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ABSTRACT 

An analytical approach to correlate the travel distance of the drops from the irrigation sprinkler with the drops 
water volume was studied.Such approach was used along with a simplified ballistic model, able to define the trajectories of 
the drops produced by the nozzle of the sprinklers, to develop a rapid and simple method to obtain sprinkler drop-size 
spectrum from the water distribution radial curves. 
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INTRODUCTION 

Sprinkler irrigation practices have been shown to 
have a significant impact on both quantity (rate of growth 
and biomass produced) and quality of field-grown crops 
[1-2]. The knowledge of the sprinkler droplet-sizes spectra 
can help in the selection and design of sprinkler irrigation 
systems. The size of the water droplets produced from 
nozzles is of concern to irrigation designers and farmers 
for two main reasons: 1) the small droplets are subject to 
wind drift, evaporation losses, and distortion of the water 
application patterns by the wind [3-5]; 2) large-sized 
droplets normally impact the crops and the soil with more 
kinetic energy, causing damages to the leaves and soil 
crust formation that reduces the soil infiltration rate, 
especially in soils with the finest texture [6-9]. Both of 
them may reduce distribution uniformity and efficiency of 
sprinkler irrigation systems. 

Many researchers have reported that droplet 
formation is mainly affected by pressure, nozzle size, and 
nozzle configuration [10-14]. In an impact sprinkler, 
droplet formation is a consequence of both the jet 
pressure, through the friction with the surrounding air, and 
the arm impacted by the jet, generating a droplet 
distribution almost perpendicular to the main jet. The 
process of jet break-up is quite complex [15]. The 
relatively high speed of the jet is sufficient to cause 
disintegration into droplets in the air, a process in which 
inertia, viscosity, and capillary forces are involved. 
However, the complexity of the jet-breakup process makes 
a rigorous theoretical analysis difficult. It seems clear that 
droplet formation begins on the surface of the jet and 
continues up to the centre ([16] and [3]). Droplets 
disintegration occurs as the water stream travels through 
the air. Considering that the droplet diameter formed in the 
jet-breakup process is inversely proportional to air speed, 
the surrounding water of the jet produces small droplets; 
conversely large droplets are produced by the axis of the 
jet due to the lower relative speed of the air that is already 
routing. This is the reason why the medium-sized droplets 
produced near the nozzle are much smaller than those 
produced far from the nozzle. 

Because this complicated process of jet 
disintegration is difficult to model, trajectory-simulation 
studies tend towards simplification, considering the 
process as a set of spherical and isolated droplets of 
various sizes which move through the air independently, 
with air drag coefficients that are functions of droplet 
diameters only ([10], [16], [17]), or of the Reynolds 
numbers of the droplets moving in the air ([3], [9], [18], 
[19]). As the action of the drag force on a set of droplets is 
significantly lower than that acting on each isolated 
droplet forming the jet, Kincaid [9] proposed to multiply 
the velocity by a reducing coefficient when calculating the 
drag coefficient in the initial zone, where the jet is more 
compact (15% of the throw radius in an impact sprinkle). 

Several studies of rainfall droplets have shown 
that droplets with a diameter larger than 5.5 mm are 
unstable and break into small droplets, although there can 
be greater droplet sizes for short period of time [20]. As 
droplets interfere each other in the air, it is necessary to 
introduce a correction coefficient to better adjust the 
simulation to reflect reality ([3], [13]). All factors 
affecting the disintegration of the jet into droplets can have 
various influences on the correction coefficient. The main 
factors are wind action, pressure, the internal design of the 
nozzle, and the presence or absence of a jet straightening 
vane VP, which determines the degree of crossness of the 
throw and the shape of the water distribution radial curve 
[21]. 

Many experimental studies have been carried out 
to analyse droplet size distribution using different a variety 
of techniques, more or less simple and more or less 
accurate, for different types of sprinkler. The reported data 
were collected using the pellet, stain, and photographic 
methods. The most commonly used method in the past 
was the pellet (flour) method ([10], [11], [12], [13], [22], 
[23]). With the develop of electronics and computer 
technologies, optical methods using laser equipment ([24], 
[20]) and optical spectrometric methods [15] have 
emerged, making it possible to register automatically the 
data with higher precision. However, Kincaid et al. [20] 
found that the data from the pellet method compared well 
with the laser method. 
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Because the pellet method is time-consuming and 
the optical methods using laser or spectrometer require 
very expensive devices, an indirect method for the 
determination of droplet size spectrum, based on water 
distribution radial curve obtained in laboratory, was 
proposed by von Bernuth and Gilley [16]. In this method, 
each distance from the sprinkler is associated with a 
unique droplet diameter. The function between travel 
distance (throw radius) and diameter was obtained by a 
ballistic calculation, that is, a numerical integration of the 
differential equation of the droplet motion using Runge-
Kutta technique, without considering evaporation and 
wind effects. 

