
 VOL. 12, NO. 15, AUGUST 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4502

DATA SCIENCE-PARTITION AND AGGREGATION OF
DATA USING MAPREDUCE

R. Shiva Shankar, V. Mnssvkr Gupta, K. V. S. Murthy and Chinta Someswara Rao

Department of Computer Science Engineering, S.R.K.R Engineering College, Bhimavaram, W.G. District, Pin, A.P. India
E-Mail: shiva.srkr@gmail.com

ABSTRACT

Now a day's information increases rapidly in different directions, that will lead to create a trouble various
application fields like data science, data lake, data mining etc., one of the solution for this is the MapReduce programming
model simplifies that reduces the large-scale data to small tasks. For this purpose, in this paper, we proposed a mechanism
that takes the large data and converting it into small sub tasks with MapReduce and reduce network traffic cost for sub task
by aggregation.

Keywords: data science, Data Lake, data mining, MapReduce, aggregation

1. INTRODUCTION

MapReduce has emerged as the most popular
computing framework for big data processing due to its
simple programming model and automatic management of
parallel execution. It is a software framework for easily
writing applications which process vast amounts of data
(multi-terabyte data-sets) in-parallel on large clusters
(thousands of nodes) of commodity hardware in a reliable,
fault-tolerant manner [1].

The term MapReduce actually refers to two
separate and distinct tasks that Hadoop programs perform
[2]. The first is the map job, which takes a set of data and
converts it into another set of data, where individual
elements are broken down into tuples (key/value pairs).
The reduce job takes the output from a map as input and
combines those data tuples into a smaller set of tuples. As
the sequence of the name MapReduce implies, the reduce
job is always performed after the map job [3].

2. LITERATURE SURVEY

So many researchers work is performed on
MapReduce, in this section some of the literature is
discussed.

J. Dean et al [4] MapReduce is a programming
model and an associated implementation for processing
and generating large data sets. Users specify a map
function that processes a key/value pair to generate a set of
intermediate key/value pairs, and a reduce function that
merges all intermediate values associated with the same
intermediate key. Many real world tasks are expressible in
this model, as shown in the paper. Programs written in this
functional style are automatically parallelized and
executed on a large cluster of commodity machines. The
run-time system takes care of the details of partitioning the
input data, scheduling the program’s execution across a set
of machines, handling machine failures, and managing the
required inter-machine communication. This allows
programmers without any experience with parallel and
distributed systems to easily utilize the resources of a large
distributed system. Our implementation of MapReduce
runs on a large cluster of commodity machines and is
highly scalable: a typical MapReduce computation
processes many terabytes of data on thousands of

machines. Programmers find the system easy to use:
hundreds of MapReduce programs have been implemented
and upwards of one thousand MapReduce jobs are
executed on Google’s clusters every day.

The MapReduce programming model has been
successfully used at Google for many different purposes.
Authors attribute this success to several reasons. First, the
model is easy to use, even for programmers without
experience with parallel and distributed systems, since it
hides the details of parallelization, fault-tolerance, locality
optimization, and load balancing. Second, a large variety
of problems are easily expressible as MapReduce
computations. For example, MapReduce is used for the
generation of data for Google’s production web search
service, for sorting, for data mining, for machine learning,
and many other systems. Third, authors have developed an
implementation of MapReduce that scales to large clusters
of machines comprising thousands of machines. The
implementation makes efficient use of these machine
resources and therefore is suitable for use on many of the
large computational problems encountered at Google.
Authors have learned several things from this work. First,
restricting the programming model makes it easy to
parallelize and distribute computations and to make such
computations fault-tolerant. Second, network bandwidth is
a scarce resource. A number of optimizations in our
system are therefore targeted at reducing the amount of
data sent across the network: the locality optimization
allows us to read data from local disks, and writing a
single copy of the intermediate data to local disk saves
network bandwidth. Third, redundant execution can be
used to reduce the impact of slow machines, and to handle
machine failures and data loss.

W. Wang et al [5] Scheduling map tasks to
improve data locality is crucial to the performance of
MapReduce. Many works have been devoted to increasing
data locality for better efficiency. However, to the best of
our knowledge, fundamental limits of MapReduce
computing clusters with data locality, including the
capacity region and theoretical bounds on the delay
performance, have not been studied. In this paper, authors
address these problems from a stochastic network
perspective. Our focus is to strike the right balance

 VOL. 12, NO. 15, AUGUST 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4503

between data-locality and load-balancing to
simultaneously maximize throughput and minimize delay.
Authors present a new queuing architecture and propose a
map task scheduling algorithm constituted by the Join the
Shortest Queue policy together with the MaxWeight
policy. Authors identify an outer bound on the capacity
region, and then prove that the proposed algorithm
stabilizes any arrival rate vector strictly within this outer
bound. It shows that the algorithm is throughput optimal
and the outer bound coincides with the actual capacity
Region. Further, authors study the number of backlogged
tasks under the proposed algorithm, which is directly
related to the delay performance based on Little’s law.
Authors prove that the proposed algorithm is heavy-traffic
optimal, i.e., it asymptotically minimizes the number of
backlogged tasks as the arrival rate vector approaches the
boundary of the capacity region. Therefore, the proposed
algorithm is also delay optimal in the heavy-traffic regime.
Authors considered map scheduling algorithms in
MapReduce with data locality. Authors first presented the
capacity region of a MapReduce computing cluster with
data locality and then authors proved the throughput
optimality. Beyond throughput, authors showed that the
proposed algorithm asymptotically minimizes the number
of backlogged tasks as the arrival rate vector approaches
the boundary of the capacity region, i.e., it is heavy-traffic
optimal.

F. Chen et al [6] MapReduce has achieved
tremendous success for large-scale data processing in data
centers. A key feature distinguishing MapReduce from
previous parallel models is that it interleaves parallel and
sequential computation. Past schemes, and especially their
theoretical bounds, on general parallel models are
therefore, unlikely to be applied to MapReduce directly.
There are many recent studies on MapReduce job and task
scheduling. These studies assume that the servers are
assigned in advance. in current data centers, multiple
MapReduce jobs of different Importance levels run
together. In this paper, authors investigate a schedule
problem for MapReduce taking server assignment in to
consideration as well. Authors formulate a MapReduce
server-job organizer problem (MSJO) and show that it is
NP-complete. Authors develop a 3-approximation
algorithm and a fast heuristic. Authors evaluate our
algorithms through both simulations and experiments on
Amazon EC2 with an implementation in Hadoop. The
results confirm the advantage of our algorithms

In this paper, authors studied MapReduce job
scheduling with consideration of server assignment.
Authors showed that with- out such joint consideration,
there can be great performance loss. Authors formulated a
MapReduce server-job organizer problem. This problem is
NP-complete and authors developed a 3- approximation
algorithm MarS. Authors evaluated our algorithm through
extensive simulation. The results show that MarS can
outperform state-of-the-art strategies by as much as 40 %
in terms of total weighted job completion time. Authors
also implement a prototype of MarS in Hadoop and test it
with experiment on Amazon EC2. The experiment results
confirm the advantage of our algorithm

Y. Wang et al [7] The Hadoop Distributed File
System (HDFS) is designed to store very large data sets
reliably, and to stream those data sets at high bandwidth to
user applications. In a large cluster, thousands of servers
both host directly attached storage and execute user
application tasks. By distributing storage and computation
across many servers, the resource can grow with demand
while remaining economical at every size. Authors
describe the architecture of HDFS and report on
experience using HDFS to manage 25 petabytes of
enterprise data at Yahoo.

