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ABSTRACT 

Image segmentation plays a crucial role in the medical imaging analysis to diagnosis diseases. The FCM 
algorithm is a widely used technique in this field and still being under improvement by researchers either at accuracy or at 
time execution. BCFCM (bias field correction FCM) is a robust variant of FCM that segment and corrects the intensity 
inhomogeneity artifact on medical images. However the algorithm is always a time consuming problem because of the 
powerful treatment requirement. GPU-based parallelism is one of the used solutions to enhance his efficiency in terms of 
execution time. In this paper we have studied and modelled the behavior of CPU and GPU hardware against the sequential 
BCFCM and the parallel PBCFCM implementations. The modelled results for i7 3.5 Ghz CPU and GTX 760 GPU 
considering the clusters number variation show interesting behaviors and are in good accordance to experimental ones. 
 
Keywords: BCFCM algorithm, image segmentation, parallel computing, GPU, modelling. 
 
1. INTRODUCTION 

Image segmentation is an essential preprocessing 
step in computer vision and medical image processing [1] 
that helps doctors for better visibility of brain diseases. 
The main objective of image segmentation technique is to 
split the concerned image (pathologic or normal) 
automatically or semi-automatically into various regions, 
like each region is homogeneous with respect to some 
characteristics [2]. Many studies have been done on 
medical image segmentation and many efforts have been 
made in the literature to propose effective and efficient 
segmentation methods [3]. The authors in [4] gave a 
survey about the frequently used MRI images 
segmentation algorithms with an emphasis on their 
characteristics, with detail study of advantages and 
disadvantages of these techniques. 

A bias field is an artefact presented as the form of 
a low frequency signal that corrupts magnetic resonance 
images because of the inherent in homogeneities caused 
by the MRI machine. In fact, it exist two approaches that 
deal with bias field artefact. The first one can be used as a 
pre-processing step where the corrupted MRI image is 
restored by splitting it by an estimated bias field signal 
using a surface fitting approach [5]. The second approach 
propose to modify an algorithm as the fuzzy c-means 
algorithm [6] to be used to correct and segment an MRI 
image corrupted by a bias field signal [7, 8]. 

The authors in [9] presented a novel fuzzy c-
means algorithm (RCLFCM) for segmentation and bias 
field correction of brain MR images. They have used a 
new gray-difference coefficient and design a new impact 
factor to measure the effect of neighbour pixels; so that the 
robustness of anti-noise can be enhanced. Jeetashree 
Aparajeeta [10] proposed algorithms that have 
successfully been tested with synthetic data with bias field 

of low and high spatial frequency. The images used were 
taken from Brain web database. 

Nowadays, with the appearance of the new 
technology as the graphical processing unit used for 
general purpose computing (GPGPU) has encourage many 
researchers to exploit their performance to accelerate 
many algorithms of many fields including medical 
imaging [11-16], in order to make it more efficient. In this 
context, Tian et al [17] improved the sequential hard c-
means [18] algorithm initial cluster centres in order to 
minimize the iterative procedures number; in addition they 
have proposed a parallel version of this algorithm on 
Single Instruction Multiple Data computational model to 
reduce its complexity. In the same context, the authors in 
[19] proposed BCEFCM to segment the image and correct 
the bias field simultaneously; the proposed framework is 
not only able to deal with noise and correct the bias field 
but it is also faster and more accurate than state-of-the-art 
methods. 

In the goal to limit the execution time constraint, 
the authors in [20, 21] proposed a parallel implementation 
of bias field correction fuzzy c-means [8] on GPU 
architecture, this algorithm was tested using three different 
GPUs devices.  The speedups reached depend on the 
devices performance. For GTX 580 they have attempt 
about 52x over the sequential implementation, 21x on 
GTX 760 and 12x on GT 740 for big images size. In the 
same context, the authors in [22] proposed parallel version 
of spatial fuzzy c-means SFCM clustering algorithm [23] 
that is robust variant of FCM against noise artefact by 
including neighbour spatial function in the process of 
membership matrix updating. In addition they have 
proposed mathematical models characterizing the 
behaviour of the hardware on which implemented their 
algorithms [24].  
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More recently, the authors in [25] have proposed 
and compared two parallel implementations of BCFCM 
algorithm. The first implementation tries to exploit the 
performance of the GPU and avoid the data transfer 
latency, but the summations operations that need high 
synchronization of threads were done on GPU. The second 
method exploit the performance of the GPU to compute 
the parallel intensive portions and CPU to compute the 
low ones, however the data transfer is not avoided. The 
speedup attempted is about 12x faster than the serial 
version using GT 740m device. 