From the experimental water distribution radial 
curve, von Bernuth and Gilley [16] determined, for each 
distance from the sprinkler, the small volume of water 
associated to the diameter of a droplet with an assigned 
travel distance. Calculating the ratio between these volume 
elements and the total volume, they then found the volume 
frequency of each diameter and thus the droplet size 
spectrum. Finally, they obtained the cumulative volume 
frequency curve by summing the volumes of the different 
droplet diameters and comparing them with the total 
volume. 

To carry out this procedure they discretised the 
distances of the water distribution radial curve and the 
droplet diameters, obtaining in the end a step-by-step 
curve of frequency of the diameters. Von Bernuth and 
Gilley [16] emphasised that the water distribution radial 
curve must be obtained in controlled conditions of high air 
humidity (very low evaporation) and the absence of wind, 
i.e., in laboratory conditions. For model validation they 
used the data reported by Kohl [11], obtaining a good 
accordance. 

The same calculation procedure, i.e., the ballistic 
calculation using Runge-Kutta numerical integration 
technique together with the association of each droplet 
diameter with a given distance from the sprinkler and a 
given water volume obtainable from the laboratory water 
distribution radial curve, was used by Carriòn et al. [21] in 
SIRIAS simulation model, which can be used to design 
new sprinkler irrigation systems that optimize water use or 
to improve the existing ones. 
 
MATHEMATICAL MODELLING 

In the current work the indirect method of von 
Bernuth and Gilley was used, but the Runge-Kutta 
numerical integration technique was substituted for the 
ballistic-analytical model proposed by Lorenzini [19]. 
Secondly, an analytical approach was developed to 
correlate the water distribution radial curve with both 
numerical and volumetric cumulative frequencies. 

These modifications served to simplify the 
calculus, improve the precision of the results and enable 
implementation of the model in a spreadsheet. 
 
Ballistic model for determination of the droplet 
trajectory  

To determine the trajectory of the droplets, and to 
therefore obtain the distance covered by the droplets by 

varying their diameters, a ballistic model proposed and 
validated by Lorenzini [19] was used. According to this 
model, the droplet-trajectory determination for each size is 
based on the following assumptions: 
 
 the physical system considered is the single droplet 

exiting from the nozzle of the sprinkler and generated 
exactly in correspondence to the nozzle outlet; 

 the forces applied to the system are weight, buoyancy 
and friction; 

 the droplet has a spherical shape until soil impact, a 
condition which is consistent with photographic 
studies by Okaruma and Nakanishi [25]; 

 friction has the same direction as velocity for all the 
path but the opposite sense; 

 the volume of the droplet is invariant during its flight 
(evaporation is considered as instantaneous and 
occurring at the end of the flight); and 

 there is no wind disturbing the flight.  
 

From these bases it is clear how the model 
simplifies the phenomenon studied. However, regarding 
the last two, the experimental data used to reconstruct the 
water distribution radial curves are usually obtained in the 
laboratory under conditions of no wind and minimal 
evaporation losses due to an air humidity close to 100%. 
The operating parameters required to complete the 
modelling are: 
 
 the nozzle height, h (m), with respect to ground level; 

and 
 the exit velocity of the droplet from the nozzle, v0 (m 

s-1), inclined at an angle α degrees with respect to the 
horizontal direction (trajectory angle). 

