.e., still represented as ones 
in b1). Hence, the larger the SSI1,I2 the (semantically) closer 
I2 to I1.  Mathematically, it is expressed by 
 𝑆𝑆𝐼భ,𝐼మ=

∑ ௕భሺ௜ሻ.  ௕మሺ௜ሻ𝑁೔=భ∑ ௕భ𝑁೔=భ  ሺ௜ሻ                                                                (7)        

 
The multilabeling process based on the semantic 

similarity prediction is articulated over two phases as 
follows: 

1) Training phase: First, compute the SS values 
between all couples of training images. Then, train as 
many GP regressors as the number of training images (i.e., 
N). Each GP regressor will be learned to predict SSIp,Ii, that 
is the semantic similarity between a given generic image I 
and the training image Ipto which the GP regressor is 
associated. The supervised training of the pth predictor is 
performed by giving: 1) in input the CS coefficients 
corresponding to each training image Ii and 2) in output as 
target the SSIp,Ii values (between reference image Ip and 
each training image Ii ). 

2) Operational phase: Feed each GP predictor 
with the CS coefficient vector of the query image I to 
estimate all SSIp,Ii values, i.e., the similarity between I and 
each training images Ip.  

Subsequently, pick up the k binary descriptors 
associated with the training images corresponding to the k 
highest SS values for successive fusion, and infer the 
multilabeling of the query image as explained earlier. 
Figure-5 shows the semantic similarity CS (SSCS) 
strategy. 
 
B. Gaussian process regression 

According to the GP formulation [38]–[40], the 
learning of a machine is expressed in terms of a Bayesian 
estimation problem, where the parameters of the machine 
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are assumed to be random variables which are a priori 
jointly drawn from a Gaussian distribution. In greater 
detail, let us consider X = {࢞௜}௜=ଵ𝑁 a matrix of input data 
representing our N training Images, where xi∈ƦNc 

represents a vector of Nc processed features, namely, the 
NcCS coefficients associated with the ith training image.  

Let also denote y = {࢟௜}௜=ଵ𝑁  as the corresponding 
output target vector, which collects the desired semantic 
similarity values (between the considered reference image 
and all the training images). The aim of GP regression is 
to infer from the set of training samples {X, y} the 
function ψ(·) so that y = ψ(x). This can be done by 
formulating the Bayesian estimation problem directly in 
the function space view. The observed values y of the 
function to model are considered as the sum of a latent 
function f and a noise component ε, where 
 
f ̴ GP{0, K(X,X)}                                                               (8) 
 
and 
 
ε ̴ N (0, 𝜎௡ଶI)                                                                      (9) 
 
Equation (8) means that a GP{· , ·} is assumed over the 
latent function f, i.e., this last is a collection of random 
variables, any finite number of which follow a joint 
Gaussian distribution [39]. K(X,X) is the covariance 
matrix, which is built by means of a covariance (kernel) 
function computed on all the training sample pairs. 
Equation (9) states that a Gaussian distribution with zero 
mean and variance 𝜎௡ଶis supposed for the entries of the 
noise vector ε with each entry drawn independently from 
the others (I represents the identity matrix). Because of the 
statistical independence between the latent function f and 
the noise component ε, the noisy observations y are also 
modeled with a GP 
 
y ̴ GP (0,K(X,X) + 𝜎௡ଶI )                                                (10) 
 
or equivalently 
 
p(y|X) = N(0, K(X,X) + 𝜎௡ଶI )                                        (11) 
 

In the inference process, the best estimation of 
the output value f∗associated with an unknown sample 
x∗is given by 
 ∗݂̂ | 𝑋, ,ݕ }𝐸 ~∗ݔ ∗݂|𝑋, ,ݕ {∗ݔ =  ∫ ∗݂𝑝ሺ ∗݂|𝑋, ,ݕ  ሻ݂݀       (12)∗ݔ
 

From (12), it is clear that, for finding the output 
value estimate, the knowledge of the predictive 
distribution 𝑝ሺ ∗݂|𝑋, ,ݕ  ሻis required. For this purpose, the∗ݔ
joint distribution of the known observations y and the 

desired function value f∗ should be first derived. Thanks to 
the assumption of a GP over y and to the marginalization 
property of GPs, this joint distribution is Gaussian. The 
desired predictive distribution can be derived simply by 
conditioning the joint one to the noisy observations y and 
takes the following expression: 
 𝑝ሺ ∗݂|𝑋, ,ݕ ሻ∗ݔ = 𝑁ሺ𝜇∗, 𝜎∗ଶሻ                                                   (13) 
 
where 
 𝜇∗ =  𝑘∗𝑇 . [𝑲ሺ𝑿, 𝑿ሻ + 𝜎௡ଶ𝑰]−ଵ .  (14)                                  ݕ
    𝜎௡ଶ = 𝑘ሺݔ∗, ሻ∗ݔ − 𝑘∗𝑇 . [𝑲ሺ𝑿, 𝑿ሻ + 𝜎𝑁ଶ𝑰]−ଵ . 𝑘∗               (15) 
 

