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ABSTRACT 

In this paper, a finite element method involving Petrov-Galerkin method with quartic B-splines as basic functions 
and quintic B-splines as weight functions has been developed to solve a general sixth order boundary value problem with a 
particular case of boundary conditions. The basic functions are redefined into a new set of basic functions which vanish on 
the boundary where the Dirichlet and Neumann or mixed types of boundary conditions are prescribed. The weight 
functions are also redefined into a new set of weight functions which in number match with the number of redefined basis 
functions. The proposed method was applied to solve several examples of sixth order linear and nonlinear boundary value 
problems. The obtained numerical results were found to be in good agreement with the exact solutions available in the 
literature. 
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1. INTRODUCTION 

In this paper, we consider a general sixth order 
linear boundary value problem  
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where A0, C0, A1, C1, A2, σ1 and σ2 are  real 

constants and p0(t), p1(t), p2(t), p3(t), p4(t), p5(t) and q(t)  
are  continuous functions defined in [a, b].  

The sixth order boundary value problems occur in 
astrophysics [1]. Chandrasekhar [2] determined that when 
an infinite horizontal layer of fluid is heated from below 
and is under the action of rotation, instability sets in. 
When this instability is an ordinary convection, the 
ordinary differential equation is of sixth order. The 
existence and uniqueness of the solution for these types of 
problems have been discussed in Agarwal [3]. Finding the 
analytical solutions of such type of boundary value 
problems in general is not possible. Over the years, many 
researchers have worked on boundary value problems by 
using different methods for numerical solutions. Wazwaz 
[4] developed the solution of special type of sixth order 
boundary value problems by using the modified Adomain 
decomposition method. Huan [5] presented variational 
approach technique to solve a special case of sixth order 
boundary value problems. Noor et al. [6] presented the 
variational iteration principle to solve a special case of 

sixth order boundary value problems after transforming 
the given differential equation into a system of integral 
equations. Ghazala and Siddiqi [7], Ramadan et al. [8] 
presented the solution of a special case of sixth order 
boundary value problems by using non-polynomial spline 
functions and septic non-polynomial spline functions 
respectively. Siddiqi et al. [9], Siddiqi and Ghazala [10] 
developed quintic spline funtions and septic spline 
functions techniques to solve a special case of linear sixth 
order boundary value problems respectively. Lamnii et al. 
[11], Kasi Viswanadham and Showri raju [12] developed 
septic spline collocation and quintic B-spline collocation 
method to solve sixth order boundary value problems 
respectively. Loghmani and Ahmadinia [13] used sixth 
degree B-spline functions to construct an approximation 
solution for sixth order boundary value problems. Waleed 
[14] presented Adomain decomposition method with 
Green's function to solve a special case of sixth order 
boundary value problems. Liang and Jefferey [15] 
presented Homotopy analysis method to solve a 
parameterized sixth order boundary value problem for 
large parameter values. Kasi Viswanadham and Murali 
krishna [16] developed septic B-spline collocation method 
to solve a special case of sixth order boundary value 
problems. Kasi Viswanadham and Sreenivasulu [17] 
developed quintic B-spline Galerkin method to solve a 
general sixth order boundary value problem. Kasi 
Viswanadham and Reddy [18] solved a general sixth order 
boundary value problem with quartic B-splines as basis 
functions and sextic B-splines as weight functions. So far, 
sixth order boundary value problems have not been solved 
by using Petrov-Galerkin method with quartic B-splines as 
basis functions and quintic B-splines as weight functions. 
This motivated us to solve a sixth order boundary value 
problem by Petrov-Galerkin method with quartic B-splines 
as basis functions and quintic B-splines as weight 
functions.  
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In this paper, we try to present a simple finite 
element method which involves Petrov-Galerkin approach 
with quartic B-splines as basis functions and quintic B-
splines as weight functions to solve a general sixth order 
boundary value problem of the type (1)-(2). This paper is 
organized as follows. Section 2 deals with the justification 
for using Petrov-Galerkin Method. In Section 3, a 
description of Petrov-Galerkin method with quartic B-
splines as basis functions and quintic B-splines as weight 
functions is explained. In particular we first introduce the 
concept of quartic B-splines, quintic B-splines and 
followed by the proposed method with the specified 
boundary conditions. In Section 4, the procedure to solve 
the nodal parameters has been presented. In section 5, the 
proposed method is tested on several linear and nonlinear 
boundary value problems. The solution to a nonlinear 
problem has been obtained as the limit of a sequence of 
solution of linear problems generated by the 
quasilinearization technique [19]. Finally, in the last 
section, the conclusions are presented. 
 