 
The parametric equations of the Lorenzini’s 

model are: 
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and the parametric equations of velocity are: 
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Equation (2) is used to calculate the time of flight 

 (s), i.e., the time interval between the moment the 
droplet exits the nozzle and the moment it reaches the soil: 
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where: x  and y  are respectively the velocities (m s-1) in 

the horizontal and vertical directions; m is the droplet mass 
(kg); n is the actual mass of the droplet accounting for its 
buoyancy component in air (kg); g is acceleration due to 
gravity (m s-2); and k is the friction parameter calculated 

by 
2

Af
k





 (here, f  is the non-dimensional friction 

factor according to Fanning, ρ is the air density, depending 
on temperature, and A is the cross-sectional area of the 
droplet); t is time (s); h is the nozzle height (m); v0x and v0y 
represent the horizontal and vertical velocity components 
(m s-1), respectively, at the beginning of the process and 
are given as: 
 

cosvv 0x0                                                                (6) 

 
sinvv 0y0                                                                (7) 

 
Equations (1), (2), (3), (4) and (5) are analytical 

solutions to the ballistic problem. Therefore, they can be 
easily applied to any particular configuration of the 
system, i.e., for each droplet diameter, flow state, air 
temperature, nozzle geometry, angle of trajectory, height 
of sprinkler from the ground level, initial flow rate and 
velocity, in the hypotheses formulated.   

Attention must be paid to the choice of the value 
of k, because this friction parameter is a function of the 
friction factor f, which is dependent on the flow state in 
the air-boundary layer of the droplet. If the droplet has a 
spherical shape, as considered in the initial assumptions, 
the possible flow states are three: a) laminar (for Reynolds 
number Re ≤ 2); b) transitional (for 2< Re < 500); and c) 
turbulent (for 500 ≤ Re < 200,000). The friction factor f is 
given by [26, 27 and 28]: 
 
a) for Reynolds number 0.1 ≤ Re ≤ 2: 
 

Re

24
f                                                                              (8) 

 
b) for 2 <Re < 500: 
 

6,0Re

5,18
f                                                                (9) 

c) for 500 ≤ Re < 200,000: 
 

44,0f                                                              (10) 

 
Case (a) is, statistically speaking, very unlikely to 

occur in practice with sprinkler irrigation. In fact, at the 
usual initial flow velocities of irrigation water, values of 
Re ≤ 2 would imply droplet diameters on the order 

of1∙10ˉ6 m (1 μm), which are more typical with chemical-
spray applications rather than with irrigation. 

While it is unnecessary to use Equation (8), 
nevertheless the velocity varies during the trajectory and 
thus Re changes. Therefore, on the basis of Equations (9) 
and (10), the k value is variable. 

To use the ballistic model given by the analytical 
equations (1), (2), (3), (4), and (5) in an easier way and 
maintain a general applicability, Lorenzini [19] proposed 
calculating the f0 value and then k0 at the initial conditions 
of exit from the nozzle, based on the velocity v0 and 

therefore on the pertinent 


 Dv
Re 0 , using Equation (9) 

or Equation (10) depending on the value of Re. 
Lorenzini [19] applied Equation (4), setting

0y to obtain the time ttop at the top of the trajectory, 

which is when the vertical component of the velocity 
reverses its direction. At this point the droplet is in motion 
at the lowest velocity of the entire trajectory, as only the 
horizontal velocity topx  is present. The value of this 

velocity can be calculated from Equation (3) by 

substituting the time ttop. Consequently,


 Dx
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top
 ,ftop 

can be computed from Equations (8) or (9) according to 
the flow state and hence ktop determined. If both the Re0 
and Retop values belong to the turbulent flow state, then k 

is constant and simply defined by
2

Af
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
, using 

Equation (10) to compute f; otherwise, kcan be computed 
as an arithmetic mean of k0 and ktop. Finally, the flight 
time, , is determined from Equation (5) and the travel 
distance, xt , by Equation (1). 
 
Polynomial representation of water distribution radial 
curve and droplet-travel distance  

The water distribution radial curve I (mm h-1) can 
be defined as the water flow rate Q with respect to the 
wetted surface unit area, Aw: 
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It is determined in laboratory (tests) by measuring 

the application rates of the water accumulated in collectors 
laid out in a radial pattern. The water distribution radial 
curve is a function of the distance x from the sprinkler: 
 

 xfI                                                              (12) 

 
To find the function f(x), and hence to 

mathematically represent the water distribution radial 
curve, a polynomial of degree six was obtained by the 
least-squares method. This sixth-degree polynomial 
regression was applied to 37 water distribution radial 
curves obtained in indoor tests under conditions of no 
wind and high relative humidity (near 100 %). The tests 
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were conducted in accordance with ISO 7749-2 and ASAE 
Standard S330.1. All the water distribution radial curves 
were taken while maintaining the trajectory angle fixed at 
30° and the sprinkler height at 0.65 m and then varying the 
sprinkler manufacturer, the nozzle diameter and the 
operating pressure. One of these curves is shown in 
Figure-1; the determination coefficient, R², varied between 
0.965 and 0.996, with a mean value of 0.984 (Table-1). 