This section presents some of the future work that
the Hadoop team at Yahoo is considering; Hadoop being
an open source project implies that new features and
changes are de-ided by the Hadoop development
community at large. The Hadoop cluster is effectively
unavailable when its Name Node is down. Given that
Hadoop is used primarily as a batch system, restarting the
Name Node has been a satisfactory recovery means.
However, authors have taken steps towards auto-mated
failover. Currently a Backup Node receives all
transactions from the primary Name Node. This will allow
a failover to a warm or even a hot BackupNode if authors
send block reports to both the primary NameNode and
BackupNode. A few Hadoop users outside Yahoo! have
experimented with manual failover. Our plan is to use
Zookeeper, Yahoo’s distributed consensus technology to
build an automated failover solution. Scalability of the
NameNode has been akey struggle. Because the
NameNode keeps all the namespace and block locations in
memory, the size of the NameNode heap has limited the
number of files and also the number of blocks address-
able.

S. Chen et al., [8] Recent studies and industry
practices build data-center-scale computer systems to meet
the high storage and processing demands of data-intensive
and compute-intensive applications, such as web searches.
The Map-Reduce programming model is one of the most
popular programming paradigms on these systems. In this
paper, authors report our experiences and insights gained
from implementing three data-intensive and compute-
intensive tasks that have different Characteristics from
previous studies: a large-scale machine learning
computation, a physical simulation task, and a digital
media processing task. Authors identify desirable features
and places to improve in the Map-Reduce model. Our goal
is to better understand such large-scale computation and
data processing in order to design better supports for them.
In this paper, authors studied three data-intensive and
compute-intensive applications that have very different
characteristics from previous reported Map-Reduce
applications. Authors find that although authors can easily
implement a semantically correct Map-Reduce program,
achieving good performance is tricky. For example, a
computation that looks similar to word counting at the first
sight may turn out to have very different characteristics,
such as the number and variance of intermediate results,
thus resulting in unexpected performance. Learning from
the application studies, authors explore the design space
for supporting data-intensive and compute-intensive

 VOL. 12, NO. 15, AUGUST 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4504

applications on data-center-scale computer systems.
Authors find two directions are promising: (i) enhancing a
job control system with a set of desirable features; (ii)
supporting flexible compos able components and
including more optimization supports in Map-Reduce
System. Authors plan to investigate these directions in
future work.

J. Rosen et al [9] in this article, authors make the
case for a declarative foundation for data-intensive
machine learning systems. Instead of creating a new
system for each specific flavor of machine learning task,
or hard-coding new optimizations, authors argue for the
use of recursive queries to program a variety of machine
learning algorithms. By taking this approach, database
query optimization techniques can be utilized to identify
effective execution plans, and the resulting runtime plans
can be executed on a single unified data-parallel query
processing engine.

The growing demand for machine learning is
pushing both industry and academia to design new types
of highly scalable iterative computing systems. Examples
include Mahout, Pregel, Spark, Twister, Hadoop, and
PrItr. However, today’s specialized machine learning
platforms all tend to mix logical representations and
physical implementations. As a result, today’s platforms 1)
require their developers to rebuild critical components and
to hardcode optimization strategies and 2) limit themselves
to specific runtime implementations that usually only
(naturally) fit a limited subset of the potential machine
learning workloads. This leads to the current state of

Practice: implementing new scalable machine
learning algorithms is very labor-intensive and the overall
data processing pipeline involves multiple disparate tools
hooked together with file- and workflow-based glue. In
contrast, authors have advocated a declarative foundation
on which specialized machine learning workflows can be
easily constructed and readily tuned. Authors have verified
our approach with Datalog implementations of two
popular programming models from the machine learning
domain: Iterative Map-Reduce-Update, for deriving linear
models, and Pregel, for graphical algorithms). The
resulting Datalog programs are compact, tunable to a
specific task (e.g., Batch Gradient Descent and PageRank),
and translated to optimized physical plans. Our
experimental results show that on a large real-world
dataset and machine cluster, our optimized plans are very
competitive with other systems that target the given class
of ML tasks). Furthermore, authors demonstrated that our
approach can offer a plan tailored to a given target task
and data for a given machine resource allocation. In
contrast, in our large experiments, Spark failed due to
main-memory limitations and Hadoop succeeded but ran
an order-of-magnitude less efficiently. The work reported
here is just a first step. Authors are currently developing
the ScalOps query processing components required to
automate the remaining translation steps; these include the
Planner/Optimizer as well as a more general algebraic
foundation based on extending the Algebricks query
algebra and rewrite rule framework of ASTERIX [10].
Authors also plan to investigate support for a wider range

of machine learning tasks and for a more asynchronous,
GraphLab-inspired programming model for encoding
graphical algorithms.

S. Venkataraman et al [11] it is cumbersome to
write machine learning and graph algorithms in data-
parallel models such as MapReduce and Dryad. Authors
observe that these algorithms are based on matrix
computations and, hence, are inefficient to implement with
the restrictive programming and communication interface
of such frameworks. In this paper authors show that array-
based languages such as R are suitable for implementing
complex algorithms and can outperform current data
parallel solutions. Since R is single threaded and does not
scale to large datasets, authors have built Pronto, a
distributed system that extends R and addresses many of
its limitations. Pronto efficiently shares sparse structured
data can leverage multi-cores, and dynamically partitions
data to mitigate load imbalance. Our results show the
promise of this approach: many important machine
learning and graph algorithms can be expressed in a single
framework and are substantially faster than those in
Hadoop and Spark. Pronto advocates the use of sparse
matrix operations to simplify the implementation of
machine learning and graph algorithms in a cluster. Pronto
uses distributed arrays for structured processing,
efficiently uses multi-cores, and dynamically partitions
data to reduce load imbalance. Our experience shows that
pronto is a flexible computation model that can be used to
implement a variety of complex algorithms

A. Matsunaga et al [12] Dealing with large
genomic data on a limited computing resource has been an
inevitable challenge in life science. Bioinformatics
applications have required high performance computation
capabilities for next-generation sequencing (NGS) data
and the human genome sequencing data with single
nucleotide polymorphisms (SNPs). From 2008, Cloud
computing platforms have been widely adopted to deal
with the large data sets with parallel processing tools.
MapReduce parallel programming framework is
dominantly used due to its fast and ancient performance
for data processing on cloud clusters. This study
introduces various research projects regarding to reducing
a data analysis time and improving usability with their
approaches. Hadoop implementations and work ow
toolkits are focused on address parallel data processing
tools and easy-to-use environments

These days, individual research laboratory is able
to generate terabytes of data (or even larger), which is no
suprises to new sequencing technologies in genomic
research. High performance computation environments
keep improving on processing large-scale data at low cost.
The combination of MapReduce and cloud computing
facilitates fast and efficient parallel processing on the
virtual environment for terabyte-scale data analysis in
bioinformatics, if the analysis consists of embarrassingly
parallel problems. MapReduce framework is suitable for
the simple and dividable tasks such as read alignment,
sequence search and image recognition. Easy-to-use
methods and user-friendly cloud platforms have been
provided to researchers so that they can easily have ac-

 VOL. 12, NO. 15, AUGUST 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4505

cess to the cloud with their large data sets uploaded on the
cloud in a secure manner. Scientic work ow may focus on
improving data transfer and handling tasks regarding these
usability problems. More challenges are expected to deal
with data storage and analysis since it grows at unprecen-
dented scales.

J. Wang et al [13] as a distributed data-
parallelization (DDP) pattern, MapReduce has been
adopted by many new big data analysis tools to achieve
good scalability and performance in Cluster or Cloud
environments. This paper explores how two binary DDP
patterns, i.e., Co Group and Match, could also be used in
these tools. Authors re-implemented an existing
bioinformatics tool, called Cloudburst, with three different
DDP pattern combinations. Authors identify two factors,
namely, input data balancing and value sparseness, which
could greatly affect the performances using different DDP
patterns. Our experiments show: (i) a simple DDP pattern
switch could speed up performance by almost two times;
(ii) the identified factors can explain the differences
between the “big data” era, it is very popular and effective
to use DDP patterns in order to achieve scalability and
parallelization. These DDP patterns also bring challenges
on which pattern or pattern combination is the best for a
certain tool. This paper demonstrates different DDP
patterns could have a great impact on the performances of
the same tool. Authors find that although MapReduce can
be used for wider range of applications with either one or
two input datasets, it is not always the best choice in terms
of application complexity and performance. To understand
the differences, authors identified two affecting factors,
namely input data balancing and value sparseness, on their
performance differences. The feasibility of these two
factors is verified through experiments. Authors believe
many tools in bioinformatics and other domains have a
similar logic with CloudBurst as they need to match two
input datasets, and therefore could also benefit from our
findings. For future work, authors plan to investigate more
tools that are suitable for multiple DDP patterns and their
performances on other DDP engines like Hadoop, which
will generalize our findings. Authors will also study how
to utilize the identified factors to automatically select the
best DDP pattern combination from multiple available
ones.