These are the key equations in the GP regression 
approach. Two important pieces of information can be 
retrieved from them: 1) the mean μ*, which represents the 
best output value estimate for the considered sample 
according to (12) and depends on the covariance matrix 
K(X,X), the kernel distances between training and test 
samples k∗the noise variance 𝜎௡ଶ, and the training 
observations y, and 2) the variance 𝜎௡ଶ,which expresses a 
confidence measure associated by the model to the output. 
A central role in the GP regression model is played by the 
covariance function k(xi , x j ) as it embeds the geometrical 
structure of the training samples. Through it, it is possible 
to define the prior knowledge about the output function 
F(· ). In this paper, we shall consider the following Matérn 
covariance function [39]: 
 𝑘(ݔ௜ , (௝ݔ =  𝜃଴ (ͳ + √ଷ|𝑥೔−𝑥ೕ|𝑙 ) exp ሺ− √ଷ|𝑥೔−𝑥ೕ|𝑙 ሻ           (16) 

 
For this covariance function, the hyperparameter 

vector is given by ʘ = [l, θ0]. Such vector can be 
determined empirically by cross validation or using an 
independent set of labeled samples called validation 
samples. As an alternative, as it will be done in this paper, 
the intrinsic nature of GPs allows a Bayesian treatment for 
the estimation of ʘ. For such purpose, one may resort to 
the type II maximum likelihood estimation procedure. It 
consists in the maximization of the marginal likelihood 
with respect to ʘ, that is the integral of the likelihood 
times the prior 
 𝑝ሺݕ|𝑋ሻ = 𝑝ሺݕ|𝑋, 𝜃ሻ =  ∫ 𝑝ሺݕ|݂, 𝑋, 𝜃ሻ𝑝ሺ݂|𝑋, 𝜃ሻ݂݀      (17) 
 
with the marginalization over the latent function f. Under a 
GP regression modeling, both the prior and the likelihood 
follow Gaussian distributions. After some manipulations, 
it is possible to show that the log marginal likelihood can 
be written as [39] 

 log 𝑝ሺݕ|𝑋, ʘሻ =  − ଵଶ ,𝑇 .  ሺ𝐾ሺ𝑋ݕ 𝑋ሻ +  𝜎௡ଶ𝐼ሻ−ଵ . ݕ − ଵଶ log|𝐾ሺ𝑋, 𝑋ሻ + 𝜎௡ଶ𝐼| − ௡ଶ log ሺʹ𝜋ሻ                                                (18) 

 
As it can be observed, (18) is the sum of three 

terms. The first is the only one that involves the target 
observations. It represents the capability of the model to fit 

the data. The second one is the model complexity penalty, 
while the third term is normalization constant. From an 
implementation view point, this maximization problem 
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can easily be solved by a gradient-based search routine 
[39]. 
 
5. EXPERIMENT RESULTS 

 
A. Dataset description 

The images processed in this paper were acquired 
by means of a chest-mounted CMOS camera from the IDS 
Imaging Development Systems; model UI-1240LE-C-HQ 
with KOWA LM4NCL lens, carried by a wearable 
lightweight shield, as shown in Figure-6. This last shows 
the multisensor prototype on which we are working for 
both guiding blind people and helping them in recognizing 
objects in indoor environments. The method for the 
recognition part, which is described in this project, is 
exploited on demand that is the user has access to the  
 

 
 

Figure-5. Wearable prototype used for image acquisition. 
 

recognition capability only when he desires it through a 
vocal instruction. The names of the objects identified 
within the image extracted from the video stream at the 
moment of the vocal instruction are communicated by 
speech synthesis. Work is in progress to integrate all the 
developed algorithms (including those presented here) in 
the prototype. Coming back to this project, the image size 
is 640 × 480 pixels. It is also noteworthy that the images 
acquired by the portable camera were not compensated for 
lens distortions, as our method handles the images as a 
whole and does not extract any feature from within the 
images. 

The collection of images adopted for evaluating 
the efficiency of the proposed image description method 
refers to two different buildings in the University. The first 
set accounts for a total of 181 images acquired in two 
separate daytimes (morning and evening), which was split 
into 51 dictionary (learning) images (i.e., exploited to 
compose the CS dictionary), 58 training images (i.e., for 
training the GP model), and 72 for testing purposes. The 
second set is composed of 185 images, divided into 54 CS 
dictionary (learning) images, 61 training images, and 70 
testing images. It is noteworthy that the training images 
for both datasets were selected in such a way to cover all 
the predefined objects in the considered indoor 
environment. 