In the previous paragraph the correlation between 
the travel distance, xt, and the mass, and therefore the 
droplet diameter, was found by introducing the total flight 
time, given by Equation (5), into Equation(1). The travel 
distance xt is obviously a function of the sprinkler height 
and the exit velocity from the nozzle, v0, and hence of the 
nozzle diameter d, flow rate Q, and trajectory angle α. 
 

 
 

Figure-1. Experimental water distribution radial curve I 
(mmh-1) and 6° polynomial regression with R2=0.989 vs. 
distance x (m) from the Perazzi P22 sprinkler with an 8-

mm nozzle diameter at 300 kPa pressure. 
 

Applying the ballistic model to the 37 water 
distribution radial curves, the link between the travel 
distance xt and the droplet diameter Dwas found and hence 
its mathematical representation: 
 

 Dpxt                                                              (13) 

 
The function p(D) best approximating the results 

was a fourth-degree polynomial obtained by mean 
polynomial regression. This polynomial presented a very 
high determination coefficient (R²) of 0.999, which was 
nearly constant with varying maximum jet-travel distance. 
One of the 37 polynomial curves of Equation(13), along 
with the values computed by the ballistic model, is shown 
in Figure-2. 
 

 
 

Figure-2. Calculated travel distance and 4° polynomial 
regression (R2=0.999) vs. droplet size for sprinklerPerazzi 
P22 with 8-mm nozzle diameter at 300 kPa. 
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Table-1. Determination coefficient R2of 6° polynomial regression of water distribution 
radialcurve for various sprinklers, nozzle diameters and pressures. 

 

Sprinkler Nozzle diameter (mm) Pressure (kPa) R2 

Komet R8 

6 

200 0.986 

250 0.988 

300 0.989 

350 0.989 

400 0.989 

7 

200 0.985 

250 0.989 

300 0.985 

8 

200 0.994 

250 0.994 

300 0.996 

10 

200 0.976 

250 0.986 

275 0.993 

Perazzi P22 

6 

200 0.986 

250 0.989 

300 0.993 

350 0.995 

400 0.995 

8 

200 0.968 

250 0.989 

300 0.989 

10 

200 0.981 

250 0.990 

300 0.992 

Rossi R15 

7 

200 0.980 

250 0.975 

300 0.973 

8 

200 0.975 

250 0.967 

300 0.965 

Sime K1 

8 

200 0.985 

250 0.975 

300 0.975 

9 

200 0.980 

250 0.970 

300 0.973 

Average 0.984 
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Mathematical approach for determining the droplet 
population from the experimental water distribution 
radial curve  

As the water distribution radial curve I is 
identical to the specific flow rate with respect to the 
distance x from the exit point, in the absence of wind the 
wetted area has a circular shape (Figure-3). 

In this area, a radial direction, x, with origin in 
the centre, where is located the sprinkler, and a circular 
ring with infinitesimal width dx and average radius xt can 
be individuated. 
 

 
 

Figure-3. Circular wetted area obtained from a sprinkler 
without wind and infinitesimal ring associated with a 

given droplet diameter. 
 

The area covered by this ring represents an 
infinitesimal, dS: 
 

dxxdS t  2                                                            (14) 

 
Given a one-hour time basis, for simplicity and to 

maintain general applicability, into the circular ring with 
infinitesimal area dS falls a water volume, also 
infinitesimal, dV. 

