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ABSTRACT 

This paper presents a method of constructing orthogonal binary sequences with any positive even integer lengths. 

We show that periodic binary signals, coded in accordance with these orthogonal binary sequences, contain groups of 

signals with zero cross correlation. It is possible to construct an ensemble of binary signals with zero cross correlation 

properties by using only one coded signal from each of these groups. When the ensemble of binary signals is transmitted 

through one communication channel, they do not interfere with each other and can be separated on the receiver side 

without tight synchronization. The results of this paper can be used in asynchronous CDMA communication, telemetric 

networks (e.g. Wireless Body Area Networks (WBAN), Wireless Sensor Networks (WSN)) and optical systems. 
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INTRODUCTION 

This paper presents construction methods of 

matrices of binary orthogonal sequences. These matrices 

have a Nnx N2dimension, where Nn = 2
n (n =1, 2, 3, …) is 

the number of rows (i.e., the number of binary sequences) 

and N2(N2 is an even positive integer: N2 = 2, 4, 6, 8, 10, 

…) is the number of columns (i.e., the length of the 
sequences). These matrices are similar to Walsh-

Hadamard (WH) matrices [1] in that they exhibit 

orthogonality properties and the presence of groups of 

sequences which correspond to periodic signals with zero 

cross correlation (CC), i.e. periodic signals with zero 

multiple access interference (MAI). These periodic signals 

do not have mutual frequency components [12] and they 

are orthogonal in the time domain with the presence of any 

time shift between them. WH sequences corresponding to 

periodic signals with zero CC, i.e. zero MAI, are also 

named Cyclically Orthogonal subsets (groups) of Walsh 

functions [6], or Cyclic Orthogonal WH Codes (COWHC) 

[7, 8], or signals with ideal cross correlation (ICC) [10]. 

Periodic binary orthogonal sequences with zero cross 

correlation for certain even values ofN2 were considered in 

[2, 3], however the authors did so under conditions that the 

sequences have the same least period (Appendix 

1).Periodic sequences, including binary sequences, with 

zero cross correlation were also considered in [11], but 

under conditions related with their autocorrelation 

properties (Appendix 2). This paper does not impose either 

of the two sets of conditions from [2, 3, 11] for periodic 

binary orthogonal sequences with zero CC. 

 

FORMATION OF ORTHOGONAL BINARY 

MATRICES 
Binary orthogonal functions were introduced by 

J. L. Walsh in 1923 [1]. These orthogonal functions are 

widely used in the theory of discrete signals. In practice, 

binary signals, coded in accordance with Walsh functions, 

are used in modern CDMA wireless communication 

systems [4] as channelization codes. As is well known, 

orthogonal WH matrices exist only for Nn = 2
n
, where n = 

1, 2, 3, …. 
Walsh-Hadamard matrices can be represented as 

 

HNn = [HN୬/ଶ HN୬/ଶHN୬/ଶ -HN୬/ଶ] , 
 

where H1 = [+] is the single or elementary Hadamard 

matrix and Nn = 2
n 
is the size of the WH matrix 

It is possible to represent the same matrices in 

another way, namely 

 

HNn= [HN୬/ଶ HN୬/ଶHN୬/ଶ −HN୬/ଶ] = H2⊗H⊗…H2⊗H1 = 

= (H2⊗)
n⊗H1 = (H2⊗)

n
,                                               (1) 

 

where matrix H2is the Hadamard second order matrix 

 

H2=[Hଵ HଵHଵ −Hଵ]= [+ ++ −]. 
 

The symbol “⊗” is called the symbol of 

Kronecker multiplication (Kronecker product) and is 

defined as [5]: 

 

A⊗B  = [aଵଵ ∗ B ڮ aଵ୬ ∗ Bڭ ⋱ a୫ଵڭ ∗ B ڮ a୫୬ ∗ B], 
 

where A is a matrix of size m x n and B is also a 

matrix. 

In general, Kronecker multiplication is a non-

commutative procedure and thus A⊗B ≠ B⊗A. In this 

context, the notation (H2⊗)
n
 means applying the 

Kronecker multiplication procedure n times. 

