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ABSTRACT 

In this paper design of integrated static synchronous series capacitor (SSSC) and variable structure system 
observer (VSSO) based optimal controller for damping of frequency oscillations in Multi Area Power System (MAPS) 
under deregulated environment is presented. A Thermal-Thermal power system is considered for simulation study. SSSC is 
a series connecting device which is connected with tie line of the system. The low frequency oscillations of system are 
minimized by designing the gain of SSSC. The high frequency oscillations are minimized by designing observer based 
optimal controller. The design of VSSO matrix is a function of transformed System matrix obtained from optimal sliding 
mode control law. The performance of deregulated system with integrated control strategy (SSSC+ VSSO based 
Controller) is tested and simulation results are presented and compared to Neuro Fuzzy Sliding Mode Controller (NFSMC) 
and PI controller. 
 
Keywords: deregulated power system, static synchronous series capacitor, Neuro fuzzy sliding mode controller, variable structure 
system observer. 
 
INTRODUCTION 

The change in load initiates tie line power flow 
results deviations in frequency. For proper trade of power 
in the Tie lines control of frequency [1-24] is a great 
challenge to a power system engineer particularly in a 
deregulated Environment. These days’ series FACT 
devices in tie line are commonly used for damping 
frequency oscillations [25, 26]. One kind of series 
controlled FACT device, Static Synchronous Series 
capacitor (SSSC) is used to suppress these power 
oscillations effectively and also controls the Tie-line 
power flow in specified limits [27-30].  

Many authors studied these coordinated control 
strategies with different combinations. Few of them are, 
coordinated control of 𝐻∝  controller and SSPS [31]. A 
TCPS and PSO based fine turning PID controller, this 
method suppress frequency oscillations effectively [32]. 
The frequency response of each CA can be improved by 
adjusting parameters of SSSC and SMES using 
Probabilistic Methods Applied to Power Systems [33]. A 
dual mode control strategy with FABFM plus SSSC and 
TCPS is demonstrated for LFC [34]. Performance 
improvement by employing TCPS for AGC of a 
hydrothermal system under deregulation is presented in 
[35] and Redox Flow Batteries (RFB) with IPFC presented 
[36]. The authors earlier have proposed Neuro Fuzzy 
Sliding Mode Controller (NFSMC) for LFC Problem of 
MAPS in Deregulated Environment [37]. All these 
popular strategies were designed with a basic assumption 
that, all the system variables are available for execution of 
control law. As the system behaviour is uncertain and 
model wise it is highly nonlinear, the performance of 
system with designed controllers is doubtful [38].  

Under these limitations, there is a necessity for 
design of a robust Load Frequency Controller to minimize 

the settling time, also to mitigate both the high frequency 
and low frequency oscillations. This is the main objective 
of this proposed control strategy. The name of the 
proposed control strategy is “Variable Structure Observer 
based Optimal Controller (VSSOC)”. The integral parts of 
VSSOC are an observer and an optimal controller. This 
strategy assumes a SSSC is cascaded with tie line. The 
feature of the designed sliding mode observer [39-46] is to 
estimate all the state variables by taking ∆f1 & ∆f2 as 
inputs. Then system is converted in to state space model 
with observed states. These observer states are given as 
input to design control law using an optimal sliding mode 
controller. The desired response of the system with 
optimal controller is obtained by setting the gain through 
minimization of performance index. 

The remaining paper presented the following. 
Section II discusses overview of the modeling of open 
access Thermal-Thermal system, SSSC and NFSMC. 
Algorithm of proposed VSSOC and flow chart were 
described in section III. Results of simulation were 
presented in section IV. Finally concluding remarks were 
presented in the last section. 
 
Dynamic Model of Restructured Power System for 

AGC, SSSC and NFSMC 

To address load frequency control problem a 
Thermal-Thermal system was considered and its dynamic 
model in deregulated environment is mentioned in Figure-
1 [4, 5]. 
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Figure-1. Dynamic model of MAPS with AC Tie-line. 
 

The change in Tie-line power and frequency 
deviation has a combined effect on Area Control Error 
(ACE) [4, 5] and is given by 
= 𝐸௜ܥܣ  ௜∆𝑓௜𝑒𝑟𝑟௢𝑟ܤ    +  ∆ 𝑃௜𝑒𝑟𝑟௢𝑟      𝑖 = ͳ, ʹ,  
 

In deregulated power system contract 
participation factor (cpf) [5] will affect the tie line power 
flow and these two are related by the following equation.  
 P୲୧ୣ− ୱୡ୦ୣୢ୳୪ୣୢ = ∑ ∑ cpf୧୨ ସ୨=ଷଶ୧=ଵ ∆PL୨− ∑ ∑ cpf୧୨ଶ୨=ଵସ୧=ଷ  ∆PL୨ ∆P୲୧ୣ−ୣ୰୰୭୰ = ∆P୲୧ୣ−ୱୡ୦ୣୢ. −  ∆P୲୧ୣ−aୡ୲. 
 