R. Liao et al [14] Nonnegative matrix
factorization (NMF) has an established reputation as a
useful data analysis technique in numerous applications.
However, its usage in practical situations is undergoing
challenges in recent years. The fundamental factor to this
is the increasingly growing size of the datasets available
and needed in the information sciences. To address this, in
this work authors propose to use structured random
compression, that is, random projections that exploit the
data structure, for two NMF variants: classical and
separable. In separable NMF (SNMF) the Left factors are
a subset of the columns of the input matrix. Authors
present suitable formulations for each problem, dealing
with different representative algorithms within each one.
Authors show that the resulting compressed techniques are

faster than their uncompressed variants, vastly reduce
memory demands, and do not encompass any significant
deterioration in performance. The proposed structured
random projections for SNMF allow dealing with
arbitrarily shaped large matrices, beyond the standard limit
of tall-and-skinny matrices, granting access to very
efficient computations in this general setting. Authors
accompany the algorithmic presentation with theoretical
foundations and numerous and diverse examples, showing
the suitability of the proposed approaches.

In this work authors proposed to use structured
random projections for NMF and SNMF. For NMF,
authors presented formulations for three popular
techniques, namely, multiplicative updates, active set
method for nonnegative least squares and ADMM. For
SNMF, authors presented a general technique that can be
used with any algorithm. In all cases, authors showed that
the resulting compressed techniques are faster than their
uncompressed variants and, at the same time; do not
introduce significant errors in the final result. There are in
the literature very efficient SNMF algorithms for tall-and-
skinny matrices. Interestingly, the use of structured
random projections allows computing SNMF for
arbitrarily large matrices, granting access to very efficient
computations in the general setting. As a byproduct,
authors also propose an algorithmic solution for
computing structured random projections of extremely
large matrices (i.e., matrices so large that even after
compression they do not fit in main memory). This is
useful as a general tool for computing many different
matrix decompositions, such as the singular value
decomposition, for example. Authors are currently
investigating the problem of replacing the Frobenius norm
with and Norm in our compressed variants of NMF and
SNMF. In this setting, the fast Cauchy transform is a
suitable alternative to structured random projections.
Compression consists of sampling and rescaling rows of
A, thus identifying the so-called corset of the problem.
This formulation is of particular interest for network
analysis, where authors need to deal with sparse structures.

3. METHODOLOGY

Intermediate data are shuffled according to a hash
function in Hadoop, which would lead to large network
traffic because it ignores network topology and data size
associated with each key. To tackle this problem incurred
by the traffic-oblivious partition scheme, we take into
account of both task locations and data size associated
with each key in this paper. By assigning keys with larger
data size to reduce tasks closer to map tasks, network
traffic can be significantly reduced. To further reduce
network traffic within a MapReduce job, we consider to
aggregate data with the same keys before sending them to
remote reduce tasks. Although a similar function, called
combiner, has been already adopted by Hadoop, it
operates immediately after a map task solely for its
generated data, failing to exploit the data aggregation
opportunities among multiple tasks on different machines.

 VOL. 12, NO. 15, AUGUST 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4506

Figure-1. System structure.

In this paper, we jointly consider data partition
and aggregation for a Map Reduce job with an objective
that is to minimize the total network traffic. In particular,
we propose a distributed algorithm for big data
applications by decomposing the original large-scale
problem into several sub problems that can be solved in
parallel. Moreover, an online algorithm is designed to deal
with the data partition and aggregation in a dynamic

manner. Finally, extensive simulation results demonstrate
that our proposals can significantly reduce network traffic
cost in both offline and online cases. The structure is
shown in Figure-1 and actual process is shown in Figure-
2. In the proposed system reducer locations are defined, if
they are within the threshold, the reducer application is
executed, the input data is loaded and finally aggregation
is formed.

YES

Define Reducer location
details

Start the aggregation

Loading the input data

Run the reducer
application

Produce the
aggregation results

START

within
threshold

STOP

NO

 VOL. 12, NO. 15, AUGUST 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4507

Figure-2. Actual process.

3.1. Module description
 In this paper we have three modules, namely,
Upload Module, MapReduce Aggregation Module and
Graph Module.

Upload module: In this module, we can upload
the documents and also select the reducer to which the
data is to reduce. Firstly select the reducer and then after
upload the documents to transfer through the network.

MapReduce aggregation: In this Module, input
data has been processed by the reducer which is nearer to
the mapper location. After completion of Processing it will
display the aggregated data to the network user.

Graph: This graph represents network traffic
cost for no aggregation processing time and aggregation
processing time.

3.2. Result description
Mapreduce programming model is used to

retrieve the analyzing the data. The implementation is the
working of the system. It should include both a definition
and a specification of requirements. It is a set of what the
system should do rather than how it should do it. The
software requirements provide a basis for creating the
software requirement specification. It is useful in
estimating cost, planning team activities, performing tasks
and tracking the teams and tracking the team’s progress
throughout the development activity.

To get the Big Data issue solved, we need to get a
Hadoop cluster that is able to store it and perform parallel
computation across a large computer cluster. Hadoop is
the most popular solution. Hadoop is an open source Java
framework. The illustrations of experiment result shows
that our proposal can successfully decrease network traffic
cost under different complex settings. Input data set is
shown in Table-1. Aggregated data after successfully
processing is shown in Table-2.

After processing the aggregation, it
displays the count result

Displays the graph between
processing Time and techniques

Reducer details added

To add reducer define reducer name
Latitude, longitude values

MAPPER

Define
reducer

UPLOAD

Start the Map Reduce
aggregation

Network traffic cost
graph

DATABASE

Load the data

Data loaded
successfully

 VOL. 12, NO. 15, AUGUST 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4508

Table-1. Input data.

a1.txt

1. HR logs into the online hiring center to generate a requisition once a position is required. The requisition is routed
electronically for approval using the applicant tracking system. Hiring managers log into a limited-view version and
are able to approve or deny requisitions. Once a hiring official approves a requisition, it moves to the next level of
approval. HR is notified automatically at each stage of approval or denial.

2. Within the application, HR staff uses the job description or class specification to create a job posting, write
supplement questions and create an exam plan. This includes setting up auto-scoring for minimum qualification,
testing hurdles and notes in the recruitment folder. All of this information resides in the tracking system.

3. The job is posted on a specific date, HR then notifies all subscribers on a “rider-alert system” that a new recruitment
has opened. Subscribers set their alert preferences to email and /or cell phone. This system is designed for riders of the
transit system, but has an opt-in feature people can use to ensure they receive an alert when new jobs post.

4. Applications are screened for minimum qualification by HR generally but this will be done via an auto-scoring system
and based on responses to application questions. Those applications passed the minimum qualifications screening are
reviewed to determine whether they meet entry requirements through the full exam process by HR and then the hiring
officials.

5. Selected applicants will be invited for written test and interviews, depending on the nature of the position and how the
exam plan is set up. Invitations to test, schedules and notices are sent out by the system via email and SMS (Cell
phones) using template created.

aa.txt

1. HR logs into the online hiring center to generate a requisition once a position is required. The requisition is routed
electronically for approval using the applicant tracking system. Hiring managers log into a limited-view version and
are able to approve or deny requisitions. Once a hiring official approves a requisition, it moves to the next level of
approval. HR is notified automatically at each stage of approval or denial.