Thus, the representation of matrix HNn (1) is 

formed step by step in n steps of Kronecker 

multiplications of the elementary Hadamard matrix H1by 

the second order matrix H2 (1). During this (step by step) 
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procedure, the length of sequences (length of rows) and 

the number of rows (i.e., number of sequences) of matrices 

HNn are increased by a factor of two after each Kronecker 

multiplication by matrix H2. 

For instance, for Nn= 2
n
 =2 (n=1) and Nn= 2

n
 = 4 

(n=2), WH matrices have the following form (Figure-1) 

 

H2= H2⊗H1 = H2⊗[+] = [+ ++ −], 
H4 = H2⊗H2⊗H1=H2⊗H2= [+ + + ++ − + −+ + − −+ − − +].    (2) 

 

We will show that by using the same Kronecker 

multiplication procedure (1), it is possible to create 

orthogonal binary systems which consist of orthogonal 

binary sequences with the length of any even number N2, 

where N2 = 2, 4, 6, 8, 10, 12, ….Note that orthogonal 
binary sequences can exist only for even integers N = N2 = 

2, 4, 6, 8, 10, 12, …. 
 

 
 

Figure-1. Walsh-hadamard matrices. 

 

The natural sequence of positive integers N 

consists of even integers N2 (N2 =2, 4, 6, 8, 10, …) and 
odd integers N1 (N1= 1, 3, 5, 7, 9, 11, …). Any even 
integer N2can be represented as the function of an odd 

integer N1, i.e. N2 = f(N1, n) and can be represented in 

multiplication form: 

 

N2= f(N1, n)= N1*2
n, where n = 1, 2, 3, 4, 5, …. 

 

The following are examples of this representation 

for several values of N1: 

  

if N1=1,    N2 = f(N1)= 2, 4, 8, 16, 32, 64, …,  
 if N1=3,    N2 = f(N1) = 6, 12, 24, 48, 96, …, 
 if N1=5,    N2 = f(N1) = 10, 20, 40, 80, 160, …, (3) 

 if N1=7,    N2 = f(N1) = 14, 28, 56, 112, 224, …, 
 and etc. 

 

We introduce the matrix AN1 as a matrix-row 

consisting of a binary sequence with N1elements, where 

N1 are odd integers (N1 = 1, 3, 5, 7, 9, …), as 

 

                  (4) 

 

where N1 is the length of the sequence. Each of 

the elements of matrix-row AN1can have only two values, 

namely, plus or minus.  

We utilize the same approach to forming binary 

orthogonal matrices as shown in (1) using matrix-row AN1 

(4) instead of elementary Hadamard matrix H1 =[+]. With 

this change, matrix AN1 will be multiplied by matrix 

H2(step by step) from the left side using the same 

multiplication symbol ⊗ called Kronecker multiplication 

or Kronecker product  

  

    (5)  

 

where N2 =N1 *2
n
 , Nn = 2

n
 (n = 1, 2, 3, …) , and 

HNn is a WH square matrix with size Nn, 

 

    (6) 

 

and k (k = 0, 1, 2, 3, …., N2-1) is the matrix row number.  

We observe from (5) that matrix AN2 (N1, n)is the 

result of the Kronecker multiplication procedure of matrix 

AN1 by matrix H2 n times, step by step. For instance, the 
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first step is H2⊗AN1, the second step is H2⊗(H2⊗AN1), 

the third step is H2⊗(H2⊗ (H2 ⊗AN1)), etc., and 

(H2⊗)
n⊗AN1 after n steps. During this procedure, the 

length of matrix rows (length of matrix sequences) and the 

number of matrix rows increases by a factor of two after 

each multiplication step. In the common case, matrices 

AN2 (N1, n) are rectangular matrices with size2
n
x (N1* 2

n
), 

where Nn=2
n
 is the number of rows and (N1 *2

n
) is the 

number of columns (5), (6). The number of rows Nn=2
n
 

defines the number of binary sequences and the number of 

columns (N1 * 2
n 

) = N2 defines the length of orthogonal 

sequences of matrices AN2 (N1, n).  

