
 VOL. 12, NO. 16, AUGUST 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4762

SDN ENABLED PACKET BASED LOAD-BALANCING (PLB) TECHNIQUE
IN DATA CENTER NETWORKS

J. Saisagar, Prashant Kothari D., Ruturaj U. Kadikar and V. Deeban Chakravarthy

Department of Computer Science Engineering, SRM University, India
E-Mail: saisagar8@gmail.com

ABSTRACT

The traffic in data centre networks has been increasing constantly in the past few years. It is almost impossible for
one server to handle all the requests coming from the client because of this huge traffic. Hence the solution is to balance
the load by transferring the traffic to the underutilized core switches. Traditional load balancers use very expensive and
inflexible hardware. Since these load balancers are locked in by the vendors, only few fixed algorithms can be used which
neither can be modified in the future nor innovative algorithms be created by the network administrators. An alternative of
these hardware based load balancers is to use SDN Load balancers. These SDN load balancers do not require costly
hardware and can be programmed, which it makes it easier to implement user-defined algorithms and load balancing
strategies. In this paper, we have implemented packet based load balancing technique using OpenFlow vs switches
connected to ONOS controller.

Keywords: software defined networking, OpenFlow, mininet, load balancing, ONOS.

INTRODUCTION

The transmission of data has been increasing
exponentially in data center networks. It leads to increase
in traffic among the switches. This causes the congestion
problem which results in lower throughput and long delay
[1]. Traditional networks have the control plane and data
plane merged together which reduces flexibility and stops

the growth of networking infrastructure. Under Software
defined networking the data plane and control are made
separate which makes it easier to control the network and
future network evolutions. The routers and switches
basically form the data plane. The control plane consists of
the control logic of the network and is handled through a
controller as shown in Figure-1[2].

Figure-1. SDN Architecture [Courtesy: www.cacm.acm].

The SDN northbound Application Programming
Interface forms the bridge between the SDN controller and
the applications which run over the network. It is the most
critical part of the SDN network because it forms the base
for all the innovative applications which are created. On
the other hand the SDN southbound API facilitates
interaction between the SDN controller and the underlying
switches or routers of the network. OpenFlow is the

industry standard SDN southbound API which allows the
SDN controller to make real time changes dynamically.
OpenFlow computes the Flow-table of switches/routers by
adding/deleting the flow entries [3].

Load balancing is a technique that re-routes the
traffic to balance the load of servers. Hence it forms a very
critical part in every network to run quickly and
efficiently. Traditional load balancers use very expensive

 VOL. 12, NO. 16, AUGUST 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4763

hardware which could not be changed according to the
need of the network. SDN load balancers on the other
hand are not hardware based load balancers and they can
be programmed according to the need of the network.
SDN load balancer can be integrated in an SDN network
in the form of applications.

In this paper, we have developed an application
of Open Network Operating System (ONOS) to control
the loads by redirecting traffic at the ports of switches. For
this we used packet switching technique to allow the
traffic if it satisfies the given threshold otherwise the
packets will be redirected to another core switch with less
traffic.

The upcoming sections of this paper are as
follows. Section II highlights the related work in load
balancing. Section III describes the Packet-based Load
balancing module. Section IV displays the results of the
experimentation. Section V consists of conclusion and
future work.

RELATED WORK

Load balancing as the name suggests balances the
load of a network device and makes the process faster and
efficient. It balances the excess load of the node by
computing and routing the traffic to a node with lesser
load. From past two years there have been various
methods incorporating Load balancing in Data Centre
Networks based on different algorithms and architectures.
In 2015 Sukhveer et al. [4] discusses about Load
balancing in SDN using the Round-Robin Algorithm for
routing the traffic to other nodes. The results obtained
from the Round-Robin Algorithm were compared to the
already existing Random based load balancer. The results
were compared on the basis of total transactions per
second and average response time. Both of these
parameters were better for the Round-Robin Strategy than
the Random Distribution Strategy. In the same year, Widhi
et al. [5] proposed Load balancing based on the Extended
Dijkstra’s algorithm for SDN. The Extended Dijkstra’s
algorithm calculates and finds the shortest path using edge
weights and the node weights. This algorithm also takes

account of the link loads so as to avoid congestion. When
comparing with Round-robin algorithm, dynamic load-
balanced routing in OpenFlow-enabled networks
(LABERIO) and Randomized algorithm it produced the
best results among them for the following parameters:
End-to-End Latency, Throughput and Standard Deviation
Load of servers.

