
 VOL. 12, NO. 12, JUNE 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 3903

SYSTEM CALL AUTHORIZATION IN LINUX BY A SECURE DAEMON

Vivek Radhakrishnan, Hari Narayanan and Shiju Sathyadevan
Amrita Center for Cybersecurity Systems and Networks Amrita School of Engineering, Amritapuri Amrita Vishwa Vidyapeetham

Amrita University, India
E-Mail: hari@am.amrita.edu

ABSTRACT

Compromises on data integrity and confidentiality have exposed the vulnerability of security architectures of
traditional Linux-based operating systems against malicious attacks. Minimized functionality and increased complexity
restrict the effectiveness of traditional approaches such as sandboxing in handling attacks. We proposed architecture based
on restricted user privileges and authorization to secure the Linux operating system. We developed a Secure Daemon to
authorize the system calls. All the system calls invoked by user processes are redirected to secure daemon using a dynamic
dispatch mechanism (wrapper functions) implemented on top of the existing libraries. Our approach ensures that critical
system resources are protected in the event of an attack. Since the major elements of the proposed system operate at the
user level, it is portable across all Linux distributions.

Keywords: linux, authorization, system calls, secure daemon, wrapper functions, dynamic dispatch mechanism.

INTRODUCTION

All the operating systems employ some kind of
access control mechanisms. Authentication and
authorization are two very important steps in an access
control mechanism. Authentication is the process of
verifying or validating the identity provided by a person or
an entity. Access control involves access policy definition
and access policy enforcement. Policy definition is the
specification of access rules which is also called
authorization. The next step is the policy enforcement
which happens when an access request is actually
received. A decision is taken whether to grant or deny the
access.

In traditional Linux operating systems,
discretionary access control (DAC) mechanism is used.
DAC uses identity-based authorization. A process can be
identified by its userid and the groupid. When a process
tries to access a system resource, the kernel verifies its
effective userid and the effective groupid and matches it
with the resource permissions. If permission is matching, a
resource handle is returned to the process. The process can
perform its intended operation on the resource using this
resource handle. If permissions do not match, the process
is denied access and an error code is returned instead of
the resource handle. If a process runs on behalf of a user, it
gets all the privileges of the user; in other words, the
process gets the ambient authority. If a user downloads a
malware affected application from the internet and
executes it, the application runs with the ambient
authority. This is a dangerous situation. The application
has the potential to cause significant damages to the
system.

We have developed a new security architecture
which builds a security ticket based authorization on top of
the existing identity-based authorization. This architecture
ensures that the application or the process has the exact
privileges just enough to perform its intended tasks. This
effectively puts the application into a restricted

environment or in a sandbox. So even if the application is
malware affected it can do the least amount of damage as
it is running in a sandbox. This work is a continuation of
our previous work [1]. We have come up with a modular
design in which the entire architecture is broken down into
modules for the sake of implementation. We have partially
implemented few modules.

Usually, a process does not make system calls
directly. It uses some API library like glibC and invokes
the API with the same name as the system call. The APIs
in libC are wrapper functions to system calls. They hide
the lower level complexities from the user processes by
providing high-level simple interfaces. There will be
assembly code in these wrapper functions which causes an
interrupt and context switch from user mode to kernel
mode. Before that, the system call number is placed in
process registers and parameters are placed in kernel
CALL stack. In the kernel, authorization is done and the
actual system call is invoked by the system call handler.

We have implemented another wrapper function
to the glibC API, which by itself is a wrapper for the
system calls. When the process invokes the glibC API, our
wrapper function is executed. In the normal mode, the
actual API is executed as in the traditional Linux. In the
secure mode, the parameters of the APIs are transferred to
a Secure Daemon via Unix Domain Socket which does an
additional authorization on top of the existing
authorization using the effective userid and the effective
groupid of the process. The resource handle is returned
back to the wrapper function by the Secure Daemon which
in turn returns it to the original user process. Also, we
have analyzed our system to show that the latency incurred
is very small.

The remainder of this paper is organized as given
below. Section II describes the design. Section III
describes the implementation. Section IV presents the
analysis and result. Section V presents our conclusion and
section VI describes the related work.

 VOL. 12, NO. 12, JUNE 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 3904

Figure-1. Top down modular design of the security architecture.

DESIGN

The proposed secure Linux architecture [1] is
broken down into several modules in a top-down fashion
for the sake of implementation. Each module is modifiable
without affecting the other modules. The major modules
are SecLib, Secd, Modified LibC, Modified kernel,
Sandbox Tool and Sandboxed terminal as shown in the
Figure-1. The shaded boxes at the bottom of the Figure-1
represent modules which are already implemented.
Implementation of the unshaded boxes is in progress.