The transaction between the DISCOMs and 
GENCOs are related by DPM [4, 5]. The ACE is 
distributed among all the GENCOs and is called ACE 
participation factor, given by  
 ∑ ∝௝௜
ே𝐺𝐸ே𝐶ை𝑗

௜=ଵ = ͳ.Ͳ 

 
where, ∝௝௜ is the ACE participation factor of the G|ENCO 

No. “i” in the area No. “j”. Number of GENCOs in area 
“j” is NGENCOj. 

In open market environment a two control area 
power system having Thermal plants was shown in 
Figure-2. 
 

 
 

Figure-2. MAPS integrated with SSSC for AGC in a 
Deregulated Environment. 

 
Mathematical Modelling of SSSC 

The mathematical model of SSSC is available in 
various publications. The reader can refer [27-30]. The 
basic equations can be referred in [27-30] and the power 
supplied by SSSC is given by: 
 ∆PୗୗୗC = ቆV୫ V୬X୘ sinθ୫୬ + V୫ V୬X୘ sinθ୫୬×  Vୱ√𝑉௠ଶ + 𝑉௡ଶ −  ʹ𝑉௠𝑉௡ cos 𝜃௠௡ ∆Vୱቇ 

 
The dynamic model of SSSC for LFC problem is 

shown in the Figure-3.  
 

 
 

Figure-3. Dynamic model of SSSC for power 
oscillation damping. 

 
Overview of NFSMC 

The design procedure of NFSMC proposed by the 
same authors can be referred in [37]. This controller 
combines the features of Fuzzy logic and Neural 
Networks. The main objective is to adjust the sliding 
surface to achieve good dynamic response. The block 
diagram representation is given in Figure-4. 
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Figure-4. Schematic diagram of NFSMC. 
 
Design of proposed VSSOC with SSSC 

Design and implementation of proposed VSSOC 
is discussed in this section. SSSC connected in series with 
tie for the purpose of minimizing low frequency 
oscillations. Using the deviations in frequencies in two 
areas the observer states are estimated. These states are 
used as inputs for sliding mode optimal controller. The 
control law is designed using optimal control theory by 
minimizing performance index which in turn adjusts the 
weight matrix Q and R matrices. Figure-5 describes the 
process of implementation VSSOC on a deregulated 
power system. 
 

 
 

Figure-5. Implementation of proposed VSSOC. 
 
 
 

Algorithm for the implementation of VSSOC 
 
1. Convert the system into state space model. 
2. Let us consider observer gain matrix nL= I  

3. The observer gain matrix is partitioned into 

1 p p×(n-p)

2 (n-p)×p (n-p)

p p×(n-p)

L =[I O ]

L =[O I ]

M=[I O ]
 

4. While designing observer system matrix these are 
he approximations made by Utkin [45] 

5. 1 1 2 2 11 11 12 12 21 21 22 22M =L ;M =L ;F =A ;F =A ;F =A ;F =A

 
11 (n-p)

1 1
p 12

A I
G = ; G =

I A

   
   
   

 

6. The observer system matrix N reduced to Utkin’s 
matrix 

11 11 1 1 12 12 1 2N =A -Z G ; N =A -Z G ;
 

21 21 2 1 22 22 2 2N =A -Z G ;N =A -Z G ;
 7. In VSSOC observer Z1 and Z2 approximated as  

1 2 22Z =0; Z =[0 Z ]  
 8. N matrix is minimized as  

11 12

21 22 22 12

A A
N=

A A -Z A

 
 
   

 
9. Sliding poles obtained from sliding mode control 

law by using pole placement method and Z22 is 
obtained. 

10. The other observer parameters J, E and H are 
reduced to 

22

0 0
J=

0 Z

 
 
  ;  

 𝐸 = Ͳ ; 
 𝐻 =  ܤ
 

The flow chart for VSSOC is given in Figure-6. 
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Figure-6. Flow chart for sliding mode observer based optimal controller. 

Consider sliding mode observer 
w (t)=Nw(t)+ Jy(t)+Hu(t)+ sgn(Me(t))




 

Start 

Initialize the initial conditions for an LTI System described by 

X (t)=AX(t)+Bu(t)

y(t)=CX(t)

z(t)=LX(t)



 

 

Choose L= In to reduce to sliding mode observer  
 

2

2

2

L A
CA

CA
rank rank C

C
L

L

 
  
      
    

 

 

Yes 

N
o 

Partition 

1

22

L=
L GC

LL

   
   
  

1

22

L=
L GC

LL

   
   
  

The ApproxiŵatioŶs iŶ desigŶ of UtkiŶ’s observer 

1 1 2 2 11 11 12 12 21 21 22 22M =L ;M =L ;F =A ;F =A ;F =A ;F =A

11 (n-p)

1 1
p 12

A I
G = ; G =

I A

   
   
   

 

1.  