Thus, for any even integer N2(N2 = 2, 4, 6, 8, 10, 

…),the Kronecker multiplication of matrix-row AN1(4)by 

the WH square matrix HNn of size Nn= 2
n
(5) represents 

matrix AN2 (N1, n).And if the value of N1 (length of matrix 

row AN1(4)) and the value of n (number of multiplication 

steps) are known, it is possible to find the length of rows 

(length of sequences)and number of rows (number of 

sequences) of matrix AN2(N1, n)(5), i.e. N2 = N1 * Nn = N1 

*2
n
andNn=2

n
 respectively (5), (6). For example, for n =1 

we have  

 

AN2 (N1, n=1)= (H2⊗)
n⊗AN1 =  

= H2⊗AN1= [+ ++ −]⊗AN1 =[ANଵ ANଵANଵ −ANଵ]                  (7) 

 

and for n =2 we have  

AN2 (N1, n=2)= (H2⊗)
n ⊗AN1= 

=H2⊗H2⊗AN1=H2⊗(H2⊗AN1) =  

= H2⊗[A୬ଵ A୬ଵA୬ଵ −A୬ଵ] =[ANଵ   ANଵ   ANଵ   ANଵANଵ−ANଵ ANଵ −ANଵANଵ   ANଵ −ANଵ−ANଵANଵ−ANଵ−ANଵ   ANଵ
].    (8)  

 

EXAMPLES OF ORTHOGONAL BINARY 

SEQUENCES 

Consider the following three examples: 

 

N1 = 1: 

 

In the N1 = 1 case, matrix row AN1 (4) consists of 

only one element, namely  

AN1=1= [+], 
 

Where N1 is the number of elements in matrix-row AN1 (4 ) 

and N1is also the length of sequence AN1. 

In this case, matrix AN2may be represented (5), 

for any n = 1, 2, 3, 4, … , as 

 

AN2 (N1,n)=(H2 ⊗)
n ⊗AN1=1=  

= HNn⊗AN1=1 = HNn⊗[+]= HNn,                                 (9) 

 

where HNn is the WH square matrix of size Nn = 

2
n 

(6). Thus, when N1 = 1, matrices AN2(N1, n) are the 

same as WH matrices HNn because matrix AN1=1= [+] is 

the same as the elementary Hadamard matrix H1 = [+] 
which is used to create WH matrices (1). 

This approach (9) can be utilized to create 

orthogonal binary systems with sequences of length Nn= 

N1*2
n
(N1=1, n =1, 2, 3, 4, …), or with a length Nn = 2, 4, 

8, 16, … (1), (3). WH matrices for N2=Nn = 2 (n=1), N2 = 

Nn = 4 (n=2) and N2= Nn = 8 (n=3) are represented above 

in (2) and in Figure-1. 

 

N1 = 3: 

 

In the N1 =3 case, matrix-row AN1is represented as 

 

AN1=3= [+ − +],                                              (10) 

 

where N1 = 3is the number of elements in matrix-

row AN1 (4). The original matrix-row AN1can be taken 

arbitrarily as a sequence from the all binary sequences 

with the length N1 = 3. In this case, the matrix 

AN2(N1,n)can be represented in the form of (5): 

 

AN2 (N1,n)=(H2⊗)
n⊗AN1=3= 

= HNn⊗AN1=3= HNn⊗[+ − +].                               (11) 

 

Using this approach (11), one can create 

orthogonal binary systems with the sequences of length 

N2 =N1*2
n
= 3*2

n(n =1, 2, 3, 4, …) or of length N2= 6, 12, 

24, 48, 96, … (3). Examples of matrices AN2 (N1,n)for N2 

= 6, N2= 12 (n=1 and n=2 respectively) and N1=3 (10) are 

represented in Figure-2. 

 

N1 = 5: 

 

In the N1=5 case, it is possible to create 

orthogonal binary systems with sequences of length N2= 

N1*2
n
= 5*2

n(n =1, 2, 3, 4, …) or with length N2= 10, 20, 

40, 80, 160, …  (3).Examples of matrices AN2(N1,n) for 

N2= 10, N2= 20 (n =1 and n =2 respectively) and N1=5 are 

represented in Figure-3. Matrix AN1 (Figure-3) is 

represented as AN1=5=[+ + + − +]. 
We observe that in the N1=7 case, it is possible to 

create orthogonal binary matrices with sequences of length 

N2= N1 * 2
n
= 7*2

n(n =1, 2, 3, 4, …) or with sequences 
length of N2= 14, 28, 56, 112, 224, … (3), and in the N1=9 

case, it is possible to create orthogonal binary matrices 

with length N2= N1*2
n
= 9*2

n(n =1, 2, 3, 4, …) or with 

length N2= 18, 36, 72, 144, … (3), and for any even 
number N2using the same approach. 
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Figure-2. Matrices AN2(N1,n), N1=3. 