In this paper we propose mathematical models 
that characterize the behaviour of CPU and GPU versus 
the variations of clusters number variable in two 
implementation versions of BCFCM algorithm. The 
sequential implementation was tested on i7 3.5 Ghz CPU 
while the parallel one was tested using GTX 760 GPU that 
has 1152 cores. The modelling results show that the 
speedup obtained is related to the clusters number by 
fixing the size of the image, more the clusters number is 
high more speedup is height.  

The rest of this paper is organized as follows. In 
section 2, we will give a review of GPU Computing 
architecture and CUDA programming model (NVidia’s 
GPU). Section 3 presents a review of the sequential 
version entitled bias field correction fuzzy c-means 
clustering algorithm BCFCM. In section 4, we present the 
stages of our parallel version PBCFCM. Section 5 present 
and discus our findings and results. Section 6, concludes 
the paper and gives some perspectives for this work. 
 
2. GPU COMPUTING AND CUDA 

PROGRAMMING 

Single instruction, multiple data (SIMD) 
architecture is one of the computing models that are used 
to accomplish processing and data parallelism. Indeed, in 
this architecture, multiple processors execute the same 
instructions on different data. Graphical processing Units 
(GPUs) that are components initially dedicated to image 
rendering with computing the values of each pixel to 
display on the screen, uses this type of architecture. 
Methods and algorithms for image processing are ideal 
candidates to massively parallel computation in a SIMD 
architecture because the independency between images 
pixels. In this paper we have choose, for our parallel 
implementation, one of the most used physical SIMD 
architectures that is the NVidia’s GPU. 

The NVidia’s GPU architecture contains a great 
number of elementary processors that are composed of a 
large number of cores called streaming processors (SP) 
clustered into multiprocessor (MP) units. Each SP 
involves an arithmetic logical unit holding up integer and 
floating point operations. To adapt the GPUs to the 
processing, we need to write parallel functions called 
kernels with Compute Unified Device Architecture CUDA 
SDK [26]. 

The Figure-1 explains the Nvidia GPU 
architecture and the interactions possibilities with CPU 
(Host). 
 

 
 

Figure-1.Typical NVidia’s GPU architecture and the 
possible interactions with the Host (CPU). 
 
NVidia developed CUDA (Compute Unified 

Development Architecture) that is a C library extension to 
provide a programming interface for users of his GPU 
devices. The main program is managed by the CPU (host) 
that is responsible for starting the program and executing 
serial code, while delegating parallel execution of 
compute-intensive tasks to the GPU device. To have a 
massively parallel version of a given algorithm with 
CUDA programming, we need to define C functions 
(kernels), which are executed in parallel by multiple GPU 
threads. 

 
 

Figure-2. Execution model of a CUDA program on 
NVidia’s GPU: Hierarchy grid, blocks and thread. 

 
The CUDA program execution model is based on 

the fact that all threads run the same kernel concurrently, 
and each one is associated with a unique thread ID. 
Threads are arranged into three-dimensional thread blocks. 
Threads belonging to the same block cooperate by sharing 
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data through a very interesting component that is shared 
memory and by synchronizing their execution through 
extremely fast barriers. In contrast, threads belonging to 
different blocks cannot perform barrier synchronizations 
with each other. The Figure-2 shows an execution model 
of a CUDA program based on the hierarchy grids, blocks 
and threads. 
 
3. SEQUENTIAL BIAS FIELD CORRECTION 

FUZZY C-MEANS ALGORITHM 

The standard FCM [6] objective function for 
partitioning an image containing xk{k=1,...,N} pixels into 
C clusters is given by: 
 𝐽𝐹஼ெ = ∑ ∑ 𝑖𝑘𝑝ݑ 𝑘ݔ‖ − 𝑖‖ଶே𝑘=ଵ஼𝑖=ଵݒ                                     (1) 
 
uik:  The degree of membership of pixel xk in the 

cluster Vi, 
Vi:  The prototypes (or centre) of the cluster i, 
N:  The total number of pixels in the image 
p:  A weighting exponent parameter (p>1) on each 

fuzzy membership value, it determines the 
amount of fuzziness of the resulting 
classification.  