SecLib

Authorization in our security architecture is based
on Security Tickets. When a process issues a system call,
it should be accompanied by the Security Ticket. Secd will
verify the Security Ticket for authorizing the system call.
SecLib is a library which contains procedures to create,
delete and refine Security Tickets. Also, it contains
procedures to authorize resource requests.

SecD

Secd is a security daemon which always runs on
startup. It has a unique userid and groupid for its
protection. All the critical system calls are rerouted to
Secd for authorization. We have implemented the
authorization of open system call which opens a file from
the hard disk. When a process invokes open or fopen API,
it will be rerouted to the Secd for authorization via Unix
domain socket by the modified LibC. Secd will verify the
Security Ticket for authorization. If authorization is
successful, then Secd would open the file and return the
file descriptor back to the process via Unix domain socket.

Modified LibC

Wrapper functions are written for the glibC APIs
open and fopen which would reroute the system call

parameters to the Secd for authorization if the process is in
the secure mode. In the normal mode, the wrapper
function invokes the original system call itself directly.
Wrapper function implementation is in progress for the
other critical system calls like socket create, socket bind,
file create etc.

Modified kernel

The Linux kernel is modified by adding new
system call which switches a process from normal mode to
the secure mode. Also, we need another system call to
query the current mode of the process which invoked the
glibC API.

Sandbox tool

This module reads the Security Descriptor File of
a process and creates a sandboxed child with the privileges
specified in the descriptor file.

Sandboxed terminal

This is a shell interface for the user to execute
programs. Sandboxed Terminal uses Sandbox Tool
internally.

IMPLEMENTATION

The proposed architecture [1] for securing Linux
is shown in Figure-2. When the system is booted, the
secure daemon (Secd) automatically gets invoked in the
background. The LibC APIs are redirected to the Secd via
Unix domain socket in secure mode, in lieu of being
converted into a system call. Our system uses a dynamic
dispatch mechanism (Wrapper function) at the user level
to redirect the system call to a Secure Daemon. Dynamic
dispatch mechanism overrides the existingLibC APIs. Our
current implementation comprises of two main
components: Modified LibC and a Secure Daemon.

 VOL. 12, NO. 12, JUNE 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 3905

Figure-2. System interface architecture of
proposed system.

Modified LibC

In traditional Linux architecture, when a system
call gets invoked, LibC stores the system call name along
with its corresponding arguments in the system register.
This generates an interrupt which enables the system to
switch from the user mode to the kernel mode.

In our approach, a dynamic dispatch mechanism
implemented at the user level redirects the system call to a
Secure Daemon. The dynamic dispatch mechanism is done
by wrapper functions that override the existing LibC APIs.
A shared library is created that contains all the wrapper
functions. We have to preload the shared library in order
to execute the wrapper function instead of the original
API. To preload the shared library, we use a shell
environment variable called LD_PRELOAD. To call back
the original function in the event of a system call override,
we use dlsym() function. dlsym() function is used to
obtain the address of the original glibC function as shown
in Figure-3. This address is required to invoke the original
function if the process is running in the normal mode. The
wrapper function in the shared library reroute the glibC
API to the secure daemon via Unix Domain Socket (UDS)
if the process is running in the secure mode. The
parameters are send to the Secd for authorization as shown
in Figure-4.

Figure-3. Code snippet of calling real open
using dlsym().

Figure-4. Code snippet of parameter passing via
UDS in secure mode.

The operation of UDS is similar to that of remote

procedure calls. In contrast to other data communication
models, UDS is capable of sending file descriptors and
process credentials (process id, user id, group id) between
processes.

Secure daemon

As discussed in section II, SecD is responsible for
the issue of security tickets and the system call
authorization. It has a unique userid and groupid. When
Secd receives an open request from the wrapper function,
it retrieves the process id, effective user id (EUID) and
effective group id (EGID) of the initiated process from the
UDS and is compared against the file status. If the file
permissions are matching with the process credentials,
SecD authorizes the system call and returns the file handle
to wrapper function via Unix Domain Socket.

To further examine the working of the proposed
system, we consider the sequence of events which occurs
when a user process attempts a call open() as shown in
Figure-5.

1. When the user makes an open() system call, it is

overridden by the wrapper function
2. If the process is in secure mode, the wrapper function

passes the arguments of the open() call to SecD via
Unix Domain Socket

3. On receiving the arguments, SecD opens the file
requested by the user and returns the file descriptor to
LibC wrapper via Unix Domain Socket.