 

 
 

Figure-3. Matrices AN2(N1,n), N1=5 

 

In all of examples (Figure-1, Figure-2, and 

Figure-3), the value k represents the number of matrix 

AN2(N1,n)rows (number of binary sequences), where k = 0, 

1, 2, 3, 4, ……, 2n
-1. The total number of rows is Nn= 2

n
 

and the total number of columns (the length of sequences) 

is N2= N1*2
n
 (n =1, 2, 3, 4, …).As previously described, in 

the common case matrices AN2 (N1, n) are rectangular 

matrices with size Nnx (N1*2
n
), where N = Nn = 2

n
 is the 

number of rows and (N1*2
n
) is the number of columns. In 

only one case, when N1 =1, matrices AN2 (N1, n)are square 

Walsh-Hadamard matrices with size Nn= 2
n
sincematrix 

AN1consists of a matrix-row with only one element: 

AN1 = [+] (9). 

 

PROPERTIES OF ORTHOGONAL BINARY 

SEQUENCES 

The primary properties of matrices AN2 (N1, n) 

(N2 = 2, 4, 6, 8, 10, …) are determined by the properties of 
WH matrices HNn (1). The first property of interest of WH 

matrices is the orthogonal property, whereby mutual 

orthogonal properties exist between of all rows (or 

between all binary sequences) of matrices HNn.  In our 

case, matrices AN2 (N1, n) are orthogonal. This is evident 

from the structure of AN2 matrices (5), (6), (7), and (8).  

In [6, 9, 10] it was shown that Walsh-Hadamard 

matrices of size Nn = 2
n
 have one even more important 

property; namely all WH matrices consist of groups of 

sequences with zero cross correlation (CC) (i.e., with zero 

multiple access interference (MAI) or with ideal cross 

correlation (ICC) properties) when applied to periodic 

signals. The number of groups G (G1,G2, G3, …, Gn+1) of 

sequences with zero CC is defined by the size of the WH 

matrices and equals n+1. New groups of sequences appear 

after each step of the Kronecker multiplication procedure 

during formation of WH matrices (1). After the first 

multiplication step (n=1), group G1 and group G2 appear. 

After the second multiplication step (n=2), group G3 

appears, and etc. Figure-1. The first group, group G1, 

consists of a sequence which corresponds to the k=0 row 

(Figure-1). The second group, group G2, corresponds to 

the k=1 row. The third group, group G3, consists of two 

sequences which correspond to the k=2 and k=3 rows. The 

fourth group, group G4, consists of four sequences which 

correspond the k=4, k=5, k=6, and k=7 rows, and etc.  The 

last group, group Gn+1, consists of sequences which 

correspond to the k=N/2 through k=N-1 rows. By using 

the same frequency approach as in [10, 12], it is possible 

to show that matrices AN2 (N1,n) (5) also exhibit the zero 

CC property of WH matrices. Groups G (G1, G2, G3, …, 
Gn+1) are represented in Figure-2 and Figure-3 in 

comparison with the same groups of sequences of WH 

matrices (Figure-1). Applying the same approach to 

periodic signals coded by WH sequences, it was shown 

[10, 12] that each group of signals G1, G2, G3, …, Gn+1 has 

its own discrete frequencies which are different for each 

group G of signals. However all signals which belong to 

the same group G have mutual frequencies and therefore 

these periodic signals do not have zero cross correlation 

properties. By selecting sequences from different groups 

(but only one sequence from each group), it is possible to 

form an ensemble of signals which correspond to periodic 
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coded signals with zero CC (i.e., with zero MAI or with 

ICC properties). There can be no more than n+1 total 

coded signals in this ensemble for any even integer N2 = 

f(N1, n) = N1 * 2
n
.  

 

GENERAL APPROACH TO FORMATION OF 

ORTHOGONAL BINARY SEQUENCES WITH 

ZERO CROSS CORRELATION  

As stated earlier, matrices rows AN1 can be taken 

arbitrarily as sequences of ‘+’s and ‘-‘s with length N1. 