 
The main step of this iterative algorithm is to 

update the membership matrix to determine in which 
cluster the pixel belongs by the equation: 
𝑖𝑘ݑ  = ଵ∑ ( ‖𝑣೔−𝑥ೖ‖‖𝑣ೕ−𝑥ೖ‖)మ/ሺ𝑝−భሻ𝐶ೕ=భ                                                  (2) 

 
The membership matrix is initialized and 

updated, at every iteration, according to the following 
conditions: 
 

     (3) 
 

In most works in the literature, the observed MRI 
signal is modelled as a product of the true signal generated 
by the underlying anatomy, and a spatially varying factor 
called the gain field. 
 

                                                                     (4) 
 

Where Xk and Yk are the true and observed 
intensities at the kth pixel, respectively, Gk is the gain field 
at the kth pixel. The application of a logarithmic 
transformation to the intensities allows the artefact to be 
modelled as an additive bias field. 
 

                                                                 (5) 
 

Where xk and yk are the true and observed log-
transformed intensities at the kth pixel, respectively, and βk 
is the bias field at the kth pixel. 

Ahmed et al [8] proposed a modification to (1) by 
introducing a term that allows the labelling of a pixel to be 
influenced by the labels in its immediate neighbourhood. 
The modified objective function is given by: 
 𝐽 = 𝐽஻஼𝐹஼ெ = ∑ ∑ 𝑖𝑘𝑝ݑ 𝑘ݕ‖ − 𝛽𝑘 − 𝑖‖ଶே𝑘=ଵ஼𝑖=ଵݒ +αே𝑟∑ ∑ 𝑖𝑘𝑝ݑ (∑ 𝑟ݕ‖ − 𝛽𝑟 − 𝑖‖ଶ𝑦ೖ𝜖ேೖݒ )ே𝑘=ଵ஼𝑖=ଵ (6) 

 
Where: 
 
Nk:  Set of neighbour’s pixels that exist in a window 

around xk. 
Nr:  Cardinal of Nk. 
α:  Neighbours effect parameter 
 

The new membership function is then given by: 
 

               (7) 
 
Where: 
 

                            (8) 
 
And 
 

                                             (9) 
 

The cluster prototype (centroid) updating is done 
by the expression: 
 

         (10) 
 

The estimated bias field is given by the 
expression: 

                                    (11) 
 
In the following, we present the main steps of this 

algorithm. 
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Algorithm 1: Sequential Bias field Correction fuzzy C-Means Algorithm (BCFCM) 
1: Set the parameters C, p,Nr and α 
2: Randomly Initialize the membership matrix U(0) according to Eq.(2) 
3. Choose the stopping criterion: εand initialize the loop counter n=0 
4: Set the initial centroïds vector V(0) and the initial estimated bias field β(0) 
5: Calculate the initial objective function J(0) using Eq.(1) 
6: Repeat 
      7: Set the loop counter n=n+1 
      8: Update the membership matrix U(n+1) using Eq. (7) 
      9: Update the cluster center vector V(n+1) using Eq. (10) 
      10: Update the bias field estimated matrix β(n+1) using Eq. (11) 
      11:Update the objective function J(n+1) using equation (6) 
12: Until ||J(n+1)-J(n)||<ε. 
13: Do the image segmentation using the final membership matrix U, cluster center vector V and the 

image pixels (X1,…,XN), by giving to the pixel xk the ith label of the cluster Vi which has the greatest 
membership value max (uik: k = 1, ..., C). 

 
4. PARALLEL VERSION OF BIAS FIELD 

CORRECTION FUZZY C-MEANS ALGORITHM 

PBCFCM 
In our previous work [20, 21], we have already 

proposed a parallel version of this algorithm on 3 Nvidia 
GPU and obtained interesting results on windows 7 (32 
bits) platform. In this work, we propose an enhanced 
parallel implementation by using CUDA SDK on visual 
studio 2013 with windows 7 (64-bits) platform, we have 
implemented this algorithm on massively parallel 
architecture that is a graphical processing unit, widely 
used actually in GPGPU.  