2. JUSTIFICATION FOR USING PETROV- 
    GALERKIN METHOD 

In Finite Element Method (FEM) the 
approximate solution can be written as a linear 
combination of basis functions which constitute a basis for 
the approximation space under consideration. FEM 
involves variational methods like Rayleigh Ritz method, 
Galerkin method, Least Squares method, Petrov-Galerkin 
method and Collocation method etc. In Petrov-Galerkin 
method, the residual of approximation is made orthogonal 
to the weight functions. When we use Petrov-Galerkin 
method, a weak form of approximation solution for a 
given differential equation exists and is unique under 
appropriate conditions [20, 21] irrespective of properties 
of a given differential operator. Further, a weak solution 
also tends to a classical solution of given differential 
equation, provided sufficient attention is given to the 
boundary conditions [22]. That means the basis functions 
should vanish on the boundary where the Dirichlet type of 
boundary conditions are prescribed and also the number of 
weight functions should match with the number of basis 
functions. Hence in this paper we employed the use of 
Petrov-Galerkin method with quartic B-splines as basis 
functions and quintic B-splines as weight functions to 
approximate the solution of sixth order boundary value 
problem. 
 
3. DESCRIPTION OF THE METHOD 
 
3.1 Definition of quartic B-splines and quintic B-splines 

The quartic B-splines and quintic B-splines are 
described in [23-25]. Space variable domain [a, b] is 
divided into spaced knots (which need not be spaced 
evenly) given by the partition a=to<t1<…<tn-1<tn=b.   
Eight additional knots t-4, t-3, t-2, t-1, tn+1, tn+2, tn+3 and tn+4 
are introduced which satisfy the relation 
 
t-4<t-3<t-2<t-1<t0  and  tn<tn+1<tn+2<tn+3<tn+4 . 

Now the quartic B-splines ( ) 'iS t s  are defined by 
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where {S-2(t), S-1(t), S0(t), S1(t),…, Sn-1(t), Sn(t), 
Sn+1(t)} forms a basis for the space S4() of quartic 
polynomial splines. Schoenberg [25] has shown that 
quartic B-splines are the unique nonzero splines of 
smallest compact support with the knots at  
t-4<t-3<t-2<t-1<t0<t1<…<tn-1<tn<tn+1<tn+2<tn+3<tn+4.    

In the same way, the quintic B-splines Ri(t)'s are 
defined by 
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where {R-2(t), R-1(t), R0(t), R1(t),…,Rn-1(t), Rn(t), 

Rn+1(t), Rn+2(t)} forms a basis for the space S5() of quintic 
polynomial splines by introducing two more additional 
knots t-5, tn+5 to the already existing knots t-4 to tn+4. 
Schoenberg [25] has shown that quintic B-splines are the 
unique nonzero splines of smallest compact support with 
the knots at   
t-5<t-4<t-3<t2<t1<t0<t1<...<tn-1<tn<tn+1<tn+2<tn+3<tn+4.<tn+5. 
 