The total number of different sequences AN1 depends on 

the length of sequence N1. It easy to show that total 

number of different binary sequences with length N1 is 

equal to 2
N1

. Usually we use only half of these sequences, 

namely, m = 2
N1-1

, because the second half of the 

sequences is the “mirror reflection” of the first half with 

exactly the reverse polarity. 

All of the different binary sequences of length N1 

can be represented in matrix form as  

 

(12) 

 

Matrix AN1,m consists of m rows and N1 columns 

(length of sequences N1), where m is the total number of 

different binary sequences m= 2
N1-1

 with a length of N1 

and k is a row number (k = 0, 1, 2, 3, …, m-1). For 

example, A
k
N1 is the sequence which corresponds to row 

number k. None of the binary sequences are orthogonal 

because the sequence lengths N1 are odd numbers. 

All m binary sequences with length N1 can be 

used to create matrices AN2,m(N1,n) if we consider the 

application of the Kronecker multiplication procedure to 

matrix AN1,m (12) as in (5) 

 

  (13) 

 

where HNn is the WH square matrix with size Nn = 2
n
 

(n = 1, 2, 3, …) and N2 = N1* 2
n
 (6).  

In the N1 = 3 case, matrix AN1=3,m can be 

represented as 

 

                               (14) 

 

where m = 2
N1-1

 = 4 is the number of different binary 

sequences with length of N1 which have only plus signs at 

the beginning of each sequence and k is the row number (k 

= 0, 1, …, m -1). After the first multiplication step (n=1) 

(13), we have: 

 

AN2 = 6,m(N1=3,n=1) = H2⊗AN1=3,m = 

=[+ ++ −]⊗AN1=3, m = [𝐴𝑁ଵ=ଷ,𝑚 𝐴𝑁ଵ=ଷ,𝑚𝐴𝑁ଵ=ଷ,𝑚 −𝐴𝑁ଵ=ଷ,𝑚]                 (15) 

 

After the second multiplication step (n=2) (13), 

we have:  

 

AN2=12,m (N1=3, n=2) = (H2⊗)
n⊗AN1=3,m = 

= H2⊗(H2 ⊗AN1=3,m) =  

=[  
 ANଵ=ଷ,୫ ANଵ=ଷ,୫ ANଵ=ଷ,୫ ANଵ=ଷ,୫ANଵ=ଷ,୫ −ANଵ=ଷ,୫ ANଵ=ଷ,୫ −ANଵ=ଷ,୫ANଵ=ଷ,୫ ANଵ=ଷ,୫ −ANଵ=ଷ,୫ −ANଵ=ଷ,୫ANଵ=ଷ,୫ −ANଵ=ଷ,୫ −ANଵ=ଷ,୫ ANଵ=ଷ,୫]  

 
 .  (16) 

 

Matrices AN2=6,m (N1=3, n=1) (15) and AN2=12,m 

(N1=3, n=2) (16) are represented in Figure-4 and Figure-5 

respectively. It is important to note that these matrices are 

not orthogonal matrices, because matrix AN1=3,m (14) is not 

orthogonal. In Figure- 4 and Figure-5, after the first step of 

Kronecker multiplication (n=1), Group 1 and Group 2 

appear and in this case (m>1) these groups consist of m 

sequences (for N1 =3, m = 4). However, when using WH 

matrices (Figure-1) and matrices AN2 (N1=3, n=1) (Figure-

2), after the first step of Kronecker multiplication (n=1), 

Group 1 and Group 2 consist of only one sequence. This 

difference appears in the case of WH matrices (Figure-1) 

and orthogonal matrices AN2 (N1, n) (Figure-2) because 

only one sequence AN1 (4), (5) was used to create these 

matrices. 

 

 
 

Figure-4. Matrix AN2,m(N1,n), N1=3, n=1, m=4. 
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In all the matrices represented in the first three 

figures (Figure-1, Figure-2, and Figure-3), Group 1 (G1) 

sequences and Group 2 (G2) sequences appear after the 

first Kronecker multiplication (n=1). After the second 

Kronecker multiplication (n=2), Group 3 (G3) sequences 

appear, after the third multiplication (n=3), Group 4 (G4) 

sequences appear, etc.  And after each step of Kronecker 

multiplication, the number of rows (number of sequences) 

and number of columns (length of sequences) of the 

matrices both increase by a factor of two. 