Note that our strategy is based on the principle 
that the stages putting negligible execution time are 
executed in Host (CPU). This strategy consists on the 
execution of the potions that need more execution time on 

GPU as CUDA kernels and the rest of the code is executed 
on CPU that manages the global application code. 

The strengths of our parallel implementation for 
PBCFCM algorithm are: 
 
a) The exploitation of the shared memory for data to be 

clustered and constant memory for centroids.  

b) The use of local thread registers and new 

functionalities of CUDA SDK. This gave rise to more 

interesting results in terms of speed up as we will 

explain in the following section. 

The following algorithm gives the details of our 
parallel PBCFCM implementation. 

 
Algorithm 2: Parallel Bias field Correction fuzzy C-Means Algorithm Algorithm (PBCFCM) 
1. Set the parameters C, p, Nr and α  
2. Randomly Initialize the membership matrix U(0) 
3. Choose the stopping criterion: ε and set the loop counter n=0 
4. Set the initial centroïds vector V(0) and the initial estimated bias field β(0) 
5.Transfer parameters, V(0), β(0) and image Pixels to GPU 
6.Repeat 
      7. Set the loop counter n=n+1 
      8. Update the membership matrix U(n+1) on GPU. (Eq.4) 
      9. Compute the numerator and denominator of cluster centers (Eq.7) on GPU then transfer the results 

to from GPU to CPU 
10. Update the cluster centers vector V(n+1) on CPU 
      11. transfer the new vector V(n+1) from to GPU 
      12. Update the bias field estimated matrix β(n+1) on GPU. (Eq.8)  
 13.Until ||V(n+1)-V(n)|| <ε. 
14. Do the image segmentation using the final membership matrix U, cluster centres vector V and the 

image pixels (X1,…,XN), by giving to the pixel xk the ith label of the cluster Vi which has the greatest 
membership value max (uik: k = 1, ..., C). 

 
5. RESULTS AND DISCUSSIONS 

Before presenting the main results of this work, 
we present in the following tow sub-sections, the hardware 
and software specifications in addition to the used 
database for validation and experiments. 

5.1. Images database 

Since our main objective in this study is the 
evaluation and modelling of the behaviour of the used 
devices (CPU and GPU) against our implementations 
parallel and sequential, we have chosen to build a database 
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of images from a test image often used as a reference in 
the field of digital image processing that is Lena image. 

To evaluate the behaviour of the GPU device 
when executing PBCFCM algorithm against cluster 
number variation with different image sizes, we construct 
a bank of Lena images but with different densities that 
varies from 1024 pixels to about 10.2 million pixels 
(Mpixels). 

 
Our experiments are done on the following 

images: 128x128 (img128), 512x512 (img512), 
1024x1024 (img1024), 2048x2048 (img2048), 2708x2704 
(img2708), 3000x3000 (img3000) and 3200x3200 
(img3200). 

Note that the effectiveness and accuracy of the 
proposed PBCFCM algorithm has been widely validated 
on T1-weighted and T2-weighted MRI image with 
different densities and values of additional bias field. 
 
5.2. Software and Hardware specifications 

 
Algorithm on CPU (sequential version) was 

implemented using Microsoft VC++ Toolkit and executed 
on Intel(R) Core(TM) i7-4770 8 cores 3.5GHz CPU to 
obtain reference runtimes. 

Parallel portions of PBCFCM algorithm were 
implemented using CUDA SDK 6.5 and executed on GTX 
760 GPU device, execution times results were carried out 
to give comparison with the equivalent portions in 
sequential version. Table-1 summarize the principal 
specifications of the used devices. Both sequential and 
parallel codes are compiled within Microsoft Visual 
Studio 2013 under Windows 7 (64-bit) operating system. 
 

Table-1. CPU and GPU devices specifications. 
 