1 

Stop 

Plot the response of system dynamic 
parameters by usind LSIM command 

Convert observer matrix into observer 
transfer function and write the state 
equation using observer gain matrix 

Modified observer system matrix is given 
by 

11 12

21 22 22 12

A A
N=

A A -Z A

 
 
 

 

In Utkin’s observer  
1 2 22Z =0; Z =[0 Z ]

 𝑍ଶଶis obtained via optimal sliding control law
 U =  −𝑘ሺݔሻ

 

The observer system matrix is partitioned 

as 𝑁ଵଵ, 𝑁ଵଶ, 𝑁ଶଵ, 𝑁ଶଶ 

1 
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Figure-7. Flow chart for design of sliding poles. 
 

Algorithm for the Design of sliding poles: 
Step-1: Canonical transformation is used to transform 

system state. 
-1 -1A=TAT ; B=TB ; C=CT  

Step-2: The hyper plane is given as 𝜎ሺݕሻ 

1 1 2 2σ(y)=S x +S x = 0  

Step-3: optimize the PI. 

s

T (n×1) (n×n)
1

t

1
J = x Q x. dt ; x R ; Q R

2



   

To optimize J1 the problem is considered as 
quadratic regulator. 
 

s

TT T
1 111 12 22 12 221

t

1 T

2 122 12

1 T T
2 12 122 12

11 121 T 1

21 22

T T

2 1 1 221 12

1
J = [ x (Q Q Q Q ).x + v Q v]dt ;

2

v = x + Q Q x ;

x = Q (A P + Q ).x ;

Q Q
Q = (M ) Q M = ;

Q Q

X Q X = X Q X







 





 
 
  



 
 
Step-4: Matrix Riccati equation is solved and P matrix 

evaluated. 
 

1 T 1 T T
11 12 11 1222 12 22 12

1 T T
12 22 12

P.(A A Q Q ) + (A A Q Q ) P

P.A Q Q P +D D=0

 



 


 

 
Step-5: The surface is designed using optimal control law. 

1 T T
1222 12H= Q (A P+ Q I ×M

 
  

 

T 1 T

s s s s s sPA +A P PB R B P + Q = 0


    

 
Where 
 

1 T
s 11 12 s 12 s22 2212A =A A Q Q ; B =A ; R = Q ;


  

 
Step-6: The control law for equivalent control  
 

1
eK =(SB) . S.A

 

 
Step-7: The corrective control law is given by 
 

1
rK =(SB) . S.

 ( - sliding margin) 

 
Step-8: the cumulative control law  
 

e ru = KX= (K + K )X   

 
Step-9: Eigen values of hyper plane 

H calculated by 

( )H eig A BK    

Step-10: sliding Eigen values 
s [47] calculated by 

 

( )s eig A BK    

 
SIMULATION RESULTS 
 
Contract scenario 

In bilateral contract scenario, freedom will be 
there for the DISCOs to contract with GENCOs of same 
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area or other area. The contracted power will be 
dispatched to the DISCOs based on the following DPM. 
 

 
 

It is considered that, each DISCO demands 
0.1puMW power from the all other GENCOs. The 
GENCOs participates in AGC based on the following 
ACEpfs. 
 ∝ଵ= 0.6, ∝ଶ= 1 - ∝ଵ = 0.4 ∝ଷ=0.5, ∝ସ= 1 - ∝ଷ    = 0.5 
 

In steady state there should not be any mismatch 
between the generation of a GENCO and the load 
requirement of a DISCO in contract with it. It is expressed 
as 
 

mi ij Lj
j

P cpf P    

So, for this scenario we have 
ΔP1= 0.2(0.1)+ 0.3(0.1)+0.5(0.1)+0.0(0.1)=0.1puMW 
ΔP2= 0.12puMW;  
ΔP3= 0.08puMW;  
ΔP4= 0.1puMW;  
 

The simulation results for the system under 
consideration i.e. Thermal - Thermal System were 
presented. Figure-8 represents deviation of frequency in 
control area-1, Figure-9 represents deviation of frequency 
in control area-2 and Figure-10 represents tie-line power 
exchange deviation. 
 

 
 

Figure-8. Deviation in frequency in control area 1. 
 

 
 

Figure-9. Deviation in frequency in control areas 2. 
 

 
 

Figure-10. Tie - line power exchange deviation. 
 

 
 

 
 
Appendix 

The power system parameter values are given in 
table 3 & 4 for   Thermal - Thermal system 
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CONCLUSIONS 

Variable structure observer based optimal 
controller is proposed to reduce tie-line power oscillations 
as well as to improve frequency response of two area 
thermal-thermal power system. The nonlinearities in 
power system model, unpredictable and uncertainty 
behavior of power system have overcome with this control 
strategy. The proven sliding mode control strategies are 
implemented. A Thermal-Thermal power system is 
considered for simulation study. SSSC is connected in 
series with tie line of the system. The low frequency 
oscillations of system are minimized by designing the gain 
of SSSC. The high frequency oscillations are minimized 
by designing observer based optimal controller. The 
performance of deregulated system with integrated control 
strategy (SSSC+ VSSO based Controller) is tested and 
simulation results are presented and compared to Neuro 
Fuzzy Sliding Mode Controller (NFSMC) and PI 
controller. 
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