4. LibC wrapper returns the authorized file descriptor to
the user process.

5. If the process is in normal mode, the wrapper function
opens the file and returns the file descriptor to the user
process.

Figure-5. Dynamic dispatching mechanism of
open() call.

ANALYSIS AND RESULTS

Figure-6 shows the actual screen shot of the
communication between the modified LibC and Secure

 VOL. 12, NO. 12, JUNE 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 3906

Daemon in Secure mode and Figure-7 shows the screen
shot of the execution of the real open() in the normal
mode. No connection to secure daemon is established in
the normal mode.

Figure-6. Screen shot of the secure mode operation in the
proposed system.

Figure-7. Screen shot of the normal mode operation in
the proposed system.

To evaluate the performance of our system we

use the metric; time latency. Time latency comprises of
three metrics; the real metric, the user metric, and the sys
metric. Real metric is the wall clock time measured from
the beginning to end of the call. User metric is the CPU
time spent for executing the program in user mode. Sys
metric is the CPU time spent for executing the system
calls within the kernel space. Analysis of the user metric
and the sys metric indicates the CPU time the process has
used.

Figure-8. Comparison of the time latency of
the conventional Linux system with the

proposed system.

From Figure-8 it is clear that the wall clock time
utilization of our system in the secure mode exceeds that
of the conventional Linux system and the normal mode in

our system by 1 millisecond. This additional time penalty
incurred by the proposed system can be neglected keeping
in view of the additional security it offers. Wall clock time
remains the same across the normal mode of the proposed
system and the conventional Linux system. The user
metric and the sys metric remains the same across all the
three systems.

CONCLUSIONS

In this paper, we have come with a top-down
modular design to implement the security architecture
proposed by us in our previous paper [1]. The tasks that
have to be done by each of the modules are also clearly
defined. The implementation of some of the modules has
begun. We have started to create a new SecLib library by
adding a new API to it to authorize the open() system call.
We have modified the glibC by writing wrapper functions
for the APIs open and fopen. In the secure mode, these
APIs will be routed to the Secd via Unix domain socket by
the wrapper function. Secd is the daemon that actually
does the authorization for open and fopen and returns the
file descriptor back to the wrapper function. We performed
an analysis of the performance in terms of time latency
and found that there is a very insignificant delay by
employing the additional authorization.

What we have achieved is an additional level of
authorization with least overhead in the processing time.
Our future work is to complete all the modules and replace
the current authorization with a more fine-grained one
using the security tickets. Also, we will be writing wrapper
functions and authorization modules for all the major
critical system calls commonly used in Linux.

RELATED WORKS

Security of both data and host machine has been a
paramount concern for a long time. Consequently, Linux
Security model framework was introduced, which is
designed to implement mandatory access control (MAC)
by imposing minimal changes to Linux Kernel.

In our previous paper [1], we proposed
architecture to secure the Linux operating system. It uses a
Security Ticket to provide a fine-grained authorization for
the user process ensuring that the user process gets only
the least privilege to execute the intended task. System
calls from user processes are authorized by Secd based on
Security Tickets.

CliffeSchreuder et al [2] depicted a generalized
view on some Linux Security models using mandatory
access control, which include SELinux, AppArmor,
TOMOYO, and FBAC-LSM.

SELinux differentiates information based on
confidentiality and integrity requirements. Michael
Wikberg [3] presented a full study on the policies used to
secure the operating system using mandatory access
control (MAC) mechanism. The MAC architecture used in
SELinux is FLASK. AppArmor uses the concept of
creating profiles for each application which has to be
secured. Security context for each application is defined
by this profile.

 VOL. 12, NO. 12, JUNE 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 3907

Toshiharu HARADA et al [4] presented a
Security-enhanced Linux named TOMOYO Linux which
uses Mandatory Access Control [5] with an automatic
policy generator. TOMOYO discards unnecessary
privileges for the existing programs. Mandatory Access
Control mechanism has been widely adopted since it
increases the security of an operating system.

For securing Linux, other mechanisms like
system call interposition and capability based
authorizations are used. Janus, a sandboxing system, based
on system call interposition was developed by Ian
Goldberg et al [6]. Janus is visualized as a firewall in
between application and the Operating system, which
filters the system call. The initial version of Janus was
noteworthy since it does not require any kernel
modification. An extended version of Janus was
introduced in which system call interposition is carried out
through the kernel module.

Robert N. M. Watson et al [7] presented
Capsicum, a lightweight operating system which extends
UNIX API’s. Capsicum imparts additional capabilities to
existing Linux. It was introduced to include in FreeBSD 9.
Capsicum allows applications to self-compartmentalize by
which monolithic applications are decomposed to run in
independent sandboxes to form logical applications.
Sandboxing architecture was proposed by Muhammad
Shams Ul haq et al [8] which uses reference monitor as a
shared library to load the applications which have to be
executed.