When we consider matrix AN2=6,m(N1=3, n=1) 

(Figure-4), we observe (16) that after the first Kronecker 

multiplication (n=1) (15) there are eight binary sequences 

of length N2 = N1* 2
n
 = 6. The first four of them (k = 0, 1, 

2, 3) belong to Group 1 (G1) and none of them are 

orthogonal (15). The other four sequences (k = 4, 5, 6, 7) 

belong to Group 2 (G2) and all of them are orthogonal to 

any Group 1 (G1) sequences. Consequently periodic 

signals coded by any sequences of Group 2 (G2) have zero 

 

 
 

Figure-5. Matrix AN2,m(N1,n), N1=3, n=2, m=4. 

 

CC with signals coded by any sequences of 

Group 1 (G1). However, periodic signals which correspond 

to sequences inside of the same group are not orthogonal 

and do not have zero cross correlation between of them. 

As the result of this property, using all eight of these 

sequences of matrix AN2=6,m (N1=3, n=1) (Figure-4), it is 

only possible to create pairs of periodic signals with zero 

cross correlation. One signal of each pair corresponds to 

any sequence from Group 1(G1) and the other signal of the 

pair corresponds to any sequence from Group 2(G2). The 

total number of different pairs of periodic signals with 

zero cross correlation will be m * m = m
2
 = 2

2(N1-1)
, which 

in the N1 = 3 case equals 16. In other words, from binary 

sequences with length N2 = 6, using this approach it is 

theoretically possible to create 16 different pairs of 

periodic signals with ICC properties. We observe that 

some of these periodic signals are distinguished from other 

periodic signals only by time shifts or “phase” shifts. For 

instance, for AN2=6,m (N1=3, n=1) (Figure-4), periodic 

signals corresponding to k=1 and k=2 and periodic signals 

corresponding to k=4, k=6, and k=7 exhibit a periodic 

shift. As a result of this property, there will be only 

3 x 2 = 6, and not 16 as calculated above, different pairs of 

periodic signals with length N2 = 6. 

After the second Kronecker multiplication step 

(n=2) (16), there are 16 sequences of length N2 =12 in 

matrix AN2=12,m (N1=3, n=2)(Figure-5) and Group 3 (G3) 

appears. The first four sequences (k =0, 1, 2, 3) belong to 

Group 1 (G1), another four sequences (k =4, 5, 6, 7) 

belong to Group 2 (G2), and the remaining eight sequences 

(k =8, 9, 10, …, 15) belong to Group 3 (G3). All sequences 

of any groups G are orthogonal to any sequences which 

belong to other groups and their corresponding signals 

have zero cross correlation.  But sequences within each 

groups G are not orthogonal and their corresponding 

signals do not have zero cross correlation between any 

combination of them. This result means that by using all of 

these sixteen sequences of matrix AN2=12,m (N1=3, n=2) 

(Figure-5), it is possible to create no more than triplets 

(sets of three signals) of periodic signals with zero cross 

correlations, where all three of these signals correspond to 

sequences from three different groups G of sequences, 

namely, G1, G2 and G3. The total number of triplets (three 

signals per set) of periodic signal with ideal cross 

correlation properties will be m * m * 2m = 2m
3
 = 4 * 4 * 

8 = 2
7
 = 128. In other words, it is possible to create 128 

different triplets (three signals per set) of periodic binary 

signals with zero cross correlation from binary sequences 

with length N2 = 12. Of course, as mentioned above for the 

AN2=6,m (N1=3, n=1) case, it is necessary to take into 

account that some of these periodic signals will be 

distinguished from the other periodic signals only by time 

shifts or “phase” shifts. For instance, for AN2=12,m (N1=3, 

n=2) (Figure-5), periodic signals corresponding to k=1 and 

k=2 (G1), periodic signals corresponding to k=4, k=6 and 

k=7 (G2), and periodic signals corresponding to k=8 and 

k=12, k=9 and k=13, k=10 and k=14, k=11 and k=15 (G3), 

exhibit a periodic phase shift. As the result of this 

property, there will be only 3 x 2 x 4 = 24, and not 128 as 

theoretically calculated, different triplets of periodic 

signals with length N2 = 12.  

