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ABSTRACT 

The scallop height is the most substantial variable in determining the quality of machined surface. Many 

analytical approacheswere proposed to calculated the scallop height infive-axis milling.Most of them addressed the issue of 

scallop height for toroidal cutter by approximating the inclined cutting tool using two common primitive geometries, either 

circle or ellipse.This paper presents an analytical method to calculate the scallop height of toroidal cutter produced by 

predefined tool path in five-axis milling. The present study was aimed to improve the drawback of the existing method in 

representing the swept curve of inclined toroidal cutter. In this study, the swept curve was calculated analytically by 

adopting the method to calculate the grazing point in swept envelope development. The coordinate of intersection point 

was calculated by using the combination of swept curve algorithm and coordinate mapping equations. The proposed 

method was successfully used to generate scallop height data for two machining processes with different step over.  

 
Keywords: scallop height, toroidal cutter, grazing toroidal approximation, five-axis milling. 

 

1. INTRODUCTION 
Many products, such as mould and dies, are 

designed with free-form surfaces. Currently, those part 

surfaces are often produced by five-axis milling. 

Theoretically, five-axis milling offers better efficiency 

than three-axis milling in producing complex part surface. 

In five-axis milling, the tool orientation relative to the 

workpiece can be controlled by two additional degrees of 

freedom. However, the additional degrees of freedom 

created complexity as well as flexibility compared to 

three-axis milling.  

Machining free-form part is normally involving a 

huge number of tool movements. Consequently, it is both 

a long and costly process. Considering the time needed for 

finishing and polishing which could consume as much as 

75% of the total machining time [1], therefore, selecting 

and controlling the cutting conditions and the strategies 

employed to increase product quality become very 

important.   

In general, there are three parameters that are 

commonly used to control the accuracy of the machined 

surface: 1) machining tolerance, 2) scallop height, and 3) 

surface roughness. In multi-axis milling, scallop height 

becomes the most substantial component in determining 

the quality of mahined surface. It is influenced by four 

factors, 1) cutting tool geometry, 2) tool orientation, 3) 

part surface geometry, and 4) the distance between 

adjacent tool path (step over). In order to achieve the 

expected surface quality, the scallop must be well 

controlled. However, due to the complexity of the part 

surface and tool orientation, scallop height is difficult to 

calculate and it cannot be represented easily. In developing 

tool path for free-form surfaces, the method to determine 

the scallop height accurately is still a major challenge.  

Many studies developed the method to calculate 

the scallop height during sculptured surface machining. 

Most of the proposed method calculated the scallop height 

usinganalytical approaches. Analytical approachwas used 

to calculate the cut geometry and scallop height in five 

axis milling because it was much faster and more accurate 

when compared to the discrete approaches [2-4]. Several 

researchers [5-8] have performed the study on the 

effectiveness of inclined flat end mills in the machining of 

curved surfaces. The results show that flat-end mill 

produces smaller scallops as compared to ball-end mill. 

Other studies [9-13] proposed method for calculating the 

scallop height for ball-end mill to achieve optimal tool 

path. Ozturk et al. [14] investigated the effect of tool 

orientation to the scallop height in five-axis milling. 

Meanwhile [8, 13,15] addressed the issue of scallop height 

for toroidal cutter by simply assumed that the curvature 

was constant and cutter geometry was approximated by 

two common primitive geometry, either circle or ellipse. 

Senatore et al. [10] represented the tool swept 

envelope by calculating the effective radius of toroidal 

cutter due to the inclination angle. Then the scallop height 

with respect to radius of part surface was calculated and 

finally the optimal step over can be determined. Others 

studies [5-12, 15, 16] defined the inclined flat and ball end 

mills as an ellipse. Mathematically, the shape of swept 

curves (SV) of inclined flat and ball end mill, which are 

projected into 2D, can be precisely determined by 

parametric equation of ellipse curve. However, this 

approach is not applicable to toroidal cutter. Toroidal 

cutter is decomposed into cylindrical surface and toroidal 

surface, consequently, determining the swept curve when 

the inclination angle existsbecomes much more 

complicated. This statement will be prooved in the section 

of Implementation and Discussion. 