NielsProvos [9] presented a hybrid approach
which attains a fine-grained process confinement utilizing
Systrace facility. The presented approach supports
interactive policy generation and intrusion detection which
applies to both the system services and user applications.

Decomposition of Kernel is a powerful way for
reducing the consequence of individual attacks. Charles
Jacobsen [10] provided the concept of Lightweight
Capability Domains, which aids effective decomposition
of an operating system kernel.

Adwitiya Mukhopadhyay et al [11] presented an
implementation of a firewall based on Linux operating
system, which utilizes the Netfilter framework, and the IP
tables that communicates the firewall policies with the
kernel. Several researchers put forward a variety of Kernel
space as well User space [12] security implementations
based on sandboxing [13-15], system call interposition,
capability systems [16], and Mandatory access control
mechanism. All of them are good in one aspect but deficits
in another.

REFERENCES

[1] Hari Narayanan, Vivek Radhakrishnan, Shiju

Sathyadevan, and Jayaraj Poroor. Architectural design
for a secure linux operating system, accepted at
International Conference on Wireless
Communications Signal Processing and Networking
(WISPNET), Chennai, 2017.

[2] Z Cliffe Schreuders, Tanya McGill, and Christian
Payne. Empowering end users to confine their own
applications: The results of a usability study
comparing selinux, apparmor, and fbac-lsm. ACM
Transactions on Information and System Security
(TISSEC), 14(2): 19, 2011.

[3] Michael Wikberg. Secure computing: Selinux.
http://www.tml.tkk./Publications/C/25/papers/Wikber
g nal. pdf, 2007.

[4] Toshiharu Harada, Takashi Horie, and Kazuo Tanaka.
Task oriented management obviates your onus on
linux. In Linux Conference, volume 3, 2004.

[5] NSA Peter Loscocco. Integrating exible support for
security policies into the linux operating system. In
Proceedings of the FREENIX Track. USENIX
Annual Technical Conference, page 29. The
Association, 2001.

[6] Tal Garfinkel et al. Traps and pitfalls: Practical
problems in system call interposition based security
tools. In NDSS, volume 3, pages 163-176, 2003.

[7] Robert NM Watson, Jonathan Anderson, Ben Laurie,
and Kris Kennaway. Capsicum: Practical capabilities
for unix. In USENIX Security Symposium, volume
46, page 2, 2010.

[8] Muhammad Shams Ul Haq, Lejian Liao, and Ma
Lerong. Design and implementation of sandbox
technique for isolated applications. In Information
Technology, Networking, Electronic and Automation
Control Conference, IEEE, pages 557-561. IEEE,
2016.

[9] Niels Provos. Improving host security with system
calls policies. In Usenix Security, volume 3, page 19,
2003.

[10] Charles Jacobsen, Muktesh Khole, Sarah Spall, Scotty
Bauer, and Anton Burtsev. Lightweight capability
domains: towards decomposing the linux kernel.
ACM SIGOPS Operating Systems Review, 49(2):44-
50, 2016.

[11] Adwitiya Mukhopadhyay, V Srinidhi Skanda, and CJ
Vignesh. An analytical study on the versatility of a
linux based rewall from a security perspective.
International Journal of Applied Engineering
Research, 10(10): 26777-26788, 2015.

 VOL. 12, NO. 12, JUNE 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 3908

[12] AP Murray and Duncan A Grove. Pulse: A pluggable
user-space linux security environment. In Proceedings
of the sixth Australasian conference on Information
security-Volume 81, pages 19-25. Australian
Computer Society, Inc., 2008.

[13] S. P and K. P. Jevitha. Static analysis of firefoxos
privileged applications to detect permission policy
violations. International Journal of Control Theory
and Applications, 9(7):3085-3093, 2016.

[14] Jan Hurtuk, Anton Balaz, and Norbert Adam. Security
sandbox based on rbac model. In Applied
Computational Intelligence and Informatics (SACI),
2016 IEEE 11th International Symposium on, pages
75-80. IEEE, 2016.

[15] Misha Mehra and Dhawal Pandey. Event triggered
malware: A new challenge to sandboxing. In India
Conference (INDICON), 2015 Annual IEEE, pages 1-
6. IEEE, 2015.

[16] Jerome H Saltzer and Michael D Schroeder. The
protection of information in computer systems.
Proceedings of the IEEE, 63(9):1278-1308, 1975.