We define the approximation for v(t) as 
 

1

2

( ) ( )
n

j j
j

v t S t




                                                              (3) 

 
where αj’s are the nodal parameters to be 

determined and Sj(t)’s are the quartic B-spline basis 
functions. In Petrov-Galerkin method, the basis functions 
should vanish on the boundary where the essential types of 
boundary conditions are prescribed. In the set of quartic B-
splines {S-2(t), S-1(t), S0(t), S1(t),…, Sn-1(t), Sn(t), Sn+1(t)},  
the  basis functions   S-2(t), S-1(t), S0(t),S1(t) do not vanish 
on the left boundary and  Sn-2(t), Sn-1(t), Sn(t)  and Sn+1(t) do 
not vanish on the right boundary. So, it is necessary to 
redefine the basis functions into a new set of basis 
functions which vanish on the boundary where the 
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essential type boundary conditions are specified. When the 
chosen approximation satisfies the prescribed boundary 
conditions or most of the boundary conditions, it gives 
better approximation results. In view of this, the basis 
functions are redefined into a new set of basis functions 
which vanish on the boundary where the Dirichlet, the 
Neumann or mixed boundary conditions are prescribed. 
 
3.2 Redefinition of basis functions with boundary  
      conditions (2a) 

Applying the essential boundary conditions of 
(2), we get the approximate solution v(t) at the boundary 
points as     
 

0 0 2 2 0 1 1 0 0 0 0 1 1 0( ) ( ) ( ) ( ) ( ) ( )A v a v t S t S t S t S t               (4) 
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       (5)                                     

 
Eliminating α-2 and αn+1 from the equations (3), 

(4) and (5) we get 
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Using the Neumann boundary conditions of (2a) 

to the approximate solution v(t) in (6), we get 
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Eliminating α-1

 and αn from the equations (6), (9) 
and (10), we get the approximation for v (t) as  
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3.3 Redefinition of basis functions with boundary  
       conditions (2b) 

Using the mixed boundary conditions of (2b) to 
the approximate solution v(t) in (6), we get,    
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Eliminating   α-1

 and αn from the equations (14), 
(15) and (6), we get approximation for v(t) as   
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and   ( )jB t ’s are as defined in (13). 

 
{ ( ), 0,1,..., 1}jB t j n   is the new set of basis 

functions for the approximation v(t). Here w(t) takes care 
of given set of essential and  Neumann or mixed type of  
boundary conditions and ( )jB t 's are vanishing at the 

boundary and their first derivative or mixed derivative 
vanish on boundary. In the proposed method, the new set 
of basis functions and weight functions should be equal in 
number. Here the number of basis functions in the 
approximation for v(t) in (6) is n  and the number of 
weight functions is n+5. So, it is necessary to redefine the 
weight functions into a new set of weight functions which 
are equal in number of the basis functions. 

Let us write the approximation for u(t) as 
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j j
j
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                      (18)  

 
where ( ) 'jR t s are the quintic B-splines.     

Let us assume that approximation u(t), given by 
(18), satisfies the conditions 
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( ) 0 , ( ) 0, ( ) 0, ( ) 0, ( ) 0u a u b u a u b u a                  (19) 

 
Using (18) and (19), we get the approximate 

solution for u(t) at the boundary points as  
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Eliminating β-2, β-1, β0, βn+1 and βn+2 from the 

equations (18) and (20) to (24), we get the approximation 
for u(t) as  
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Now the new set of weight functions for the 
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Applying the proposed method to (1) with the 

new set of basis functions { ( ), 0,1,..., 1}jB t j n   defined 

in (13) and with the new set of weight functions 
{ ( ), 1, 2,..., }jT t j n  defined in (26), we get 
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Integrating by parts the first three terms on the 

left hand side of (29) and after applying the boundary 
conditions mentioned in (2a), we get 
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Using (30), (31), (32) and (11) in (29) and after 

rearrangement, we get a system of equations in the matrix 
form as 
 
Kα = f       (33)  
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for i=1,2,…,n; j=0,1,2,…,n-1.                                                                   
 
 f = [fi ]; 
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for i= 1,2,..., n  and 10 1 .[ ]T
n       

 
4. PROCEDURE TO FIND SOLUTION FOR NODAL  
    PARAMETERS 

A general element in the matrix K is given by 
1

0

n

m
m

I



 , where 1

( ) ( ) ( )
m

m

t

m i jt
I tu r t M t dt

  , ( )jr t  are the 

quartic B-spline basis functions or their derivatives and 
ui(t) are the quintic B-spline weight functions or their 
derivatives. Here Im = 0 if