This paper presents an analytical method to 

calculate the scallop height of toroidal cutter produced by 

predefined tool path in five-axis milling. The present study 

was addressed to improve the drawback of the existing 

method in representing the swept curve of inclined 

toroidal cutter. In this study, the swept curve was 

calculated analytically by adopting the method to calculate 

the grazing point in swept envelope development. The 

coordinate of intersection point was calculated by using 
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the combination of swept curve algorithm and coordinate 

mapping equations. 

 

2. SWEPT CURVE CALCULATION 

Geometrycally, toroidal-end cutter is constructed 

by two surfaces, cylindrical and toroidal surface as 

depicted in Figure-1a. However, despite it is constructed 

by two surfaces, the swept curve was only located on the 

toroidal surface. The representation of toroidal surface 

with respect to the tool coordinate system (TCS) was 

described by the following equation, 

 

 
 

Figure-1. a) Geometry of cutting tool, b) tool orientation 

due to inclination angle. 

 ்ܵ ሺ𝜑; 𝜆ሻ [ݖݕݔ] = [ሺݎ௠ + ݎ 𝑖݊ݏ 𝜆ሻ 𝑖݊ݏ 𝜑ሺݎ௠ + ݎ 𝑖݊ݏ 𝜆ሻ ݏ݋ܿ 𝜑ݎ − ݏ݋ܿ ݎ 𝜆 ]                           (1) 

 

Where ݎ is minor radius of cutter and ݎ௠ is the distance 

between cutter centre point to the minor radius. 

Meanwhile 𝜆 and 𝜑 denotes the toroidal angle and 

engagement angle, respectively.   

In five-axis machining, the tool can be rotated in 

any direction. Part with sculptured surfaces can be 

machined efficiently by controlling the tool to move and 

rotate dynamically with respect to the part surface normal 

(curvatures). For the purpose of analytical representation 

of moving surface generation of the cutting tool, 

appropriate operators of the coordinate system 

transformations are required. Therefore, three coordinate 

systems as illustrated in Figure-1 bwere employed to 

represent the position and orientation of the tool. They are 

workpiece coordinate system (WCS) which is the 

reference coordinate frame, tool coordinate system (TCS), 

and local coordinate system (LCS). To calculate the 

coordinate transformation, it should be related to a specific 

machine kinematics. WCS is a fixed frame which is 

represented by the basis vector x, y, z, while TCS and LCS 

are denoted by u, v, w and X, Y, Z respectively. The tool 

inclination angle (ߙ) and screw angle (ߚ) are normally 

used when a sculptured surface part is machined by five-

axis milling. They are the angle formed by TCS and LCS. 

The operator [M] to map coordinate system from TCS to 

WCS involving the tool rotation about x-axis (𝜃஺), y-axis 

and also translation at T is expressed as follow: 

 

[M] = [  
𝜃஻ ݏ݋ܿ   Ͳ 𝑖݊ 𝜃஻ݏ 𝑖݊ 𝜃஻ݏ𝑖݊ 𝜃஺ݏ்ݔ 𝜃஺ ݏ݋ܿ 𝜃஻ ݏ݋𝑖݊ 𝜃஺ܿݏ− 𝑖݊ 𝜃஻ݏ𝜃஺ ݏ݋்ܿݕ 𝑖݊ 𝜃஺ݏ 𝜃஻ ݏ݋𝜃஺ܿ ݏ݋ܿ Ͳ்ݖ Ͳ Ͳ ͳ ]  

  
                 (2) 

 

On the other hand, the local coordinate frame 

with orthogonal basis vector u, v, w, which is located at 

the cutter contact point (CC-point), is defined as, 

ݓ  = ݏ݋ܿ] ߙ Ͳ 𝑖݊ݏ Ͳߙ ͳ Ͳݏ𝑖݊ ߙ Ͳ [ߙ ݏ݋ܿ [Ͳ Ͳ ͳ ]்                               (3) 

 v = w×VT|w×VT|   ;    u = v × w                                                (4) 

 

Swept curvewas derived from the method to 

define grazing point in swept envelope development. As 

mentioned by [17, 18] that the swept envelope was 

constructed by three points, forward boundary (egress 

point), envelope boundary (grazing point) and backward 

boundary (ingress point). Swept curve was obtained by 

using the tangency function as follow: 

 𝐹ሺ𝜗,𝜑,௣ሻ = 𝑁ௌ𝑇 ሺ𝜗,𝜑,௣ሻ. 𝑉ௌ𝑇 ሺ𝜗,𝜑,௣ሻ = Ͳ                                (5) 