As noted above, a list of objects of interest must 
be predefined. Thereupon, we have selected the objects 
deemed to be the most important ones in the considered 
indoor environments. Regarding the first dataset, 15 
objects were considered as follows: External Window, 
Board, Table, External Door, Stair Door, Access Control 
Reader, Office, Pillar, Display Screen, People, ATM, 
Chairs, Bins, Internal Door, and Elevator. Whereas, for the 
second set, the list was the following: Stairs, Heater, 
Corridor, Board, Laboratories, Bins, Office, People, Pillar, 
Elevator, Reception, Chairs, Self-Service, External Door, 
and Display Screen. 

 
Table-1.Results of proposed strategies obtained on Dataset 1, By varying image resolution and k 

(Number of multilabeling images) value. 
 

 
SSCS (Semantic Similarity 

Compressed Sensing) 

EDCS (Euclidean Distance 

Compressed Sensing) 

Ratio 1/10 1/5 1/2 1 1/10 1/5 1/2 1 

k=1 
SEN 80.89 81.64 79.77 79.77 71.53 70.41 69.66 69.66 

SPE 68.14 67.40 66.91 66.54 79.33 79.82 79.82 80.19 

k=3 
SEN 78.65 78.65 80.52 80.14 65.91 66.66 67.41 68.53 

SPE 69.86 69.61 69.74 69.37 81.54 80.93 81.42 81.91 

k=5 
SEN 76.02 76.77 76.02 75.65 67.41 67.79 67.79 68.16 

SPE 71.09 70.60 70.47 70.72 82.41 81.91 81.79 82.04 
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Table-2.Results of proposed strategies obtained on Dataset 2, By varying image resolution and k 
(Number of multilabeling images) value. 

 

 
SSCS (Semantic Similarity 

Compressed Sensing) 

EDCS (Euclidean Distance 

Compressed Sensing) 

Ratio 1/10 1/5 1/2 1 1/10 1/5 1/2 1 

k=1 
SEN 75 74.09 75 75 69.18 69.09 70 70 

SPE 73.97 73.73 74.09 74.09 89.03 89.51 90.12 90.12 

k=3 
SEN 69.54 70.90 70.90 70.45 63.18 62.27 61.36 60.90 

SPE 81.80 82.53 82.65 82.65 87.22 86.98 86.98 87.10 

k=5 
SEN 68.63 69.09 69.09 68.63 53.18 55 55.90 55.90 

SPE 81.08 81.68 81.92 82.04 89.63 89.39 89.87 89.75 

 
B. Discussion 

The efficiency of the proposed framework is 
expressed in terms of the well-known sensitivity (SEN) 
and specificity (SPE) accuracy measures defined in [19] 
and [20]. They express the probability of correct detection 
of the presence and absence of an object, respectively 
 𝑆݁𝑛ݏ𝑖ݐ𝑖𝑣𝑖ݕݐ =  𝑇௥௨𝑒𝑃௢௦௜௧௜௩𝑒௦𝑇௥௨𝑒𝑃௢௦௜௧௜௩𝑒௦+𝐹௔𝑙௦𝑒𝑁𝑒𝑔௔௧௜௩𝑒௦                      (19) 

 𝑆݁𝑛ݏ𝑖ݐ𝑖𝑣𝑖ݕݐ =  𝑇௥௨𝑒𝑁𝑒𝑔௔௧௜௩𝑒௦𝑇௥௨𝑒𝑁𝑒𝑔௔௧௜௩𝑒௦+𝐹௔𝑙௦𝑒𝑃௢௦௜௧௜௩𝑒௦                      (20) 

 
A worth mentioning fact is that the resolution of 

the images has a direct influence on the processing time 
(in particular, in the CS representation phase). Therefore, 
we have analyzed its impact by running the experiments 
on four different resolution ratios. The first one is set to 
the unity (thus, keeping the original 640 × 480 resolution), 
the second ratio was set to the half (320 × 240 image size), 
the third one equals to one fifth (128 × 96), and the last 
one was fixed to one tenth (64×48). The results 
corresponding to the combination of the k values and the 
image resolutions regarding both strategies are 
summarized in Tables 1 and 2, for dataset 1 and dataset 2, 
respectively. 