For N1=5, there are m binary sequences with 

length N1 = 5, where m = 2
N1-1

 = 16, and none are 

orthogonal to each other. After the first step of Kronecker 

multiplication (n = 1), there are 32 different binary 

sequences of length N2 =10. The first 16 sequences belong 

to Group 1 (G1), the remaining 16 belongs to Group 2 

(G2), and the total number of different pairs of periodic 

signals with zero cross correlation is m
2
 = 2

2(N1-1)
, which in 

the N1 = 5 case equals 256. In other words, from binary 

sequences with length N2 = 10 it is possible to create 256 

different pairs of periodic signals with zero cross 

correlation. After the second step of Kronecker 

multiplication for AN1=5, m (16), there are 64 binary 

sequences of length N2 = 20. And the theoretical total 
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number of different triplets (three signals per set) of 

periodic signals with zero cross correlation are m * m * 

2m = 2m
3
 = 16 * 16 * 32 = 2

13
 = 8192. Because some of 

these periodic signals are only distinguished from other 

periodic signals by time shifts or “phase” shifts, the 

number of different pairs and triplets with zero CC will 

total much less than 8192 as previously described for 

N1 = 3. 

As a generalization, it is possible to calculate how 

many different sets of periodic signals will exist after the 

third, fourth, etc. steps of Kronecker multiplication of 

matrix AN1,m (13) for any even integer N2 = f(N1, n) = 

N1 * 2
n
 (3). However, the total number of signals with zero 

cross correlation per one set (pair, triplet, quadruplet, etc.) 

is no larger than n +1 (n =1, 2, 3, 4, …). 
Binary phase coded radio signals corresponding 

to these band based signals share the same properties [12]. 

Some samples of filters for separation of these zero cross 

correlation signals were presented in [12].   

 

CONCLUSIONS 

A method to create orthogonal binary sequences 

for any positive even number N2 = 2, 4, 6, 8, 10, … is 
presented. For even values of Nn = 2

n
 (Nn = 2, 4, 8, 16, …), 

these orthogonal binary sequences correspond to binary 

sequences of Walsh-Hadamard matrices. For even values 

of N2 = 6, 10, 12, 14, 18, …, the orthogonal binary 

sequences have the same primary properties as Walsh-

Hadamard functions, namely the orthogonal property and 

the presence of some groups of signals with zero cross 

correlation (i.e. with zero MAI or with the ICC property) 

when applied to periodic signals. The method of creating 

ensembles of periodic binary signals with ideal cross 

correlation properties for any even values of N2 = 6, 10, 

12, 14, 18, …. is also considered. By applying these 
results to radio signals, it is possible to create ensembles of 

independent orthogonal radio signals.  

 

APPENDIX 1 

The generation of periodic orthogonal binary 

sequences of the same least period with zero cross 

correlation was discussed in [2, 3]. It was shown that pairs 

of these binary sequences of length and least period N2 = r 

x 2
n
 can be synthesized for all positive integers n and any 

nonprime odd integer r. As an example, the reference 

presents the pair of periodic orthogonal binary sequences 

(sequences C and D) of the same least period with zero 

cross correlation for N2 = 18 (r = 9, n=1). 

 

N2 =18  

C = ( + - + + - + + - +   - + -- + -- + - ) 

D = (- + + + --- + +   + + --- + + + - ) 

 

Using the results of [2,3], it is possible to create 

pairs of periodic orthogonal binary sequences of length 

and least period for any even N2 = N1 x 2
n
, where n = 1 

and N1 (N1 = 3, 5, 9, 11, …) are odd integers. These pairs 
of sequences have zero cross correlation. The following 

are examples of these pairs of sequences (sequences C1, 

D1, and sequences C1, D2) of length and least period N2 = 

6, 10, and 14: 

 

N2 = 6, (N1 = 3, n = 1) 

C1 = ( + - + - + - )  

D1 = ( + + -- + + ) 

C1 = ( + - + - + - ) 

D2 = ( + ---- + ) 

 

N2 = 10, (N1 = 5, n = 1)  

C1 = ( + - + - +  - + - + - )  

D1 = ( + + -- +  + -- + + ) 

C1 = ( + - + - +  - + - + - ) 

D2 = ( + + + ---- + + + )   

 

N2 = 14, (N1 = 7, n = 1) 

C1 = ( + - + - + - +  - + - + - + - )  

D1 = ( + + + --- +  + --- + + + ) 

C1 = ( + - + - + - +  - + - + - + - ) 

D2 = ( + - + - + + +  + + + - + - + ) 

 

APPENDIX 2 

Some sets of periodic binary sequences, called 

periodic perfect cross correlation (PPCC) sets of binary 

sequences with zero cross correlation for N=6, N=8 and 

N=12, were synthesized in [11] under a condition related 

with their autocorrelation properties. 