 

where 𝑁ௌ𝑇ሺ𝜑ሻis the cutter surface normal and 𝑉ௌ𝑇  is the 

cutter moving vector. With the same method, every point 

on the swept curve at every engagement angle is 

calculated. The normal surface of an arbitrary point Q on 

toroidal surface in TCS is described by, 

 𝑁ௌ𝑇 = 𝜕ௌ𝑇/𝜕𝜆|𝜕ௌ𝑇/𝜕𝜆| × 𝜕ௌ𝑇/𝜕𝜑|𝜕ௌ𝑇/𝜕𝜑| = 𝑖݊ݏ] 𝜆 . 𝑖݊ݏ 𝜑ݏ𝑖݊ 𝜆 . ݏ݋ܿ 𝜑− ݏ݋ܿ 𝜆 ]                     (6) 

 

When Equation (6) was transformed to the 

moving frame, it yields to, 

 𝑁ௌ𝑇′ሺ𝜗,𝜑,௣ሻ = 𝑖݊ݏ 𝜆 . 𝑖݊ሺ𝜑ሻݏ . ݑ + 𝑖݊ݏ 𝜆 . ሺ𝜑ሻݏ݋ܿ . ݒ ݏ݋ܿ− 𝜆 .  (7)                                                                            ݓ

 

The velocity of an arbitrary point Q on the 

toroidal surface was determined as follow: 

 𝑉ௌ𝑇 = 𝑉 + 𝜔 × ܶܳ⃗⃗⃗⃗  ⃗                                                         (8) 

 

where 𝜔 and ܶܳ⃗⃗⃗⃗  ⃗ denote the angular velocity and the 

position vector from ܶ to ܳ, respectively. Since the model 

was developed by assumed the tool is static, hence there 

was no angular motion ሺ𝜔 = Ͳሻ. And linear velocity was 

equal to f (VT = f). The tangency function yield to, 
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Fሺϑ,φ,pሻ =sin λ . sinሺφሻ . ሺVT. uሻ + sin λ . cos ሺφሻ . ሺVT. vሻ +cos λ . ሺVT. wሻ = Ͳ                                                            (9) 
 

Due to 𝑉  perpendicular to ݒ, then𝑉 . ݒ =Ͳ.Finally, toroidal angle of the swept point as a function of 

engagement angle is calculated as follow: 

 𝜆 ሺ𝜑ሻ = ଵ−݊ܽݐ [ 𝑉𝑇.௪𝑠𝑖௡ሺ𝜑ሻ.ሺ𝑉𝑇.𝑢ሻ]                                            (10) 

 

After 𝝀 ሺ𝝋ሻwas obtained, the coordinat of swept 

curve point as a function of engagement angle in WCS 

was calculated as follow: 

 I ሺφሻሺxI, yI, zIሻ = [M]ST (φI; λሺφሻ)                                     ሺͳͳሻ 

 

3. PATH INTERSECTION POINT 

The equation to obtain the intersection point 

between the swept curve of current cutting path and that of 

adjacent cutting path, which is called path intersection 

point (𝐼஼), were derived by referring to Figure-2. Since the 

tool orientation was set without tilt angle, then, the angle 

of CC-point (𝜏) of current cutting path and that the 

subsequent cutting path were similar. It also made the 

intersection point located in the middle of point 𝐶𝐶ଵ and 𝐶𝐶ଶ. The distance of intersection point to CC point ሺsሻ and 

the angle of the CC point relative to the part surface was 

calculated by,  

 

 
 

Figure-2. Intersection point of adjacent tool path, 

a) front view, b) side view. 

 s = |CCଵ − CCଶ|/ʹ                                                         (12) 

 τ =  sin−ଵሺs/Rଵሻ                                                           (13) 

 

where ܴଵ = √ܴ௫ଶ + ܴ௬ଶ. Regarding to the tool rotation by𝜏, 

the coordinate of swept point in TCS was mapped to Local 

Coordinate System (LCS). The mapping of coordinate 

system was performed by using the following equation, 

 

IC [xICyICzIC] = [ͳ Ͳ ͲͲ cos τ −sin τͲ −sin τ cos τ ] × ST (φIC; λIC)           (14) 

 