Considering the results obtained from the first 
dataset, it comes out that, in overall terms, both the 
semantic SSCS and Euclidean distance-based compressed 
sensing (EDCS) methods perform equivalently on an 
average over the SEN and SPE accuracies. However, the 
SSCS strategy yields a better SEN, while the EDCS shows 
a better SPE. As for the second dataset, the EDCS 
performs slightly better by taking the averages for k = 1. 
For the other k values, the SSCS outperforms. This is 
explained by the fact that the EDCS relies on measuring 
the similarity of the CS coefficients, yet measuring the 
apparent similarity between the images, which is likely to 
guarantee the query image actually resembles to the first 
closest image from the library (for k = 1). However, by 
raising the value of k to 3 and 5, the library images tend to 
be dissimilar to the query image, which results in a lower 
performance (in particular, the SEN). The rationale behind 

such accuracy decrease can be referred to the limited 
number of library images. In other terms, for every indoor 
scenery, there are few representative images within the 
library. Increasing such number would certainly promote a 
better correlation between the k considered library images 
and uplift the probability of having objects in common and 
hence boost the fusion process but at the cost of a larger 
processing time. On the other hand, such phenomenon is 
not observed with the SSCS strategy since similarity 
computation is performed not in the image domain but in 
the semantic one. Moreover, it tends to be more balanced 
between the SEN and the SPE, which is not the case with 
the former strategy. The result differences between the two 
datasets can be explained by the fact that the structure and 
the quantity of the objects composing their images, in 
addition to the physical dimensions of the two buildings, 
are different. For both datasets, and by averaging the SEN 
and the SPE, the best outcomes were obtained for k = 3 
using the semantic similarity, and for k = 1 regarding the 
Euclidean distance. In general, the SSCS, in spite of the 
small-size library, behaves better than the EDCS given 
that it performs the multilabeling process more efficiently. 
This is because image similarity assessment in the 
semantic domain appears more straightforward to infer 
than in the image domain which is more sensitive to image 
acquisition condition issues. As for the behavior of the GP 
regressors, it can be drawn that the obtained results are 
very satisfactory despite that only few training images in 
both datasets are used. 

To analyze in more detail the obtained results, we 
also provide the recognition accuracies of each object. 
They are summarized in Tables 3 and 4. In particular, the 
objects range from 1 to 15 pointing, respectively, to the 
following categories. 

Dataset 1: External Window, Board, Table, 
External Door, Stair Door, Access Control Reader, Office, 
Pillar, Display Screen, People, ATM, Chairs, Bins, 
Internal Door, and Elevator. 

Dataset 2: Stairs, Heater, Corridor, Board, 
Laboratories, Bins, Office, People, Pillar, Elevator, 
Reception, Chair, Self-Service, External Door, and 
Display screen. 
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Table-3. Per-Class, Sen, and Speaccuracies achieved on Dataset 1 by: Edcs method     (k = 1 AND 1/10 RATIO), 
SSCS Method (k = 3 AND 1/2 RATIO), and Surf-Based method. 

 

Objects 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 SEN SPE 

EDCS 77.77 61.11 93.05 75 77.77 90.27 75 66.66 77.77 95.83 91.66 65.27 66.66 59.72 87.50 71.53 79.33 

SSCS 58.33 59.72 91.66 69.44 63.88 90.27 44.44 54.16 90.27 95.83 87.50 38.88 72.72 73.61 88.88 80.52 69.74 

SURF 83.33 81.94 100 93.05 90.27 95.83 79.16 90.27 93.05 95.83 93.05 88.88 93.05 79.16 100 71.16 100 

 
Table-4. Per-Class, Sen, and Speaccuracies achieved on Dataset 2 by: Edcs method(k = 1 AND 1/2 RATIO), 

SSCS Method (k = 3 AND 1/2 RATIO), and Surf-Based method. 
 

Objects 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 SEN SPE 

EDCS 60 74.28 68.57 50 65.71 67.14 78.57 82.85 75.71 87.14 78.57 91.42 77.14 77.14 81.42 70 90.12 

SSCS 45.71 62.85 64.28 45.71 64.28 82.85 67.14 88.57 80 91.42 81.42 95.71 90 90 85.71 70.90 82.65 

SURF 98.57 94.28 85.71 62.85 62.85 87.14 91.42 90 97.14 90 90 98.57 100 98.57 95.71 77.72 100 

 
The per-class accuracies vary from 38.88% to 

95.83% for the first dataset, while they range from 45.71% 
to 85.71% for the second one. The poor accuracies 
obtained for some objects are mainly due to the small 
number of training images covering them. Augmenting the 
number of training images is, as mentioned earlier, a 
possible but not attractive (in our application context) 
solution to improve the accuracies, since it would impact 
directly on the processing time. 

In relation to the effect of the image resolution, 
there is no significant change in terms of accuracies. 