Device Property Value 

CPU 

Processor Intel Core i7-4770K 

Clock speed 3.5 GHz 

No. of Cores 4 

No. of Threads 8 

RAM 16 GB 

Operating system Windows 7, 64 bits 

GPU 

Chipset GeForce GTX 760 

Processor clock 1033 Mhz (GK104) 

Cudacores 1152 

Total MP 6 

Max Thread per 

Block 
1024 

Shared Memory 64 KB 

Global Memory 2048 MB 

Memory bus width 256 bits 

Memory Bandwidth 192.2 GB/sec 

 

5.3. Notations and definitions 
 
In this paper, we will focus on the number of 

cluster that we want to extract from images (Cluster 
number variable), that we note c.  

 
In the goal to have magnitudes that can perfectly 

reflect the behaviour of the experimented devices against 
the studied iterative clustering algorithms BCFCM and 
PBCFCM, evaluate and compare the performances of the 
used devices (CPU and GPU) against the execution of 
these algorithms, we define and consider the 2 following 
magnitudes:  

 
The first one postpones the execution time 

reported to a single iteration, we call it “Execution time 
per iteration in seconds” and we note it ETPI(s). This 
magnitude will allow us to make an evaluation of the 
algorithms by disregarding the number of iterations 
needed for convergence that depends on the initial 
conditions and the size of the images. Indeed, the 
convergence of the algorithm whatsoever for sequential or 
massively parallel implementation depend of these initial 
conditions.  

 
The second magnitude frequently used to 

evaluate the quality of a parallel implementation of an 
image processing algorithms compared to its sequential 
one is the ratio between the total execution time required 
for the convergence on CPU and the total execution time 
needed for convergence on GPU taking into account the 
same initial conditions. This ratio is called speed up 
GPU/CPU(x) and noted SU(x). 
 
5.4. Execution time per iteration variation modelling 

 
In this subsection, we present some interesting 

results and finding relative to one of the main ideas of this 
paper that is mathematically modelling of the variation of 
the ETPI (s) magnitude, a function of the variation of 
cluster number for both implementations (sequential and 
parallel). This will tell us about the behaviour of the used 
devices overlooked this variable. 
 
5.4.1. CPU Execution time per iteration behaviour  

modelling 

 
In figure 3we present the variation of execution 

time per iteration in seconds (ETPICPU/imgX(s)) for the 
sequential version of the studied algorithm with respect to 
the variation of cluster number c.In this figure we 
postponed the experimental results (square markers) and 
the fitting results (continuous line) of BCFCM algorithm, 
experimented on images with different size. 
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure-3. Experimental and modelled CPU execution time 
per iteration for BCFCM algorithm. 

 
The best statistical trend of the variation in terms 

of execution time per iteration with respect to the variation 
of cluster number is represented by a polynomial functions 
with an practically R² = 1: 
 
ETPICPU/img128(s) = 0.0011*c2 + 0.0026*c + 0.0052 
ETPICPU/img512(s)= 0.0162*c2 + 0.0662*c – 0.0131 
ETPICPU/img1024(s) = 0.0668*c2 + 0.2364*c + 0.0257 
ETPICPU/img2048(s) = 0.2664*c2 + 0.9747*c – 0.0151 
ETPICPU/img2708(s) = 0.4661*c2 + 1.6953*c – 0.0595 
ETPICPU/img3000(s) = 0.5721*c2 + 2.0759*c + 0.0266 
ETPICPU/img3200(s) = 0.6536*c2 + 2.3085*c + 0.2434 

(12) 

 

All these functions are polynomials of second 
order, which shows that the increase in execution time 
reported to a single iteration follows a growing law and 
this growth is even more pronounced as the number of 
cluster is more important. These statistical models are in 
good concordance with the experimental results and are 
only limited by the computational characteristics of the 
CPU and the amount of memory in our setup 
 
5.4.2. GPU Execution time per iteration behaviour  

modelling 

In this subsection, we intend to give from 
experimental executions of PBCFCM algorithm on 
GTX760 device, mathematical models that reflect as 
closely as possible the behaviour of this circuit when the 
number of clusters c that we want to extract from the 
image varies, keeping constant the variable size of the 
image. 

As in the previous subsection, we present in 
Figure-4 executions time experimental results (square 
markers) and the fitting results (continuous line) for 
PBCFCM algorithm on GTX760 with the 7 test images 
used in the previous subsection. 

In the following, we will present the results 
relative to mathematically modelling of the variation of 
the ETPI (s) a function of cluster number c. This will tell 
us about the behaviour of the used GPU device overlooked 
the variation of the cluster number c when executing 
PBCFCM with respect to the image data size parameter. 
 