2. Within the application, HR staff uses the job description or class specification to create a job posting, write
supplement questions and create an exam plan. This includes setting up auto-scoring for minimum qualification,
testing hurdles and notes in the recruitment folder. All of this information resides in the tracking system.

3. The job is posted on a specific date, HR then notifies all subscribers on a “rider-alert system” that a new recruitment
has opened. Subscribers set their alert preferences to email and /or cell phone. This system is designed for riders of the
transit system, but has an opt-in feature people can use to ensure they receive an alert when new jobs post.

4. Applications are screened for minimum qualification by HR generally but this will be done via an auto-scoring system
and based on responses to application questions. Those applications passed the minimum qualifications screening are
reviewed to determine whether they meet entry requirements through the full exam process by HR and then the hiring
officials.

5. Selected applicants will be invited for written test and interviews, depending on the nature of the position and how the
exam plan is set up. Invitations to test, schedules and notices are sent out by the system via email and SMS (Cell
phones) using template created.

1. HR logs into the online hiring center to generate a requisition once a position is required. The requisition is routed
electronically for approval using the applicant tracking system. Hiring managers log into a limited-view version and
are able to approve or deny requisitions. Once a hiring official approves a requisition, it moves to the next level of
approval. HR is notified automatically at each stage of approval or denial.

2. Within the application, HR staff uses the job description or class specification to create a job posting, write
supplement questions and create an exam plan. This includes setting up auto-scoring for minimum qualification,
testing hurdles and notes in the recruitment folder. All of this information resides in the tracking system.

3. The job is posted on a specific date, HR then notifies all subscribers on a “rider-alert system” that a new recruitment
has opened. Subscribers set their alert preferences to email and /or cell phone. This system is designed for riders of the
transit system, but has an opt-in feature people can use to ensure they receive an alert when new jobs post.

4. Applications are screened for minimum qualification by HR generally but this will be done via an auto-scoring system
and based on responses to application questions. Those applications passed the minimum qualifications screening are
reviewed to determine whether they meet entry requirements through the full exam process by HR and then the hiring
officials.

 VOL. 12, NO. 15, AUGUST 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4509

5. Selected applicants will be invited for written test and interviews, depending on the nature of the position and how the
exam plan is set up. Invitations to test, schedules and notices are sent out by the system via email and SMS (Cell
phones) using template created.

1. HR logs into the online hiring center to generate a requisition once a position is required. The requisition is routed
electronically for approval using the applicant tracking system. Hiring managers log into a limited-view version and
are able to approve or deny requisitions. Once a hiring official approves a requisition, it moves to the next level of
approval. HR is notified automatically at each stage of approval or denial.

2. Within the application, HR staff uses the job description or class specification to create a job posting, write
supplement questions and create an exam plan. This includes setting up auto-scoring for minimum qualification,
testing hurdles and notes in the recruitment folder. All of this information resides in the tracking system.

3. The job is posted on a specific date, HR then notifies all subscribers on a “rider-alert system” that a new recruitment
has opened. Subscribers set their alert preferences to email and /or cell phone. This system is designed for riders of the
transit system, but has an opt-in feature people can use to ensure they receive an alert when new jobs post.

4. Applications are screened for minimum qualification by HR generally but this will be done via an auto-scoring system
and based on responses to application questions. Those applications passed the minimum qualifications screening are
reviewed to determine whether they meet entry requirements through the full exam process by HR and then the hiring
officials.

5. Selected applicants will be invited for written test and interviews, depending on the nature of the position and how the
exam plan is set up. Invitations to test, schedules and notices are sent out by the system via email and SMS (Cell
phones) using template created.

Table-2. Aggregated data.

1@a1.txt,1 to@a1.txt,1 notifies@aa.txt,1 next@aa.txt,1 up@aa.txt,1 are@aa.txt,1

hr@a1.txt,1
application@a1.tx

t,1
all@aa.txt,1 level@aa.txt,1

invitations@aa.tx
t,1

screened@aa.txt,
1

logs@a1.txt,1
questions@a1.txt,

1
subscribers@aa.t

xt,1
of@aa.txt,1 to@aa.txt,1 for@aa.txt,1

into@a1.txt,1 those@a1.txt,1 on@aa.txt,1
approval@aa.txt,

1
test@aa.txt,1

minimum@aa.txt,
1

the@a1.txt,1
applications@a1.t

xt,1
a@aa.txt,1 hr@aa.txt,1

schedules@aa.txt,
1

qualification@aa.
txt,1

online@a1.txt,1 passed@a1.txt,1 rider@aa.txt,1 is@aa.txt,1 and@aa.txt,1 by@aa.txt,1

hiring@a1.txt,1 the@a1.txt,1 alert@aa.txt,1 notified@aa.txt,1 notices@aa.txt,1 hr@aa.txt,1

center@a1.txt,1
minimum@a1.txt,

1
system@aa.txt,1

automatically@aa
.txt,1

are@aa.txt,1
generally@aa.txt,

1

to@a1.txt,1
qualifications@a1

.txt,1
that@aa.txt,1 at@aa.txt,1 sent@aa.txt,1 but@aa.txt,1

generate@a1.txt,1
screening@a1.txt,

1
a@aa.txt,1 each@aa.txt,1 out@aa.txt,1 this@aa.txt,1

a@a1.txt,1 are@a1.txt,1 new@aa.txt,1 stage@aa.txt,1 by@aa.txt,1 will@aa.txt,1

requisition@a1.tx
t,1

reviewed@a1.txt,
1

recruitment@aa.t
xt,1

of@aa.txt,1 the@aa.txt,1 be@aa.txt,1

once@a1.txt,1 to@a1.txt,1 has@aa.txt,1
approval@aa.txt,

1
system@aa.txt,1 done@aa.txt,1

a@a1.txt,1
determine@a1.txt

,1
opened@aa.txt,1 or@aa.txt,1 via@aa.txt,1 via@aa.txt,1

position@a1.txt,1 whether@a1.txt,1
subscribers@aa.t

xt,1
denial@aa.txt,1 email@aa.txt,1 an@aa.txt,1

is@a1.txt,1 they@a1.txt,1 set@aa.txt,1 2@aa.txt,1 and@aa.txt,1 auto@aa.txt,1

required@a1.txt,1 meet@a1.txt,1 their@aa.txt,1 within@aa.txt,1 sms@aa.txt,1 scoring@aa.txt,1

the@a1.txt,1 entry@a1.txt,1 alert@aa.txt,1 the@aa.txt,1 cell@aa.txt,1 system@aa.txt,1

requisition@a1.tx
t,1

requirements@a1.
txt,1

preferences@aa.t
xt,1

application@aa.tx
t,1

phones@aa.txt,1 and@aa.txt,1

 VOL. 12, NO. 15, AUGUST 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4510

is@a1.txt,1 through@a1.txt,1 to@aa.txt,1 hr@aa.txt,1 using@aa.txt,1 based@aa.txt,1

routed@a1.txt,1 the@a1.txt,1 email@aa.txt,1 staff@aa.txt,1 template@aa.txt,1 on@aa.txt,1

electronically@a1
.txt,1

full@a1.txt,1 and@aa.txt,1 uses@aa.txt,1 created@aa.txt,1
responses@aa.txt,

1

for@a1.txt,1 exam@a1.txt,1 or@aa.txt,1 the@aa.txt,1 1@aa.txt,1 to@aa.txt,1

approval@a1.txt,
1

process@a1.txt,1 cell@aa.txt,1 job@aa.txt,1 hr@aa.txt,1
application@aa.tx

t,1

using@a1.txt,1 by@a1.txt,1 phone@aa.txt,1
description@aa.tx

t,1
logs@aa.txt,1

questions@aa.txt,
1

the@a1.txt,1 hr@a1.txt,1 this@aa.txt,1 or@aa.txt,1 into@aa.txt,1 those@aa.txt,1

applicant@a1.txt,
1

and@a1.txt,1 system@aa.txt,1 class@aa.txt,1 the@aa.txt,1
applications@aa.t

xt,1

tracking@a1.txt,1 then@a1.txt,1 is@aa.txt,1
specification@aa.