The coordinate of 𝐼஼(ݔ𝐼𝐶 , 𝐼𝐶ݕ ,  𝐼𝐶)could beݖ

defined after the toroidal angle of intersection point (𝜆𝐼𝐶) 

was obtained. With respect to LCS, ݕ𝐼𝐶 =  𝐼𝐶wasݕ Since .ݏ

identified, 𝜆𝐼𝐶was then defined by extracting Equation (14) 

only for ݕ𝐼𝐶as follow: 

𝐼𝐶ݕ  = ቀ(ݎ௠ + ݎ 𝑖݊ݏ 𝜆IC) ݏ݋ܿ 𝜑𝐼𝐶ቁ ݏ݋ܿ 𝜏 − ݎ) ݏ݋ܿ ݎ− 𝜆IC)ݏ𝑖݊ 𝜏                                                              (15) 

 

There were two unknown variables exist in 

Equation (15), λIC and 𝜑𝐼𝐶. Therefore, one of them need to 

be converted so that only one unknown variable 

remaining. By rearranging Equation (10), then it was 

expressed by,  

 

ሺ𝜑𝐼𝐶ሻݏ݋ܿ = [  
 √(ሺ𝑉𝑇.𝑢ሻ 𝑠𝑖௡ 𝜆𝐼𝐶)2−(ሺ𝑉𝑇.௪ሻ 𝑐௢𝑠 𝜆𝐼𝐶)2

ሺ𝑉𝑇.𝑢ሻ 𝑠𝑖௡ 𝜆𝐼𝐶 ]  
 
               (16) 

 

After converting cosሺ𝜑𝐼𝐶ሻ in Equation (15) by cosሺ𝜑𝐼𝐶ሻ in Equation (16), finally, Equation (15) yielded 

to become a polynomial equation as follow: 

 ሺaଶሻt଼ + ሺʹabሻt଻ + ሺʹac + bଶ + fଶሻt଺ + ሺʹad +ʹbcሻtହ + ሺʹae + ʹbd + cଶ − fଶሻtସ + ሺʹbe + ʹcdሻtଷ +ሺʹce + dଶሻtଶ + ሺʹdeሻt + ሺeଶሻ                                      (17) 

 

where, 

ݐ  = 𝑖݊ݏ 𝜆𝐼𝐶 ܽ = [ሺݎଶሺ𝑉 . ሻଶݑ + ଶሺ𝑉ݎ . ሻଶሻݓ ݏ݋ܿ 𝜀 + ଶሺ𝑉ݎ . ሻଶݑ 𝑖݊ଶݏ 𝜏] ܾ = ݎ௠ݎʹ] ଶݏ݋ܿ 𝜀 ሺሺ𝑉 . ሻଶݑ + ሺ𝑉 ܿ [ሻଶሻݓ. = [ሺݎ௠ଶሺ𝑉 . ሻଶݑ + ௠ଶሺ𝑉ݎ . ሻଶݓ − ଶሺ𝑉ݎ . ሻଶሻݓ ଶݏ݋ܿ 𝜏− ሺݎሺ𝑉 . ሻݑ 𝑖݊ݏ 𝜏 + ሺ𝑉ݕ . −ሻሻଶݑ ሺݎଶሺ𝑉 . ሻଶݑ 𝑖݊ଶݏ 𝜏ሻ] ݀ = ሺ𝑉ݎ௠ݎʹ−] . ሻଶݓ ଶݏ݋ܿ 𝜏]                                         (18) ݁ = ௠ଶሺ𝑉ݎ−] . ሻଶݓ ଶݏ݋ܿ 𝜏] ݂ = ሺ𝑉ݎ)ʹ−] . ሻݑ 𝑖݊ݏ 𝜏 + ሺ𝑉ݕ . ሺ𝑉ݎሻ)ሺݑ . ሻݑ 𝑖݊ݏ 𝜏ሻ] 
 

The roots of polynomial could be easily 

determined by using software programming such as 

Matlab. From Equation (17), eight roots of twill be 

generated. Among those roots, however, only one t that 

can be converted into λ𝐼𝐶  for obtaining intersection point 

correctly. The correct one is selected by following these 

rules, ݐ must be within 0 and 1, if more than one ݐfulfill 

the criteria i, then the one that gives ݕ𝐼𝐶 =  will be ݏ

selected.   