As xt is the travel distance of a well-defined and 
unique droplet diameter D, with volume VD, the 
infinitesimal volume dV must be equal to the droplet 
volume VD multiplied by the infinitesimal number of 
droplets dn (all of diameter D) which have fallen into the 
circular ring dS in one hour: 
 

dnVdV D                                                              (15) 

 
Also, the water distribution radial curve I, which 

is equal to the water volume falling on the surface in an 
hour, with respect to an infinitesimal circular ring and 
hence to the travel distance xt, is: 
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Substituting Equation (12) and (14), Equation (16) 
becomes: 
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The derivative of Equation (13) is given by: 

 
 dDD'pdx                                                              (18) 

 
Substituting xt and dx, respectively, with (13) and 

(18), we obtain from Equation (17): 
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Hence, the derivative of the droplet number n 

with respect to the diameter D is: 
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If a dimensional class of droplets is fixed, for the 

ith class, for example from 0.49 to 0.51 mm, represented 
by the diameter Di (in the example of 0.5 mm), the 

corresponding value of the derivative 
idD

dn








is obtained 

from Equation (20). 
At this point it is possible to calculate the number 

of droplets Δni belonging to the ith dimensional class, 
given that this class is represented by a lower limit (0.49 
mm) and an upper limit (0.51 mm) and hence a ΔDi equal 
to 0.02 mm: 
 

i
i

i D
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
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(21) 

 
The volume of liquid, ΔVi, of the ith class is 

readily computed as: 
 

iiDii nDnVV  3

6



                                         
(22) 

 
This is the droplet volume of intermediate 

diameter Di, and therefore representative of the above-
mentioned class, multiplied by the number of droplets Δni 

of the class. 
 
Application of the ballistic model and mathematical 
approach  

The calculation of the sprinkler droplet-size 
spectrum must follow a procedure (algorithm) built of 
some steps.  

The first step consists of finding the minimum, 
xtmin, and maximum, xtmax, travel distances, which depend 
on the sprinkler characteristics and are deducible from the 
experimental water distribution radial curve. 

xt 

dx 

x
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The second step consists of the application of the 
analytical ballistic model by varying the diameter Diwith a 
chosen rise, for example 0.02 mm, beginning from a 
droplet of diameter D1 equal to the minimum travel 
distance xtmin and ending with a droplet of diameter Dmax 
equal to the maximum travel distance xtmax. 

The third step consists of finding the Equation 
(12), by applying a sixth-degree polynomial regression to 
the graph of the water distribution radial curve.  

Subsequently, the fourth step concerns  the 
determination of the polynomial   Dpxt   regarding to 

the Eq. (13), by the creation of a plot of x vs. D and 
applying a fourth-degree polynomial regression; thus, the 
derivative p'(D) will be a polynomial of degree three. 

The fifth step consists of finding, for each 

diameter Di, the derivative 
idD

dn








 by applying Equation 

(20). Hence, as the range of each class of diameters ΔDiis 
fixed (in this case 0.02 mm), the fifth step finishes with the 
calculation of the number of droplets Δni, belonging to 
each class, according to Equation (21). 

The sixth step concerns the calculation of the 
values of the water volume ΔVi for each class, according to 
Equation (22). 

As the total number of droplets  inN  is 

defined, the seventh step consists to finding the numeric 
frequency for each class fni: 
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n
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and thus the numeric cumulative frequency, Fni, for each 
class, that is, the ratio between the total number of droplets 
from the first class to the ith class and the total number of 
droplets, N: 
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Calculation of the percentage ratio between the 

water volume ΔViobtained from Equation (22) and the 
total volume t iV V   gives the volumetric frequency 
for each class: 
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
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i
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V
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Finally, as for the numerical cumulative 

frequency, it is possible to define the volumetric 
cumulative frequency, Fvi, for each class:  
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From the columns of the cumulative number 

frequency and the cumulative volume frequency, plots of 
each vs. droplet size can be drawn. These diagrams are the 
desired droplet-size spectra. 
 
CONCLUSIONS 

Starting from the experimental water distribution 
radial curve, an analytical approach based on a 
mathematical analysis was developed to obtain a 
correlation between the water volume of the drops falling 
at a given distance from the sprinkler nozzle and their 
diameter. The equations of a ballistic model proposed by 
Lorenzini [19] for the calculation of the trajectories of the 
drops exiting from the nozzle were included in this 
mathematical procedure.  

The result of this work was the implementation of 
an indirect method for the determination of the spectrum 
of the drops diameters produced by the nozzle that is a 
method able to give the numerical and volumetric 
frequency of the diameters of the drops.  

This indirect method can be used in models for 
the design of sprinkler irrigation systems, useful to obtain 
a good uniformity of water distribution to optimize water 
use, but it needs to be validated by using experimental 
data, as expected in part II. 
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