txt,1
online@aa.txt,1 passed@aa.txt,1

system@a1.txt,1 the@a1.txt,1
designed@aa.txt,

1
to@aa.txt,1 hiring@aa.txt,1 the@aa.txt,1

hiring@a1.txt,1 hiring@a1.txt,1 for@aa.txt,1 create@aa.txt,1 center@aa.txt,1
minimum@aa.txt,

1
managers@a1.txt,

1
officials@a1.txt,1 riders@aa.txt,1 a@aa.txt,1 to@aa.txt,1

qualifications@aa
.txt,1

log@a1.txt,1 5@a1.txt,1 of@aa.txt,1 job@aa.txt,1 generate@aa.txt,1
screening@aa.txt,

1

into@a1.txt,1 selected@a1.txt,1 the@aa.txt,1 posting@aa.txt,1 a@aa.txt,1 are@aa.txt,1

a@a1.txt,1
applicants@a1.txt

,1
transit@aa.txt,1 write@aa.txt,1

requisition@aa.tx
t,1

reviewed@aa.txt,
1

limited@a1.txt,1 will@a1.txt,1 system@aa.txt,1
supplement@aa.t

xt,1
once@aa.txt,1 to@aa.txt,1

view@a1.txt,1 be@a1.txt,1 but@aa.txt,1
questions@aa.txt,

1
a@aa.txt,1

determine@aa.txt
,1

version@a1.txt,1 invited@a1.txt,1 has@aa.txt,1 and@aa.txt,1 position@aa.txt,1 whether@aa.txt,1

and@a1.txt,1 for@a1.txt,1 an@aa.txt,1 create@aa.txt,1 is@aa.txt,1 they@aa.txt,1

are@a1.txt,1 written@a1.txt,1 opt@aa.txt,1 an@aa.txt,1 required@aa.txt,1 meet@aa.txt,1

able@a1.txt,1 test@a1.txt,1 in@aa.txt,1 exam@aa.txt,1 the@aa.txt,1 entry@aa.txt,1

to@a1.txt,1 and@a1.txt,1 feature@aa.txt,1 plan@aa.txt,1
requisition@aa.tx

t,1
requirements@aa.

txt,1

approve@a1.txt,1
interviews@a1.txt

,1
people@aa.txt,1 this@aa.txt,1 is@aa.txt,1 through@aa.txt,1

or@a1.txt,1
depending@a1.txt

,1
can@aa.txt,1 includes@aa.txt,1 routed@aa.txt,1 the@aa.txt,1

deny@a1.txt,1 on@a1.txt,1 use@aa.txt,1 setting@aa.txt,1
electronically@aa

.txt,1
full@aa.txt,1

requisitions@a1.t
xt,1

the@a1.txt,1 to@aa.txt,1 up@aa.txt,1 for@aa.txt,1 exam@aa.txt,1

once@a1.txt,1 nature@a1.txt,1 ensure@aa.txt,1 auto@aa.txt,1
approval@aa.txt,

1
process@aa.txt,1

a@a1.txt,1 of@a1.txt,1 they@aa.txt,1 scoring@aa.txt,1 using@aa.txt,1 by@aa.txt,1

hiring@a1.txt,1 the@a1.txt,1 receive@aa.txt,1 for@aa.txt,1 the@aa.txt,1 hr@aa.txt,1

official@a1.txt,1 position@a1.txt,1 an@aa.txt,1
minimum@aa.txt,

1
applicant@aa.txt,

1
and@aa.txt,1

approves@a1.txt,
1

and@a1.txt,1 alert@aa.txt,1
qualification@aa.

txt,1
tracking@aa.txt,1 then@aa.txt,1

a@a1.txt,1 how@a1.txt,1 when@aa.txt,1 testing@aa.txt,1 system@aa.txt,1 the@aa.txt,1

requisition@a1.tx
t,1

the@a1.txt,1 new@aa.txt,1 hurdles@aa.txt,1 hiring@aa.txt,1 hiring@aa.txt,1

 VOL. 12, NO. 15, AUGUST 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4511

it@a1.txt,1 exam@a1.txt,1 jobs@aa.txt,1 and@aa.txt,1
managers@aa.txt,

1
officials@aa.txt,1

moves@a1.txt,1 plan@a1.txt,1 post@aa.txt,1 notes@aa.txt,1 log@aa.txt,1 5@aa.txt,1

to@a1.txt,1 is@a1.txt,1 4@aa.txt,1 in@aa.txt,1 into@aa.txt,1 selected@aa.txt,1

the@a1.txt,1 set@a1.txt,1
applications@aa.t

xt,1
the@aa.txt,1 a@aa.txt,1

applicants@aa.txt
,1

next@a1.txt,1 up@a1.txt,1 are@aa.txt,1
recruitment@aa.t

xt,1
limited@aa.txt,1 will@aa.txt,1

level@a1.txt,1
invitations@a1.tx

t,1
screened@aa.txt,

1
folder@aa.txt,1 view@aa.txt,1 be@aa.txt,1

of@a1.txt,1 to@a1.txt,1 for@aa.txt,1 all@aa.txt,1 version@aa.txt,1 invited@aa.txt,1

approval@a1.txt,
1

test@a1.txt,1
minimum@aa.txt,

1
of@aa.txt,1 and@aa.txt,1 for@aa.txt,1

hr@a1.txt,1
schedules@a1.txt,

1
qualification@aa.

txt,1
this@aa.txt,1 are@aa.txt,1 written@aa.txt,1

is@a1.txt,1 and@a1.txt,1 by@aa.txt,1
information@aa.t

xt,1
able@aa.txt,1 test@aa.txt,1

notified@a1.txt,1 notices@a1.txt,1 hr@aa.txt,1 resides@aa.txt,1 to@aa.txt,1 and@aa.txt,1

automatically@a1
.txt,1

are@a1.txt,1
generally@aa.txt,

1
in@aa.txt,1 approve@aa.txt,1

interviews@aa.txt
,1

at@a1.txt,1 sent@a1.txt,1 but@aa.txt,1 the@aa.txt,1 or@aa.txt,1
depending@aa.txt

,1

each@a1.txt,1 out@a1.txt,1 this@aa.txt,1 tracking@aa.txt,1 deny@aa.txt,1 on@aa.txt,1

stage@a1.txt,1 by@a1.txt,1 will@aa.txt,1 system@aa.txt,1
requisitions@aa.t

xt,1
the@aa.txt,1

of@a1.txt,1 the@a1.txt,1 be@aa.txt,1 3@aa.txt,1 once@aa.txt,1 nature@aa.txt,1

approval@a1.txt,
1

system@a1.txt,1 done@aa.txt,1 the@aa.txt,1 a@aa.txt,1 of@aa.txt,1

or@a1.txt,1 via@a1.txt,1 via@aa.txt,1 job@aa.txt,1 hiring@aa.txt,1 the@aa.txt,1

denial@a1.txt,1 email@a1.txt,1 an@aa.txt,1 is@aa.txt,1 official@aa.txt,1 position@aa.txt,1