However, there is a progressive decrease (while dropping 
the resolution ratio from 1 to 1/10) in terms of average 
processing time per image, as given in Table-5. It is to 
mention that the processing time per image is very 
satisfactory as the experimentations were conducted by 
means of MATLAB (R2013a), meaning that it could be 
further reduced if a real-time-oriented programming 
language were used. Also noteworthy is that, raising the 
number of the CS learning images could convey a richer 
representation of the training/test images, but again at the 
cost of a larger processing time. 

 
Table-5. Average processing time per image (in seconds) for both strategies and for 

different image resolutions (k = 3). 
 

Ratio 1/10 1/5 1/2 1 

Dataset 1 SSCS 1.17 1.22 1.42 2.16 

Dataset 1 EDCS 1.08 1.1 1.41 2.44 

Dataset 2 SSCS 1.17 1.21 1.53 2.66 

Dataset 2 EDCS 1.2 1.23 1.54 2.69 
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Figure-6. (a) and (b) Two examples of coarse image 
description conducted on the first dataset. First row: query 
image and its CS representation. Second row: three most 
resembling images using EDCS. Third row: three most 

resembling images using SSCS. 
 

Figures 7 and 8 provide some examples of coarse 
image description (for k = 3) for Datasets 1 and 2, 
respectively. It can be seen from the examples, 
considering the EDCS strategy that the first image from 
the library is apparently similar to the query subject, 
however, the second and third ones are not necessarily 
seemingly close to it. By contrast, the SSCS strategy is 

featured by a more semantic harmony among the 
identified closest library images. 

For the sake of comparison, we run a reference 
method based on local features, called SURF [41]. This 
method, well known for its accurate and fast processing 
capabilities, was originally developed for the detection of 
single objects. The underlying concept of the SURF-based 
method is that a number of salient features, denoted 
keypoints, is extracted from a given test image and then 
matched to an ensemble of beforehand prepared templates 
of the object to check which of them is possibly contained 
in the target image. For our experiments, we have 
exploited the algorithm available in [42], which 
incorporates the SURF-based matching method [41] and 
geometric transformations [43], [44] to determine the 
bounding box surrounding the object being searched for. 
Since we are dealing with a multiobject recognition 
problem, for each class of objects, we cropped its 
corresponding templates from the training images 
containing it.  

Given a test (query) image, we proceed by 
checking the presence of all the templates pertaining to all 
the available classes of objects. If at least one template of 
a given class is detected in the query image, we consider 
its class as present in the scene. Otherwise, the object is 
assumed absent. The training/test images used for the 
SURF-based method are the same as those used for both 
EDCS and SSCS techniques. The per-class accuracies as 
well as the SEN and SPE values achieved by this reference 
method on both datasets are reported in Tables 3 and 4, 
respectively. 

In overall terms, it can be pointed out that the 
SURF-based method performs better than EDCS and 
SSCS. This expected result is motivated by the fact that 
this method captures local details within the image and 
uses them to describe the objects, making thus the 
recognition task potentially more precise than our 
proposed strategies, which instead deal with the images as 
single entities. On the other hand, whilst SURF-based 
method analyzes thoroughly the images, it is 
comparatively far more computationally demanding. 
Indeed, while our approach performs over 1 s/image, the 
SURF-based method requires around 46 s/image on the 
same machine. Such a processing time cannot be 
envisioned in our application context. In Figure-9, we 
provide the outcomes of the SURF-based method for the 
same test images shown in Figures 7 and 8. 
 
C. Robustness to illumination 

To evaluate the SEN of the proposed strategies to 
illumination problems, we considered a scenario in which 
the training and test images are acquired in two separate 
daytimes. In greater detail, the dataset is composed of 51 
training images captured in the morning and 79 test 
images acquired in the evening. 
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Table-6.Per-Class, SEN, and SPE accuracies obtained for the separate daytimes scenario, with EDCS 
(k = 1 AND 1/10 RATIO) and SSCS (k = 3 AND 1/2 RATIO). 

 

Objects 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 SEN SPE 

EDCS 87.50 54.16 94.44 66.66 51.38 90.27 44.44 80.55 80.55 95.83 87.50 43.05 54.16 48.61 68.05 52.90 84.34 

SSCS 86.11 52.77 94.44 48.61 48.61 91.66 51.38 44.44 45.83 45.83 65.27 51.38 52.77 52.77 88.88 72.25 68.00 

 

 
(a) 

 

 
(b) 

 

Figure-7. (a) and (b) Two examples of coarse image 
description corresponding to the second dataset. First row: 
query image and its CS representation. Second row: three 

most resembling images using EDCS. Third row: three 
most resembling images using SSCS. 