2 3 3 3 1( , ) ( , ) ( , )j j i i m mt t t t t t       . For the evaluation of 

each Im, we have used 5-point Gauss-Legendre quadrature 
formula. Due to this, the stiffness matrix K is a ten 
diagonal band matrix. Solving the system Kα = f by using 
the band matrix solution package, we get the nodal 
parameter vector α. We have used the FORTRAN-90 code 
to solve the boundary value problems (1) - (2) by the 
proposed method. 
 
5. NUMERICAL EXAMPLES 

To test the accuracy and efficiency of the 
developed method, we solved three linear and two 
nonlinear sixth order boundary value problems. The 
obtained numerical results for each problem are presented 
in tabular forms.and compared with the exact solutions 
available in the literature. 
 
Example 1:  

Consider the linear boundary value problem 
 

(6) 2 3720 ( ) , 0 1t te t t e tv v               (36) 

 subject to  
(0) (1) 0, (0) 0, (1) 0, (0) 0, (1) 0.v v v vv v           

The exact solution for the above problem is    
3 3(1 ) .v t t   

 
The proposed method is tested on this problem 

where the domain [0, 1] is divided into 10 equal 
subintervals. The obtained numerical results for this 
problem are given in Table-1. The maximum absolute 
error obtained by the proposed method is 1.173466 x10-07. 
 
 
 
 
 
 
 

Table-1. Numerical results for example 1. 
 

t 
Absolute error by the 

proposed method 

0.1 6.053597E-09 

0.2 3.539026E-08 

0.3 9.313226E-08 

0.4 1.117587E-07 

0.5 1.173466E-07 

0.6 1.043081E-07 

0.7 7.823110E-08 

0.8 4.330650E-08 

0.9 1.461012E-08 

 
Example 2:  

Consider the linear boundary value problem 
 (6) (5) (4)sin  (2 sin ) , 0 1tv t v tv v t t e t            (37) 

subject to  
(0) 1, (1) , (0) 1, (1) , (0) 1, (1) .v v vv v e e v e          

 
The exact solution for the above problem is   

 
tv e . 

 
The proposed method is tested on this problem 

where the domain [0, 1] is divided into 10 equal 
subintervals. The obtained numerical results for this 
problem are given in Table-2. The maximum absolute 
error obtained by the proposed method is 2.396107 x10-05.     
   

Table-2. Numerical results for Example 2. 
 

t 
Absolute error by the 

proposed method 

0.1 1.668930E-06 

0.2 8.344650E-06 

0.3 1.919270E-05 

0.4 2.396107E-05 

0.5 2.300739E-05 

0.6 1.692772E-05 

0.7 1.025200E-05 

0.8 2.861023E-06 

0.9 7.152557E-07 

 
Example 3:  

Consider the linear boundary value problem 
 

(6) 2( 15 78 114) , 0 1tv v v tv t e t          (38) 

  subject to  
1 2 1

(0) 0, (1) , (0) 0, (1) , (0) 0, (1) .v v v
e e e

v v v         
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The exact solution for the above problem is 
3 .tv t e  

The proposed method is tested on this problem 
where the domain [0, 1] is divided into 10 equal 
subintervals. The obtained numerical results for this 
problem are given in Table-3. The maximum absolute 
error obtained by the proposed method is 1.206994 x10-06. 
 