These two binary sequences for N=6 are 

S1 = (+ + + + + +) andS2 = (+ + + - - -). We observe that 

these sequences correspond to two sequences of matrix 

AN2=6,m(N1=3, n=1) for N=6 with k=0 and k=4 (Figure-4). 

These two sequences belong to two different Groups, G1 

and G2, therefore periodic signals corresponding to these 

two sequences have zero cross correlation. As shown in 

this paper, using all eight sequences of matrix AN2=6,m 

(N1=3, n=1) (Figure-4), for N=6 it is possible to create 6 

different pairs of periodic signals with zero cross 

correlation including the pair of sequences which were 

synthesized in [11]. 

The four binary sequences for N=8 which form 

the set of sequences with zero cross correlation were 

synthesized in [11]. These four sequences are S1 = 

(+ + + + + + + +), S2=(+ - + - + - + -), S3=(+ - - + + - - +), 

and S4=(+ - - + - + + -) and all are WH sequences for N=8 

with k=0, k=1, k=3, and k=7 (Figure-1). Ensembles of 

signals corresponding to this set of WH sequences have 

zero cross correlation because all of these sequences 

belong to different Groups, namely G1, G2, G3 and G4 

(Figure-1). As shown in [6, 10, 12], for N=8 it is possible 

to create ensembles of four signals from WH sequences, 

i.e. set of four signals, with zero cross correlation 

properties. Each signal in these ensembles corresponds to 

WH sequences from different Groups, namely G1, G2, G3 

and G4 (Figure-1). Only two different ensembles, i.e. 

different sets, can be synthesized from four signals 

corresponding to WH sequences for N=8. The first 

ensemble corresponds to sequences with k=0, k=1, k=3, 

and k=7, i.e. S1=(+ + + + + + + +),  S2=(+ - + - + - + -), 
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S3=(+ - - + + - - +), and S4=(+ - - + - + + -) and the second 

ensemble corresponds to sequences with k=0, k=1, k=3, 

and k=6, i.e. S1 = (+ + + + + + + +), S2 = (+ - + - + - + -), 

S3 = (+ - - + + - - +) and S4 = (+ + - - - - + +). The first 

ensemble corresponds to sequences which were 

synthesized in [11]. In theory, there should be eight 

different ensembles constructed from the four signals 

corresponding to WH sequences for N=8, but some of the 

WH sequences for N=8 only differed by a time shift, i.e. 

phase shift, applied to the periodic signals. The WH 

sequences which only differed by a time shift for N=8 

correspond to k=2 and k=3, k=4 and k=6, and k=5 and k=7 

(Figure-1). Furthermore, in two ensembles for N=8 above, 

one can replace the k=2 sequence with the k=3 sequence, 

the k=4 sequence with the k=6 sequence, and the k=5 

sequence with the k=7 sequence.  

Three sequences for N=12 with zero cross 

correlation were synthesized as the set of sequences in 

[11]. These three sequences are S1 = 

(+ + + + + + + + + + + +), S2 = (+ + + - - - + + + + - - -) 

and S3 = (+ + + - - - - - - + + +). These sequences 

correspond to three sequences of matrix AN2=12,m (N1=3, 

n=2)for N=12 with k=0, k=4, and k=12 ( Figure-5), and all 

three sequences belong to three different Groups, namely 

G1, G2, and G3, and therefore periodic signals 

corresponding to these three sequences have zero cross 

correlation. As shown in this paper, using all 16 sequences 

of matrix AN2=12,m (N1=3, n=2) (Figure-5), for N=12 it is 

possible to create 24 different triplets of periodic signals, 

i.e. ensembles of three signals, with zero CC including the 

triplet of sequences above synthesized in [11]. 
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