Once λ𝐼𝐶was obtained, then the engagement angle 

could be determined by using either Equation (10) or 

Equation (16). The coordinate of PI-point, 𝐼஼(ݔ𝐼𝐶 , 𝐼𝐶ݕ ,  :𝐼𝐶),was defined by using the equation belowݖ

 𝐼஼(ݔ𝐼𝐶 , 𝐼𝐶ݕ , (𝐼𝐶ݖ = [M]்ܵ (𝜑𝐼𝐶; λ𝐼𝐶)                               (19) 
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Finally, the scallop height (𝒉) was calculated by, ℎ = ݎ −  ሺ𝜆𝐼𝐶ሻ                                                       (20)ݏ݋ܿ ݎ

 

4. IMPLEMENTATION AND DISCUSSIONS 

Based on the formulae derived in the previous 

sections, a simulation program using MATAB was 

developed. The proposed method in this study was called 

Grazing Toroidal Approximation (GTA). In this section 

the proposed method was tested. In the first test, the 

proposed method was tested to proof the drawback of the 

existing swept curve approximations. The second test 

demonstrates the ability of GTA to calculate the scallop 

height. Finally, the accuracy of the proposed method was 

examined by comparing the scallop height obtained using 

Siemens-NX. 

 

4.1 Grazing toroidal approximation vs ellipse curve  

      approximation 

Sample of the swept curve on the cutting tool 

when the inclination angle exist, and the shape of swept 

curve projected into 2D was depicted in Figure-3a. Figure-

3b compared the shape of the projected curve and ellipse 

curve for various inclination angle. It can be seen that the 

shape of projected curve was very dynamic and it cannot 

be approximated by ellipse when the inclination was 

small. From a series of test, it was found that the projected 

curve coincides precisely with ellipse curve when the 

inclination angle more than 40
o
. In real machining, 

however, large inclination angle is avoided. Hence, it 

proved that ellipse curve approximation method for 

toroidal cutter tend to produce error.  

 

 
 

Figure-3. a) swept curve and projected swept curve, 

b) comparison between ellipse curve and projected 

swept curve. 

 

4.2 Verification of the scallop height from the GTA 

One test using workpiece surface and tool pathas 

shown in Figure-4a was performed. In this test, the tool 

was set to perform ramp-up machining process. The 

inclination angle during the machining process was set 

decrease gradually as the tool moving up. The machining 

condition used in the test was feedrate0.3 mm/tooth and 

spindle speed 5000 rpm. A two teeth toroidal cutter with 

diameter 20 mm and a minor radius of 5 mm was used as 

the cutting tool. Using the GTA, the shape of machined 

surface could be generated. Using the same part model, the 

machining tests were performed twice with different step 

over, 5.245 mm and 2.79 mm. The shape of machined 

surface that were generated by the program simulation are 

shown in Figure-4b and Figure-4c. From this figure can be 

seen that the shape of machined surface generated by the 

GTA resembled the shape of machined surface generated 

by manufacturing process in Siemens-NX (Figure-4a). 

This indicates that the proposed method was accurate. The 

scallop height with respect to cutter contact points (CC-

points) are displayed in Figure-4d. From this figure can be 

seen that increasing the step over will increase the scallop 

height. 

 

 
 

Figure-4. a)Test model, b) scallop progressionwith step 

over 5.245 mm, c) scallop progression with step over 

2.790 mm, d) calculated scallop height. 

 

The method proposed in this study is a part of 

Analytical Boundary Simulation (ABS) method. In 

previous studies [2, 4], ABS method was compared with a 

discrete method in terms of computational time. The 

results showed that analytical method was computationally 

more efficient than the Z-mapping method. In this study, 

the method was proven applicable in supporting the path 

scallop calculation. This means that the proposed method 

helps to simplify the work in determining the quality of 
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machined surface in five-axis milling. This is the main 

advantage of the proposed method compared with other 

studies based on solid models and discrete methods.  

 

CONCLUSIONS 

In this study, a new method, known as the 

Grazing Analytical Approximation, was developed to 

generate the scallop height for a toroidal cutter during 

five-axis milling. The primary contributions of this study 

include the follow: 

 

a. The proposed method proved that the approximation 

of inclined toroidal cutting tool using two common 

primitive geometries, either circle or ellipse is 

inaccurate. 

b. The GTA is applicable to calculate the scallop height 

of five-axis milling process. It was tested using one-

part model with two different step over.  
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