 
In this experiment, the values of k (number of 

multilabeling images) and the image resolution ratio refer 
to the ones which yielded the best accuracies in Table I 

(i.e., EDCS: k = 1 and a 1/10 ratio, SSCS: k = 3 and a 1/2 
ratio). The related results are summarized in Table VI, 
where both per-class accuracies as well as SEN and SPE 
metrics are listed. From these results, it can be noticed that 
the SEN of the EDCS strategy is about 25% less than that 
of SSCS. This supports that comparing images in the 
semantic domain is more effective than a direct distance 
computation in a given image domain representation (in 
our case in the CS coefficient domain). In a real-
implementation scenario, we recommend to construct the 
set of training images in such a way that it conveys 
maximum representativeness to cover all the predefined 
objects and various possible image acquisition conditions 
(e.g., changes of illumination). 
 
CONCLUSIONS 

A common way of tackling the issue of object 
recognition under a blind rehabilitation prospect is the 
reliance on detecting one specific kind of objects. As to 
relay more information on the scene under analysis, 
broadening the emphasis to multiple objects becomes 
necessary but raises implementation issues due to the very 
tight time constraint. To this end, this paper introduces a 
novel multiobject detection approach for indoor scenes 
through coarse image description, which is fulfilled by 
multilabeling an image acquired by a camera mounted on 
the user. Coarse image description was considered with 
the aim to enhance the perception and the comprehension 
of a blind individual to his/her nearby objects in an indoor 
environment.  
 

 
 

Figure-8. Results of SURF-based method achieved on the 
examples in Figures 7 and 8. First row for dataset 1 and 

second row for dataset 2. Detected objects are as follows. 
Top left: External door, Office, Pillar, Display screen, and 

Chairs. Top right: Board, External door, and Stair door. 
Bottom left: Stairs, Board, Pillar, and Elevator. Bottom 
right: Corridor, Board, Laboratories, and Self-Service. 
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The idea is to make use of an offline prepared 
library consisting of different images captured from 
different points distributed all over the considered indoor 
environment. Image representation was dealt with through 
a CS-based technique to guarantee compactness, and thus 
short image analysis time. The query image is coarsely 
described by fusing a given number of most similar 
images from the library. In this context, the similarity 
concept was carried out by proposing two strategies, a 
basic Euclidean distance strategy and a semantic-based 
similarity. The latter one is preferred over the former one 
since it gauges the resemblance between images on the 
basis of their semantic content and not on their spectral 
appearances. 

Pros and cons of the present methodology can be 
summarized as follows. The two main advantages are: 1) 
its capability to detect simultaneously numerous simple as 
well as complex objects and 2) contained processing time. 
This makes it particularly suited for (quasi) real-time 
applications like assistive technologies for blind people. 
On the other side, its main drawback is related to the 
design of the set of training images, which needs a 
particular care. Indeed, a small training set favors the 
processing time but at the expense of the recognition 
accuracy, and vice versa. In general, we recommend that it 
conveys maximum representativeness to cover all the 
predefined objects and various possible image acquisition 
conditions, keeping into account that additional gains in 
processing times can be obtained by reducing image 
resolution with very limited impact on accuracy. 

As for future concerns, we think that our 
framework could be further improved by considering the 
following strategies: 

1) Developing an image rejection phase on the 
library images prior to proceeding with the multilabeling 
process to discard outlier images in the fusion stage. 

2) Applying a weighted sum on the k binary 
descriptors, while performing the fusion could also be an 
interesting way to follow but raises the problem of the 
estimation of the best weight values. 
 
REFERENCES 

 
[1] D. L. Donoho. 2006. Compressed sensing.IEEE 

Trans. Inf. Theory. 52(4): 1289-1306. 

[2] E. J. Candès, J. Romberg and T. Tao. 2006. Robust 

uncertainty principles: Exact signal reconstruction 

from highly incomplete frequency information. IEEE 

Trans. Inf. Theory. 52(2): 489-509. 

[3] L. Dandona and R. Dandona. 2006. Revision of visual 

impairment definitions in the international statistical 

classification of diseases.BMC Med.4: 1-7. 

[4] M. da Silva Cascalheira, P. Pinho, D. Teixeira and N. 

B. de Carvalho. 2012. Indoor guidance system for the 

blind and the visually impaired.IET Microw. 

Antennas, Propag. 6(10): 1149-1157. 

[5] I. Ulrich and J. Borenstein. 2001. The GuideCane-

Applying mobile robot technologies to assist the 

visually impaired. IEEE Trans. Syst., Man, Cybern. 

A, Syst., Humans. 31(2): 131-136. 

[6] S. Shoval, J. Borenstein, and Y. Koren. 1998. 

Auditory guidance with the Navbelt-A computerized 

travel aid for the blind. IEEE Trans. Syst., Man, 

Cybern. C, Appl. Rev. 28(3): 459-467. 