In 2016, Gang et al. [6] proposed Dynamic sub-
topology Load Balancing (DCLB) algorithm for Data
centre networks under Software defined Networking
approach. The DCLB algorithm requires very little storage
space to store the link information in the controller. It also
chooses the path where the link cost is the lowest. The
DCLB algorithm produces better results than the Dynamic
Load Balancing (DLB) algorithm. In the above mentioned
papers the controller used is POX controller. In this paper
the controller in action is ONOS.

Packet based load-balancing

Tools for implementation

ONOS Stands for Open Network Operating
System. It is a controller which provides control plane for
SDN including switches and links with communication
services to end hosts. ONOS implements various types of
functionality, including APIs, resource allocation,
permissions, as well as user-facing software such as a CLI
and a GUI for system applications as shown in Figure-2.
The controller manages the entire network rather than a
single device [7].ONOS can run as a distributed system
across multiple servers, to use the CPU and memory
resources of multiple servers which enables fault tolerance
in case of server failure and upgrades of hardware and
software without interrupting network traffic flow. The
kernel, core services and applications of ONOS are written
in Java as bundles that are loaded into the KarafOSGi
container. OSGi helps to install and run Java modules
dynamically in a single Java Virtual Machine (JVM).
ONOS can run on various underlying OS platforms as it
run in JVM [7].

Figure-2. ONOS stack [Courtesy: www.wiki.onosproject.org].

 VOL. 12, NO. 16, AUGUST 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4764

In this work, ONOS is used as the controller to
balance the loads and carry out the various events with the
help of the ONOS application. The application is useful to
build the network for the real time project. In order to
create a virtual network with switches to balance the loads
we have used Mininet. Mininet is an emulator for SDN
which helps to create virtual hosts, switches and links
which runs on linux operating systems. It helps to create
complex topologies using the Python API extension. In
this work we have used Fat-Tree topology to test the load
balancing between the switches. The switches enabled in
the Mininet are Open Flow switch which provides open
source distributed virtual multilayer switching
environment [8].

Topology

In Data Center Networks the most commonly
used network topology is the Fat-tree topology. Fat-tree
topology is used in this work since the branches nearer the
top of the hierarchy are thicker than branches further down
the hierarchy. Since the branches are data links the varied
thickness of the data links allows for more efficient and
technology-specific use.

The Topology contains Core Switches and Edge
Switches to balance the traffic flowing through the
network as shown in Figure-3. The controller gathers the
information such as links, flows rules, ports statistics and
device id from the topology that is created on Mininet.
From the information that is gathered, controller follows
the Dijkstra's algorithm to find the shortest path. In case
when congestion occurs, the controller balances the load
through Intents [9, 10].

Figure-3. Fat-tree topology.

Packet-based load balancing algorithm

Figure-4. Packet-based load balancing algorithm.

Figure-4 shows the network topology that is
created with Mininet Emulator and which provides
network flows, switches and hosts. ONOS uses Link Layer
Discovery Protocol (LLDP) to discover the network
topology created in Mininet. OpenFlow switches created
in Mininet forms the data plane of the network [11].
ONOS uses Dijkstra's Algorithm to find the shortest path
between a source and a destination. An ONOS Application
is created to redirect the traffic flowing through the
OpenFlow switches. Threshold value is assigned based on
the processing capacity, port capacity and average traffic.
When the number of packets received at ports of the core
switches is less than the threshold value then the packets
are transferred through the default path that is computed
by the Dijkstra's Algorithm as shown in the Figure-5(a). If
the number of packets received is higher than the threshold
value then the packets are transferred to the other core
switches in order to avoid congestion as shown in Figure-
5(b). The forwarding of the traffic contains a flow rule
which allows ONOS to redirect its control of links. In this
work we redirect the traffic from one port to another port
of the edge switch, so that the traffic finally goes from one
core switch to the other core switch.

 VOL. 12, NO. 16, AUGUST 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4765

Figure-5(a). Incoming traffic flow.

Figure-5(b). Redirecting traffic flow.

RESULTS

The focus is kept on the core switches because; it
is the main element or the neck of the network. The
saturation of the core switches will result in max
degradation of traffic. In this work, we have adopted a
packet-based load balancing technique where the traffic is
routed to a different core switch if the packet threshold is
exceeded.

Figure-6. Traffic flow under threshold.