 
(a) 

 
(b) 

 

Figure-4. Experimental and modelled GPU execution 
time per iteration for PBCFCM algorithm on Nvidia 

GTX 760 GPU. 
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The best statistical trend of the variation in terms 
of execution time per iteration with respect to the variation 
of cluster number c is represented by a perfect linear 
functions with an practically R²=1: 
 
ETPIGTX760/img128(s) = 0.0007*c – 0.0002 
ETPIGTX760/img512(s) = 0.0061*c – 0.0066 
ETPIGTX760/img1024(s) = 0.024*c – 0.0091 
ETPIGTX760/img2048(s) = 0.0962*c – 0.0243 
ETPIGTX760/img27084(s) = 0.1023*c – 0.1429 
ETPIGTX760/img3000(s) = 0.0993*c – 0.0663 
ETPIGTX760/img3200(s) = 0.0998*c – 0.0351 
 

(13) 

These models are in very good concordance with 
the experimental results and are only limited by the 
computational characteristics of the GPU. 

The limitation is observed at the test image 
img2708 for c=17, at the test image img3000 for c=14 and 
at the test image img3200 for c=11. This is due to 
insufficiency in terms of memory on the used GPU device. 

Note that for reasons of clarity, we presented in 
Figure-4.b only the function modelling the variation of 
ETPI(s) variation for the img2048 image. In fact, for 
images sizes greater than or equal to 2048x2048 we 
observe that the slope of the lines modelling the variation 
of the variable ETPI(s)  function of c are too close. 
 
5.5. Speedup GPU/CPU(x) variation modelling 

In this part we focus on another a magnitude 
frequently used to evaluate the quality of a parallel 
implementation of an image processing algorithms, 
compared to its sequential implementations. It is about the 
ratio speed up GPU/CPU(x) between the execution time 
required for the convergence on CPU and execution time 
needed for convergence on GPU taking into account the 
same initial conditions. For these experiments, we used the 
same Lena image bank, each sample image is segmented 
by BCFCM and PBCFCM into a Cluster number c 
between 2 and 20 as is done in the previous subsection. 
 

 
 

Figure-5. Experimental and modeled GPU/CPU (x) 
speed ups. 

 
In Figure-5, we postponed the experimental 

results (markers) and the statistical fitting results 

(continuous lines) for the different images used in 
experiments.  

Theoretical statistical fitting models show a 
perfect logarithmic behaviour of the variation in speed up 
versus cluster number c with an R² varying between 0.974 
and 0.997 (eq.14). 
 
img128 
img512 
img1024 
img2048 
img2708 
img3000 
img3200 

SUGTX760/CPU(x) = 1.2809*c + 10.336 
SUGTX760/CPU(x) = 2.6234*c + 16.354 
SUGTX760/CPU(x) = 2.7416*c + 11.949 
SUGTX760/CPU(x) = 2.7327*c + 11.706 
SUGTX760/CPU(x) = 3.5811*c + 38.656 
SUGTX760/CPU(x) = 5.6658*c + 29.496 
SUGTX760/CPU(x) = 6.1297*c + 30.582 

(14) 

 
All these functions present linear behaviour, 

which shows that the increase in speed upSU(x) follows a 
growing law and this growth is even more pronounced as 
the number of cluster is more important. This confirms 
that the use of the parallel version of the algorithm is more 
desirable when the number of cluster is greater to benefit 
from the computational capability of the GPU. But as is 
mentioned in the previous section for the study on 
execution time per iteration variable, the problem of 
limitation is observed from the test image img2708. 
 
6. CONCLUSIONS 

Bias field artefact correction is still a challenging 
problem in image processing both at accuracy level as on 
the speed level; this is justified by the amount of recent 
work in the literature on this subject. After proposing 
massively parallel algorithm implementing one of the most 
popular technique to correct and segment images BCFCM 
and exploiting the performance offered by the modern 
Graphical Processing Units (GPU), we are focused in this 
work on the characterization and modelling of the 
behaviour of CPU and GPU devices against our 
implementations (sequential and parallel) to provide 
information that could guide researchers and users of this 
algorithms to the optimal situation that offer the best 
performances. 
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