[7] M. R. Strakowski, B. B. Kosmowski, R. Kowalik, and 

P. Wierzba. 2013. An ultrasonic obstacle detector 

based on phase beamforming principles. IEEE 

Sensors J. 6(1): 179-186. 

[8] S. Pundlik, M. Tomasi and G. Luo. 2013. Collision 

detection for visually impaired from a body-mounted 

camera. In: Proc. IEEE Conf. Comput. Vis. Pattern 

Recognit. Workshops (CVPRW). pp. 41-47. 

[9] V. Pradeep, G. Medioni and J. Weiland. 2010. Robot 

vision for the visually impaired. In:Proc. IEEE Conf. 

Comput. Vis. Pattern Recognit. Workshops 

(CVPRW). pp. 15-22. 

[10] M. Radvanyi, B. Varga and K. Karacs. 2010. 

Advanced crosswalk detection for the bionic eyeglass. 

In:Proc. 12th Int. Workshop Cellular Nanoscale Netw. 

Appl. (CNNA). pp. 1-5. 

[11] G. Balakrishnan, G. Sainarayanan, R. Nagarajan and 

S. Yaacob. 2004. Stereopsis method for visually 

impaired to identify obstacles based on distance. In: 

Proceeding of IEEE 1st Symp. Multi-Agent Secur. 

Survivability. pp. 580-583. 

[12] F. M. Hasanuzzaman, X. Yang, and Y. Tian. 2012. 

Robust and effective component-based banknote 

recognition for the blind. IEEE Trans. Syst., Man, 

Cybern. C, Appl. Rev. 42(6): 1021-1030. 

[13] D. López-de-Ipiña, T. Lorido and U. López. 2011. 

BlindShopping: Enabling accessible shopping for 

visually impaired people through mobile technologies. 

In:Proc. 9th Int. Conf. Toward Useful Services Elderly 

People Disabilities. pp. 266-270. 

[14] E. Tekin and J. M. Coughlan. 2009. An algorithm 

enabling blind users to find and read barcodes. 

In:Proc. Workshop Appl. Comput. Vis. (WACV). pp. 

1-8. 



                                    VOL. 12, NO. 11, JUNE 2017                                                                                                              ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                               3400 

[15] H. Pan, C. Yi and Y. Tian. 2013. A primary travelling 

assistant system of bus detection and recognition for 

visually impaired people. In: Proc. IEEE Int. Conf. 

Multimedia Expo Workshops (ICMEW). pp. 1-6. 

[16] T. J. J. Tang, W. L. D. Lui and W. H. Li. 2012. Plane-

based detection of staircases using inverse depth. In: 

Proc. ACRA. pp. 1-10. 

[17] X. Chen and A. L. Yuille. 2004. Detecting and 

reading text in natural scenes. In: Proc. IEEE Comput. 

Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR). 

2: II-366-II-373. 

[18] X. Yang and Y. Tian. 2010. Robust door detection in 

unfamiliar environments by combining edge and 

corner features. In: Proc. IEEE Comput. Soc. Conf. 

Comput. Vis. Pattern Recognit. Workshops 

(CVPRW). pp. 57-64. 

[19] S. Wang and Y. Tian. 2012. Camera-based signage 

detection and recognition for blind persons. In: Proc. 

13th Int. Conf. Comput. Helping People Special 

Needs. pp. 17-24. 

[20] J. Shotton, J. Winn, C. Rother and A. Criminisi. 2009. 

TextonBoost for image understanding: Multi-class 

object recognition and segmentation by jointly 

modeling texture, layout, and context. Int. J. Comput. 

Vis. 81(1): 2-23. 

[21] Razavi, J. Gall, and L. Van Gool. 2011. Scalable 

multi-class object detection. In: Proc. IEEE Conf. 

Comput. Vis. Pattern Recognit. (CVPR). pp. 1505-

1512. 

[22] T. Deselaers, D. Keysers, R. Paredes, E. Vidal, and H. 

Ney. 2003. Local representations for multi-object 

recognition. In: Pattern Recognition. Berlin, 

Germany: Springer-Verlag. pp. 305-312. 

[23] K. Mikolajczyk, B. Leibe and B. Schiele. 2006. 

Multiple object class detection with a generative 

model. In: Proc. IEEE Comput. Soc. Conf. Comput. 

Vis. Pattern Recognit. (CVPR). pp. 26-36. 

[24] C. Pantofaru, C. Schmid and M. Hebert. 2008. Object 

recognition by integrating multiple image 

segmentations. In: Proc. 10th Eur. Conf. Comput. Vis. 

(ECCV). pp. 481-494. 

[25] M. Aharon, M. Elad, and A. Bruckstein. 2006. K-

SVD: An algorithm for designing over completes 

dictionaries for sparse representation. IEEE Trans. 