2@a1.txt,1 and@a1.txt,1 auto@aa.txt,1 posted@aa.txt,1
approves@aa.txt,

1
and@aa.txt,1

within@a1.txt,1 sms@a1.txt,1 scoring@aa.txt,1 on@aa.txt,1 a@aa.txt,1 how@aa.txt,1

the@a1.txt,1 cell@a1.txt,1 system@aa.txt,1 a@aa.txt,1
requisition@aa.tx

t,1
the@aa.txt,1

application@a1.tx
t,1

phones@a1.txt,1 and@aa.txt,1 specific@aa.txt,1 it@aa.txt,1 exam@aa.txt,1

hr@a1.txt,1 using@a1.txt,1 based@aa.txt,1 date@aa.txt,1 moves@aa.txt,1 plan@aa.txt,1

staff@a1.txt,1 template@a1.txt,1 on@aa.txt,1 hr@aa.txt,1 to@aa.txt,1 is@aa.txt,1

uses@a1.txt,1 created@a1.txt,1
responses@aa.txt,

1
then@aa.txt,1 the@aa.txt,1 set@aa.txt,1

the@a1.txt,1 1@aa.txt,1 to@aa.txt,1 notifies@aa.txt,1 next@aa.txt,1 up@aa.txt,1

job@a1.txt,1 hr@aa.txt,1
application@aa.tx

t,1
all@aa.txt,1 level@aa.txt,1

invitations@aa.tx
t,1

description@a1.tx
t,1

logs@aa.txt,1
questions@aa.txt,

1
subscribers@aa.t

xt,1
of@aa.txt,1 to@aa.txt,1

or@a1.txt,1 into@aa.txt,1 those@aa.txt,1 on@aa.txt,1
approval@aa.txt,

1
test@aa.txt,1

class@a1.txt,1 the@aa.txt,1
applications@aa.t

xt,1
a@aa.txt,1 hr@aa.txt,1

schedules@aa.txt,
1

specification@a1.
txt,1

online@aa.txt,1 passed@aa.txt,1 rider@aa.txt,1 is@aa.txt,1 and@aa.txt,1

to@a1.txt,1 hiring@aa.txt,1 the@aa.txt,1 alert@aa.txt,1 notified@aa.txt,1 notices@aa.txt,1

 VOL. 12, NO. 15, AUGUST 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4512

create@a1.txt,1 center@aa.txt,1
minimum@aa.txt,

1
system@aa.txt,1

automatically@aa
.txt,1

are@aa.txt,1

a@a1.txt,1 to@aa.txt,1
qualifications@aa

.txt,1
that@aa.txt,1 at@aa.txt,1 sent@aa.txt,1

job@a1.txt,1 generate@aa.txt,1
screening@aa.txt,

1
a@aa.txt,1 each@aa.txt,1 out@aa.txt,1

posting@a1.txt,1 a@aa.txt,1 are@aa.txt,1 new@aa.txt,1 stage@aa.txt,1 by@aa.txt,1

write@a1.txt,1
requisition@aa.tx

t,1
reviewed@aa.txt,

1
recruitment@aa.t

xt,1
of@aa.txt,1 the@aa.txt,1

supplement@a1.t
xt,1

once@aa.txt,1 to@aa.txt,1 has@aa.txt,1
approval@aa.txt,

1
system@aa.txt,1

questions@a1.txt,
1

a@aa.txt,1
determine@aa.txt

,1
opened@aa.txt,1 or@aa.txt,1 via@aa.txt,1

and@a1.txt,1 position@aa.txt,1 whether@aa.txt,1
subscribers@aa.t

xt,1
denial@aa.txt,1 email@aa.txt,1

create@a1.txt,1 is@aa.txt,1 they@aa.txt,1 set@aa.txt,1 2@aa.txt,1 and@aa.txt,1

an@a1.txt,1 required@aa.txt,1 meet@aa.txt,1 their@aa.txt,1 within@aa.txt,1 sms@aa.txt,1

exam@a1.txt,1 the@aa.txt,1 entry@aa.txt,1 alert@aa.txt,1 the@aa.txt,1 cell@aa.txt,1

plan@a1.txt,1
requisition@aa.tx

t,1
requirements@aa.

txt,1
preferences@aa.t

xt,1
application@aa.tx

t,1
phones@aa.txt,1

this@a1.txt,1 is@aa.txt,1 through@aa.txt,1 to@aa.txt,1 hr@aa.txt,1 using@aa.txt,1

includes@a1.txt,1 routed@aa.txt,1 the@aa.txt,1 email@aa.txt,1 staff@aa.txt,1 template@aa.txt,1

setting@a1.txt,1
electronically@aa

.txt,1
full@aa.txt,1 and@aa.txt,1 uses@aa.txt,1 created@aa.txt,1

up@a1.txt,1 for@aa.txt,1 exam@aa.txt,1 or@aa.txt,1 the@aa.txt,1

auto@a1.txt,1 approval@aa.txt,1 process@aa.txt,1 cell@aa.txt,1 job@aa.txt,1

scoring@a1.txt,1 using@aa.txt,1 by@aa.txt,1 phone@aa.txt,1
description@aa.tx

t,1

for@a1.txt,1 the@aa.txt,1 hr@aa.txt,1 this@aa.txt,1 or@aa.txt,1

minimum@a1.txt,
1

applicant@aa.txt,
1

and@aa.txt,1 system@aa.txt,1 class@aa.txt,1

qualification@a1.
txt,1

tracking@aa.txt,1 then@aa.txt,1 is@aa.txt,1
specification@aa.

txt,1

testing@a1.txt,1 system@aa.txt,1 the@aa.txt,1
designed@aa.txt,

1
to@aa.txt,1

hurdles@a1.txt,1 hiring@aa.txt,1 hiring@aa.txt,1 for@aa.txt,1 create@aa.txt,1

and@a1.txt,1
managers@aa.txt,

1
officials@aa.txt,1 riders@aa.txt,1 a@aa.txt,1

notes@a1.txt,1 log@aa.txt,1 5@aa.txt,1 of@aa.txt,1 job@aa.txt,1

in@a1.txt,1 into@aa.txt,1 selected@aa.txt,1 the@aa.txt,1 posting@aa.txt,1

the@a1.txt,1 a@aa.txt,1
applicants@aa.txt

,1
transit@aa.txt,1 write@aa.txt,1

recruitment@a1.t

xt,1
limited@aa.txt,1 will@aa.txt,1 system@aa.txt,1

supplement@aa.t
xt,1

folder@a1.txt,1 view@aa.txt,1 be@aa.txt,1 but@aa.txt,1
questions@aa.txt,

1

all@a1.txt,1 version@aa.txt,1 invited@aa.txt,1 has@aa.txt,1 and@aa.txt,1

of@a1.txt,1 and@aa.txt,1 for@aa.txt,1 an@aa.txt,1 create@aa.txt,1

this@a1.txt,1 are@aa.txt,1 written@aa.txt,1 opt@aa.txt,1 an@aa.txt,1

information@a1.t
xt,1

able@aa.txt,1 test@aa.txt,1 in@aa.txt,1 exam@aa.txt,1

resides@a1.txt,1 to@aa.txt,1 and@aa.txt,1 feature@aa.txt,1 plan@aa.txt,1

 VOL. 12, NO. 15, AUGUST 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4513