Table-3. Numerical results for Example 3. 
 

t 
Absolute error by the 

proposed method 

0.1 3.725290E-09 

0.2 5.122274E-09 

0.3 6.891787E-08 

0.4 4.284084E-07 

0.5 8.717179E-07 

0.6 1.206994E-06 

0.7 1.028180E-06 

0.8 7.450581E-07 

0.9 3.874302E-07 

 
Example 4:  

Consider the nonlinear boundary value problem 
 

(6 ) 2 3 , 0 1t t te ev e tv                       (39)                                                                                                         

 
subject to  
 

1 1 1
(0) 1, (1) , (0) 1, (1) , (0) 1, (1) .v v v v v

e
v

e e
  

        

 
The exact solution for the above problem is 
 

.tv e  
 

The nonlinear boundary value problem (39) is 
converted into a sequence of linear boundary value 
problems generated by quasilinearization technique [19] as 
 

(6) 2 3
( 1) ( ) ( 1) ( )2 , 0,1, 2,...t t t t
n n n ne e e ev v v v n   
       (40) 

 subject to  

( 1) ( 1) ( 1) ( 1)

( 1) ( 1)

1 1
(0) 0, (1) , (0) 1, (1) ,

1
(0) 1, (1) .

n n n n

n n

e e

v
e

v v v v

v

   

 

     





 





 

 
Here v(n+1)  is the (n+1)th approximation for v(t). 

The domain [0, 1] is divided into 10 equal subintervals and 
the proposed method is applied to the sequence of linear 
problems (40). The obtained numerical results for this 
problem are presented in Table-4. The maximum absolute 
error obtained by the proposed method is 3.099442 x10-06. 
 

Table-4. Numerical results for Example 4. 
 

t 
Absolute error by the 

proposed method 

0.1 3.576279E-07 

0.2 1.251698E-06 

0.3 3.099442E-06 

0.4 3.039837E-06 

0.5 2.503395E-06 

0.6 1.430511E-06 

0.7 9.238720E-07 

0.8 2.086163E-07 

0.9 9.490116E-07 

 
Example 5:  

Consider the nonlinear boundary value problem 
 

(6) 6(5) 3 2 2s cos(in( ) ), 0 1v v v t v v v t tv             (41)          

subject to  
2 2(0) 1, (1) 1, (0) 0, (1) 0, (0) , (1) .v v v v vv            

 The exact solution for the above problem is 
cos( ).v t  

The nonlinear boundary value problem (41) is 
converted into a sequence of linear boundary value 
problems generated by quasilinearization technique [19] as 
 

(5) 3 (5)
( ) ( 1) ( 1) ( ) ( 1) ( ) ( 1)

2 2 2 (5) 6
( ) (

(6)
( 1)

) ( 1) ( ) ( ) ( ) ( ) ( )

sin( )

(2 ) cos( )

n n n n n n n

n n n n n n n n

nv v v t v v v v v

v v v v v v v v t

 

   
   



       

       
 (42) 

 
for n = 0,1,2,… 
subject to   

( 1) ( 1) ( 1) ( 1)

2 2
( 1) ( 1)

(0) 1, (1) 1, (0) 0, (1) 0,

(0) , (1) .

n n n n

n n

v v v v

vv  
   

 

    





   
 

 
Here v(n+1)  is the (n+1)th approximation for v(t). 

The domain [0, 1] is divided into 10 equal subintervals and 
the proposed method is applied to the sequence of linear 
problems (42). The obtained numerical results for this 
problem are presented in Table-5. The maximum absolute 
error obtained by the proposed method is 7.2121621x10-06. 
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Table-5. Numerical results for Example 5. 
 

t 
Absolute error by the 

proposed method 

0.1 5.960464E-07 

0.2 1.788139E-06 

0.3 3.814697E-06 

0.4 5.692244E-06 

0.5 7.129289E-06 

0.6 7.212162E-06 

0.7 4.947186E-06 

0.8 2.563000E-06 

0.9 8.940697E-07 

 
6. CONCLUSIONS 

In this paper, we have solved a general sixth 
order two point boundary value problem with two 
different cases of boundary conditions by the proposed 
method with quartic B-splines as basis functions and 
quintic B-splines as weight functions. The quartic B-
splines and quintic B-splines are redefined into new sets of 
functions which contain the equal number of functions. To 
test the accuracy and efficiency of the developed method, 
it has been tested on three linear and two nonlinear sixth 
order boundary value problems.  It is found that the 
obtained results are giving a little error. The strength of the 
developed method lies in the easiness of its application, 
accuracy and efficiency.  
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