Signal Process. 54(11): 4311-4322. 

[26] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry and Y. 

Ma. 2009. Robust face recognition via sparse 

representation. IEEE Trans. Pattern Anal. Mach. 

Intell. 31(2): 210-227. 

[27] V. M. Patel and R. Chellappa. 2011. Sparse 

representations, compressive sensing and dictionaries 

for pattern recognition. In: Proc. 1st Asian Conf. 

Pattern Recognit. (ACPR). pp. 325-329. 

[28] A. Morelli Andrés, S. Padovani, M. Tepper and J. 

Jacobo-Berlles. 2014. Face recognition on partially 

occluded images using compressed sensing. Pattern 

Recognit. Lett. 36: 235-242. 

[29] J. Yang, J. Wright, T. S. Huang and Y. Ma. 2010. 

Image super-resolution via sparse representation. 

IEEE Trans. Image Process. 19(11): 2861-2873. 

[30] S. Rao, R. Tron, R. Vidal, and Y. Ma. 2010. Motion 

segmentation in the presence of outlying, incomplete, 

or corrupted trajectories. IEEE Trans. Pattern Anal. 

Mach. Intell. 32(10): 1832-1845. 

[31] J. Mairal, M. Elad and G. Sapiro. 2008. Sparse 

representation for color image restoration. IEEE 

Trans. Image Process. 17(1): 53-69. 

[32] B. Shen, W. Hu, Y. Zhang and Y.-J. Zhang. 2008. 

Image inpainting via sparse representation. In: Proc. 

IEEE ICASSP. pp. 697-700. 

[33] L. Lorenzi, F. Melgani and G. Mercier. 2013. 

Missing-area reconstruction in multispectral images 

under a compressive sensing perspective. IEEE Trans. 

Geosci. Remote Sens. 51(7): 3998-4008. 

[34] A. Quattoni, M. Collins and T. Darrell. 2008. Transfer 

learning for image classification with sparse prototype 

representations. In: Proc. IEEE Conf. Comput. Vis. 

Pattern Recognit. (CVPR). pp. 1-8. 

[35] J. Wright, Y. Ma, J.Mairal, G. Sapiro, T. S. Huang 

and S. Yan. 2010. Sparse representation for computer 

vision and pattern recognition. Proc. IEEE. 98(6): 

1031-1044. 

[36] E. J. Candès and T. Tao. 2005. Decoding by linear 

programming.IEEE Trans. Inf. Theory. 51(12): 4203-

4215. 



                                    VOL. 12, NO. 11, JUNE 2017                                                                                                              ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                               3401 

[37] D. L. Donoho, Y. Tsaig, I. Drori and J.-L. Starck. 

2012. Sparse solution of underdetermined systems of 

linear equations by stagewise orthogonal matching 

pursuit. IEEE Trans. Inf. Theory. 58(2): 1094-1121. 

[38] C. K. I. Williams and D. Barber. 1998. Bayesian 

classification with Gaussian processes. IEEE Trans. 

Pattern Anal. Mach. Intell. 20(12): 1342-1351. 

[39] C. E. Rasmussen and C. K. I. Williams. 2006. 

Gaussian Processes for Machine Learning. 

Cambridge, MA, USA: MIT Press. 

[40] Y. Bazi and F. Melgani. 2010. Gaussian process 

approach to remote sensing image classification. 

IEEE Trans. Geosci. Remote Sens. 48(1): 186-197. 

[41] H. Bay, T. Tuytelaars and L. Van Gool. 2006. SURF: 

Speeded up robust features. In: Proc. 9th Eur. Conf. 

Comput. Vis. (ECCV). pp. 404-417. 

[42] SURF-Based Object Detection. [Online]. Available: 

http://www.mathworks.it/it/help/vision/examples/obje

ct-detection-in-a-clutteredscene- using-point-feature-

matching.html, accessed June 25. 

[43] R. Hartley and A. Zisserman. 2003. Multiple View 

Geometry in Computer Vision. Cambridge, U.K.: 

Cambridge Univ. Press. 

[44] P. H. S. Torr and A. Zisserman. 2000. MLESAC: A 

new robust estimator with application to estimating 

image geometry. Comput. Vis. Image Understand. 

78(1): 138-156. 

[45] SparseLab. [Online]. Available: 

http://sparselab.stanford.edu, accessed Feb. 1. 

[46] C. E. Rasmussen and K. I. Williams. 2014. Gaussian 

Process Soft-Ware [Online]. Available: 

http://www.Gaussianprocess.org/gpml/code/matlab/ 

doc/, accessed June 25. 

http://www/
http://www.gaussianprocess.org/gpml/code/matlab/