in@a1.txt,1 approve@aa.txt,1
interviews@aa.txt

,1
people@aa.txt,1 this@aa.txt,1

the@a1.txt,1 or@aa.txt,1
depending@aa.txt

,1
can@aa.txt,1 includes@aa.txt,1

tracking@a1.txt,1 deny@aa.txt,1 on@aa.txt,1 use@aa.txt,1 setting@aa.txt,1

system@a1.txt,1
requisitions@aa.t

xt,1
the@aa.txt,1 to@aa.txt,1 up@aa.txt,1

3@a1.txt,1 once@aa.txt,1 nature@aa.txt,1 ensure@aa.txt,1 auto@aa.txt,1

the@a1.txt,1 a@aa.txt,1 of@aa.txt,1 they@aa.txt,1 scoring@aa.txt,1

job@a1.txt,1 hiring@aa.txt,1 the@aa.txt,1 receive@aa.txt,1 for@aa.txt,1

is@a1.txt,1 official@aa.txt,1 position@aa.txt,1 an@aa.txt,1
minimum@aa.txt,

1

posted@a1.txt,1
approves@aa.txt,

1
and@aa.txt,1 alert@aa.txt,1

qualification@aa.
txt,1

on@a1.txt,1 a@aa.txt,1 how@aa.txt,1 when@aa.txt,1 testing@aa.txt,1

a@a1.txt,1
requisition@aa.tx

t,1
the@aa.txt,1 new@aa.txt,1 hurdles@aa.txt,1

specific@a1.txt,1 it@aa.txt,1 exam@aa.txt,1 jobs@aa.txt,1 and@aa.txt,1

date@a1.txt,1 moves@aa.txt,1 plan@aa.txt,1 post@aa.txt,1 notes@aa.txt,1

hr@a1.txt,1 to@aa.txt,1 is@aa.txt,1 4@aa.txt,1 in@aa.txt,1

then@a1.txt,1 the@aa.txt,1 set@aa.txt,1
applications@aa.t

xt,1
the@aa.txt,1

notifies@a1.txt,1 next@aa.txt,1 up@aa.txt,1 are@aa.txt,1
recruitment@aa.t

xt,1

all@a1.txt,1 level@aa.txt,1
invitations@aa.tx

t,1
screened@aa.txt,

1
folder@aa.txt,1

subscribers@a1.t

xt,1
of@aa.txt,1 to@aa.txt,1 for@aa.txt,1 all@aa.txt,1

on@a1.txt,1 approval@aa.txt,1 test@aa.txt,1
minimum@aa.txt,

1
of@aa.txt,1

a@a1.txt,1 hr@aa.txt,1
schedules@aa.txt,

1
qualification@aa.

txt,1
this@aa.txt,1

rider@a1.txt,1 is@aa.txt,1 and@aa.txt,1 by@aa.txt,1
information@aa.t

xt,1

alert@a1.txt,1 notified@aa.txt,1 notices@aa.txt,1 hr@aa.txt,1 resides@aa.txt,1

system@a1.txt,1
automatically@aa

.txt,1
are@aa.txt,1

generally@aa.txt,
1

in@aa.txt,1

that@a1.txt,1 at@aa.txt,1 sent@aa.txt,1 but@aa.txt,1 the@aa.txt,1

a@a1.txt,1 each@aa.txt,1 out@aa.txt,1 this@aa.txt,1 tracking@aa.txt,1

new@a1.txt,1 stage@aa.txt,1 by@aa.txt,1 will@aa.txt,1 system@aa.txt,1

recruitment@a1.t
xt,1

of@aa.txt,1 the@aa.txt,1 be@aa.txt,1 3@aa.txt,1

has@a1.txt,1 approval@aa.txt,1 system@aa.txt,1 done@aa.txt,1 the@aa.txt,1

opened@a1.txt,1 or@aa.txt,1 via@aa.txt,1 via@aa.txt,1 job@aa.txt,1

subscribers@a1.t
xt,1

denial@aa.txt,1 email@aa.txt,1 an@aa.txt,1 is@aa.txt,1

set@a1.txt,1 2@aa.txt,1 and@aa.txt,1 auto@aa.txt,1 posted@aa.txt,1

their@a1.txt,1 within@aa.txt,1 sms@aa.txt,1 scoring@aa.txt,1 on@aa.txt,1

alert@a1.txt,1 the@aa.txt,1 cell@aa.txt,1 system@aa.txt,1 a@aa.txt,1

preferences@a1.t
xt,1

application@aa.tx
t,1

phones@aa.txt,1 and@aa.txt,1 specific@aa.txt,1

 VOL. 12, NO. 15, AUGUST 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4514

to@a1.txt,1 hr@aa.txt,1 using@aa.txt,1 based@aa.txt,1 date@aa.txt,1

email@a1.txt,1 staff@aa.txt,1 template@aa.txt,1 on@aa.txt,1 hr@aa.txt,1

and@a1.txt,1 uses@aa.txt,1 created@aa.txt,1
responses@aa.txt,

1
then@aa.txt,1

or@a1.txt,1 the@aa.txt,1 1@aa.txt,1 to@aa.txt,1 notifies@aa.txt,1

cell@a1.txt,1 job@aa.txt,1 hr@aa.txt,1
application@aa.tx

t,1
all@aa.txt,1

phone@a1.txt,1
description@aa.tx

t,1
logs@aa.txt,1

questions@aa.txt,
1

subscribers@aa.t
xt,1

this@a1.txt,1 or@aa.txt,1 into@aa.txt,1 those@aa.txt,1 on@aa.txt,1

system@a1.txt,1 class@aa.txt,1 the@aa.txt,1
applications@aa.t

xt,1
a@aa.txt,1

is@a1.txt,1
specification@aa.

txt,1
online@aa.txt,1 passed@aa.txt,1 rider@aa.txt,1

designed@a1.txt,
1

to@aa.txt,1 hiring@aa.txt,1 the@aa.txt,1 alert@aa.txt,1

for@a1.txt,1 create@aa.txt,1 center@aa.txt,1
minimum@aa.txt,

1
system@aa.txt,1

riders@a1.txt,1 a@aa.txt,1 to@aa.txt,1
qualifications@aa

.txt,1
that@aa.txt,1

of@a1.txt,1 job@aa.txt,1 generate@aa.txt,1
screening@aa.txt,

1
a@aa.txt,1

the@a1.txt,1 posting@aa.txt,1 a@aa.txt,1 are@aa.txt,1 new@aa.txt,1

transit@a1.txt,1 write@aa.txt,1
requisition@aa.tx

t,1
reviewed@aa.txt,

1
recruitment@aa.t

xt,1

system@a1.txt,1
supplement@aa.t

xt,1
once@aa.txt,1 to@aa.txt,1 has@aa.txt,1

but@a1.txt,1
questions@aa.txt,

1
a@aa.txt,1

determine@aa.txt
,1

opened@aa.txt,1

has@a1.txt,1 and@aa.txt,1 position@aa.txt,1 whether@aa.txt,1
subscribers@aa.t

xt,1

an@a1.txt,1 create@aa.txt,1 is@aa.txt,1 they@aa.txt,1 set@aa.txt,1

opt@a1.txt,1 an@aa.txt,1 required@aa.txt,1 meet@aa.txt,1 their@aa.txt,1

in@a1.txt,1 exam@aa.txt,1 the@aa.txt,1 entry@aa.txt,1 alert@aa.txt,1

feature@a1.txt,1 plan@aa.txt,1
requisition@aa.tx

t,1
requirements@aa.

txt,1
preferences@aa.t

xt,1

people@a1.txt,1 this@aa.txt,1 is@aa.txt,1 through@aa.txt,1 to@aa.txt,1

can@a1.txt,1 includes@aa.txt,1 routed@aa.txt,1 the@aa.txt,1 email@aa.txt,1

use@a1.txt,1 setting@aa.txt,1
electronically@aa

.txt,1
full@aa.txt,1 and@aa.txt,1

to@a1.txt,1 up@aa.txt,1 for@aa.txt,1 exam@aa.txt,1 or@aa.txt,1

ensure@a1.txt,1 auto@aa.txt,1
approval@aa.txt,

1
process@aa.txt,1 cell@aa.txt,1

they@a1.txt,1 scoring@aa.txt,1 using@aa.txt,1 by@aa.txt,1 phone@aa.txt,1

receive@a1.txt,1 for@aa.txt,1 the@aa.txt,1 hr@aa.txt,1 this@aa.txt,1

an@a1.txt,1
minimum@aa.txt,

1
applicant@aa.txt,

1
and@aa.txt,1 system@aa.txt,1

alert@a1.txt,1
qualification@aa.