The traffic flow follows a default path created by
the Dijkstra's Algorithm of the controller as shown in
Figure-6. In this flow the data is transferred from the host
1 to host 5 (10.0.0.1 to 10.0.0.5). The switches used for
this path are is s1, s9, s19, s11 and s3. We have taken the

results of the number of packets being transferred from the
Switch s11 which contains 4 ports. Each port directs the
traffic to a different switch. Also the Direction of the flow
is Bidirectional since the packets sends an
acknowledgement back to the source.

 VOL. 12, NO. 16, AUGUST 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4766

Figure-7. Packets transferred from switch 11 Port 3.

Figure-7 shows the number of packets in the y-
axis and time interval in the x-axis. It helps in estimating
the number of packets being transferred from switch s11
port 3. For our work we have used Internet Control
Message Protocol (ICMP) packets for the transfer. The
ICMP packets are transferred until the threshold is

satisfied. The threshold limit was given as 300 packets.
Until the time interval of 260 seconds the threshold is
satisfied and packets are transferred from port 3. Once the
threshold is exceeded the packets are redirected to an
alternate path.

Figure-8. Traffic flow over threshold.

Figure-8 shows the alternate path triggered when
the threshold limit is exceeded. The threshold limit was
given as 300 packets. The data flow takes place between
host 1 and host 5. In this alternate path the switchess1, s9,

s20, s11 and s3 are used for packet transfer. From the time
interval of 260 second the port 4 of the switch s11
becomes active for the ICMP packet transfer as shown in
the Figure-9.

 VOL. 12, NO. 16, AUGUST 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4767

Figure-9. Packets transferred from switch 11 port 4.

Figure-10. Ping statistics of packet transfer.

In this work, we have sent 500 packets with a
threshold limit of 300 packets. As discussed earlier the
first 300 packets where transferred through the port 3 of
switch 11 and when the threshold limit was exceeded the
packets were transferred from port 4 of same switch. All
the 500 ICMP packets were transmitted with 0% packet
loss as shown in Figure-10.
Conclusion

In this paper, we present a strategy to solve the
load balancing issue in SDN based Data Center networks.
We created the fat-tree topology in a virtual network with
the help of Mininet. We implemented packet based load
balancing technique to redirect the traffic to different
switches by setting a threshold. Results show that the
packets transferred from one switch to another switch
without any packet loss, thereby balancing the load of one
core switch with the other.

REFERENCES

[1] Nunes B., Marc Mendonca X. Nguyen, Katia

Obraczka and Thierry Turletti. 2014. A survey of
software defined networking: Past, present, and future
of programmable networks. 1-18.

[2] Kreutz D., Ramos F.M., Verissimo P.E., Rothenberg
C.E., Azodolmolky S. and Uhlig S. 2015. Software-
defined networking: A comprehensive survey.
Proceedings of the IEEE. 103(1): 14-76.

[3] Zhou W., Li L., Luo M. and Chou W. 2014, May.
REST API design patterns for SDN northbound API.
In Advanced Information Networking and

Applications Workshops (WAINA), 2014 28th
International Conference on (pp. 358-365). IEEE.

[4] Kaur S., Kumar K., Singh J. and Ghumman N.S.
2015, March. Round-robin based load balancing in
Software Defined Networking. In Computing for
Sustainable Global Development (INDIACom), 2015
2nd International Conference on (pp. 2136-2139).
IEEE.

[5] Yahya W., Basuki A. and Jiang J.R. 2015. The
Extended Dijkstra's-based Load Balancing for
OpenFlow Network. International Journal of
Electrical and Computer Engineering. 5(2): 289.

[6] Wang L. and Lu G. 2016, January. The dynamic sub-
topology load balancing algorithm for data center
networks. In Information Networking (ICOIN), 2016
International Conference on (pp. 268-273). IEEE.

[7] ONOS:

https://wiki.onosproject.org/display/ONOS/Wiki+Ho
me.

[8] Mininet: http://mininet.org/.

[9] Yang Liu, Jogesh K. Muppala, Malathi
Veeraraghavan. 2014. A Survey of Data Center
Network Architectures.

 VOL. 12, NO. 16, AUGUST 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4768

[10] Lan Y.L., Wang K. and Hsu Y.H. 2016. July.
Dynamic load-balanced path optimization in SDN-
based data center networks. In Communication
Systems, Networks and Digital Signal Processing
(CSNDSP), 2016 10th International Symposium on
(pp. 1-6). IEEE.

[11] OpenFlow: http://archive.openflow.org.