txt,1
tracking@aa.txt,1 then@aa.txt,1 is@aa.txt,1

when@a1.txt,1 testing@aa.txt,1 system@aa.txt,1 the@aa.txt,1
designed@aa.txt,

1

new@a1.txt,1 hurdles@aa.txt,1 hiring@aa.txt,1 hiring@aa.txt,1 for@aa.txt,1

 VOL. 12, NO. 15, AUGUST 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4515

jobs@a1.txt,1 and@aa.txt,1
managers@aa.txt,

1
officials@aa.txt,1 riders@aa.txt,1

post@a1.txt,1 notes@aa.txt,1 log@aa.txt,1 5@aa.txt,1 of@aa.txt,1

4@a1.txt,1 in@aa.txt,1 into@aa.txt,1 selected@aa.txt,1 the@aa.txt,1

applications@a1.t
xt,1

the@aa.txt,1 a@aa.txt,1
applicants@aa.txt

,1
transit@aa.txt,1

are@a1.txt,1
recruitment@aa.t

xt,1
limited@aa.txt,1 will@aa.txt,1 system@aa.txt,1

screened@a1.txt,

1
folder@aa.txt,1 view@aa.txt,1 be@aa.txt,1 but@aa.txt,1

for@a1.txt,1 all@aa.txt,1 version@aa.txt,1 invited@aa.txt,1 has@aa.txt,1

minimum@a1.txt,
1

of@aa.txt,1 and@aa.txt,1 for@aa.txt,1 an@aa.txt,1

qualification@a1.
txt,1

this@aa.txt,1 are@aa.txt,1 written@aa.txt,1 opt@aa.txt,1

by@a1.txt,1
information@aa.t

xt,1
able@aa.txt,1 test@aa.txt,1 in@aa.txt,1

hr@a1.txt,1 resides@aa.txt,1 to@aa.txt,1 and@aa.txt,1 feature@aa.txt,1

generally@a1.txt,
1

in@aa.txt,1 approve@aa.txt,1
interviews@aa.txt

,1
people@aa.txt,1

but@a1.txt,1 the@aa.txt,1 or@aa.txt,1
depending@aa.txt

,1
can@aa.txt,1

this@a1.txt,1 tracking@aa.txt,1 deny@aa.txt,1 on@aa.txt,1 use@aa.txt,1

will@a1.txt,1 system@aa.txt,1
requisitions@aa.t

xt,1
the@aa.txt,1 to@aa.txt,1

be@a1.txt,1 3@aa.txt,1 once@aa.txt,1 nature@aa.txt,1 ensure@aa.txt,1

done@a1.txt,1 the@aa.txt,1 a@aa.txt,1 of@aa.txt,1 they@aa.txt,1

via@a1.txt,1 job@aa.txt,1 hiring@aa.txt,1 the@aa.txt,1 receive@aa.txt,1

an@a1.txt,1 is@aa.txt,1 official@aa.txt,1 position@aa.txt,1 an@aa.txt,1

auto@a1.txt,1 posted@aa.txt,1
approves@aa.txt,

1
and@aa.txt,1 alert@aa.txt,1

scoring@a1.txt,1 on@aa.txt,1 a@aa.txt,1 how@aa.txt,1 when@aa.txt,1

system@a1.txt,1 a@aa.txt,1
requisition@aa.tx

t,1
the@aa.txt,1 new@aa.txt,1

and@a1.txt,1 specific@aa.txt,1 it@aa.txt,1 exam@aa.txt,1 jobs@aa.txt,1

based@a1.txt,1 date@aa.txt,1 moves@aa.txt,1 plan@aa.txt,1 post@aa.txt,1

on@a1.txt,1 hr@aa.txt,1 to@aa.txt,1 is@aa.txt,1 4@aa.txt,1

responses@a1.txt,
1

then@aa.txt,1 the@aa.txt,1 set@aa.txt,1
applications@aa.t

xt,1

The aggregated vs non-aggregated information
graphically shown in Figure-3, from the Figure-3, it is

observed that non agreegation takes less time aggregation
process, but aggregation gives most relevant results.

 VOL. 12, NO. 15, AUGUST 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4516

Figure-3. Performance of aggregation and no aggregation.

4. CONCLUSIONS

Information retrieval played a vital role in various
applications like data science, data mining, DNA
sequencing, etc.,, But deal with large volume of data, it
face a trouble that is job is very large, in that situation,
system will take much time some time returns irrelevant
information. For a partial fulfillment, in this paper, we
consider the large volume of data; convert it into small job
using MapReduce programming. In this paper not only
splitting the large volume of data into sub tasks but also
aggregate the tasks and also reduce network traffic cost.

REFERENCES

[1] Prasad PS, Subrahmanyam HB, Singh PK. 2017.

Scalable IQRA_IG Algorithm: An Iterative
MapReduce Approach for Reduct Computation.
Distributed Computing and Internet Technology. pp.
58-69.

[2] Ghazisaeedi E, Huang C. 2017. GreenMap: Green
mapping of MapReduce-based virtual networks onto a
data center network and managing in cast queueing
delay. Computer Networks. pp. 345-359.

[3] Koh JL, Chen CC, Chan CY, Chen AL. 2017.
MapReduce skyline query processing with
partitioning and distributed dominance tests.
Information Sciences. pp. 114-237.

[4] J. Dean and S. Ghemawat. 2008. Mapreduce:
simplified data processing on large clusters.
Communications of the ACM. 51(1): 107-113.

[5] W. Wang, K. Zhu, L. Ying, J. Tan and L. Zhang.
2013. Map task scheduling in mapreduce with data

locality: Throughput and heavy-traffic optimality.
IEEE Proceedings on INFOCOM. pp. 1609-1617.

[6] F. Chen, M. Kodialam and T. Lakshman. 2012. Joint
scheduling of processing and shuffle phases in
mapreduce systems. IEEE Proceedings on
INFOCOM. pp. 1143-1151.

[7] Y. Wang, W. Wang, C. Ma, and D. Meng. 2013.
Zput: A speedy data uploading approach for the
hadoop distributed file system. IEEE International
Conference onCluster Computing (CLUSTER). pp. 1-
5.

[8] S. Chen and S. W. Schlosser. 2008. Mapreduce meets
wider varieties of applications. Intel Research
Pittsburgh. pp. 1-8.

[9] J. Rosen, N. Polyzotis, V. Borkar, Y. Bu, M. J. Carey,
M. Weimer, T. Condie and R. Ramakrishnan. 2013.
Iterative mapreduce for large scale machine learning.
pp. 1-9.

[10] Behm A, Borkar VR, Carey MJ, Grover R, Li C,
Onose N, Vernica R, Deutsch A, Papakonstantinou Y,
Tsotras VJ. 2011. Asterix: towards a scalable,
semistructured data platform for evolving-world
models. Distributed and Parallel Databases. pp. 185-
216.

[11] S. Venkataraman, E. Bodzsar, I. Roy, A. AuYoung
and R. S. Schreiber. 2013. Presto: distributed machine
learning and graph processing with sparse matrices.
Proceedings of the 8th ACM European Conference on
Computer Systems. pp. 197-210.

0

1000

2000

3000

4000

5000

6000

No aggregation aggregation

P
ro

ce
ss

in
g

ti
m

e(
m

s)

Technique name

aggregation vs no-aggregation

 VOL. 12, NO. 15, AUGUST 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4517

[12] A. Matsunaga, M. Tsugawa and J. Fortes. 2008.
Cloudblast: Combining mapreduce and virtualization
on distributed resources for bioinformatics
applications. IEEE Fourth International Conference
on eScience. pp. 222-229.

[13] J. Wang, D. Crawl, I. Altintas, K. Tzoumas and V.
Markl. 2013. Comparison of distributed data-
parallelization patterns for big data analysis: A
bioinformatics case study. In Proceedings of the
Fourth International Workshop on Data Intensive
Computing in the Clouds (DataCloud). pp. 1-5.

[14] R. Liao, Y. Zhang, J. Guan and S. Zhou. 2014.
Cloudnmf: A mapreduceimplementation of
nonnegative matrix factorization for largescale
biological datasets. Genomics, proteomics and
bioinformatics. 12(1): 48-51.

