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ABSTRACT 

The paper describes the experimental study of shielding effects of the disk placed coaxially upstream of a 

cylinder. It not only reduces the drag of the cylinder. The disk changes the dynamic characteristics of the cylinder. Without 

a disk, an elastically fixed cylinder in the airflow performs rotational oscillations with constant amplitude. A disk of small 

diameter, located near the cylinder, reduces the amplitude of rotational oscillation. Increasing the distance between the disk 

and the cylinder causes the damped rotational oscillations. The influence of the aerodynamic force on the damping of the 

oscillations depends on the disk diameter and the gap between disk and cylinder. A mathematical model is proposed for 

describing the rotational steady and damped oscillation of a cylinder with a disk.  
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INTRODUCTION 

It was obtained that the drag force of the cylinder 

of circular cross-section can be reduced with a disk 

attached to cylinder coaxially upstream [1, 2]. But 

dynamical characteristics of the cylinder with coaxial disk 

were not studied. A rotational oscillation of the 

configuration presented in the Figure-1 is the main subject 

of the present investigation. 

 

 
 

Figure-1. The scheme of the cylinder with coaxial disk. 

 

If the aerodynamic forces acting on the body 

depend only on the instant angles of attack and sideslip, it 

has been proven that the quasi-steady approximation can 

be used to describe the oscillations of elastically fixed 

bodies [3, 4]. However, the quasi-steady approximation is 

inapplicable to rotational oscillations of bluff bodies, 

because the aerodynamic forces depend not only on the 

instant angles of attack and sideslip, but also on the 

derivatives of these angles with respect to time [5 - 8]. 

Mathematical model for rotational oscillation of 

the cylinder without coaxial disk was suggested in the 

paper [8]. Experimental study of cylinder rotational 

oscillations was described in [6, 7].   

 

EXPERIMENTAL METHOD 

The experiments were carried out in the subsonic 

wind tunnel AT-12 of Saint-Petersburg State University. 

The wind tunnel has open test section. The diameter of the 

outlet circular cross section of the nozzle is 1.5 m. The 

flow velocity in the test section varies from 0 to 40 m/s. 

Cylinder is fixed with the wire suspension. It could rotate 

around the horizontal axis that is perpendicular to the 

mean velocity vector of the oncoming stream. A steel tail 

holder is fixed to the downstream end of the cylinder. Two 

steel springs are attached to the holder (Figure-2). A 

semiconductor strain gauge registers the tension of one of 

the springs.  

 

 
 

Figure-2. The scheme of experimental setup. 1- cylinder, 

2- steel tail holder, 3 - nozzle, 4 - springs, 5 - 

semiconductor strain gauge, 6 - PC-oscilloscope, 7 - 

computer, 8 - rotational axis, 9 - wires. 

 

PC-oscilloscope Velleman-PCS500A transferred 

the signal from strain gauge to the computer. The 

frequency of the records was equal to 100 Hz. 

A typical sample of signal record of steady 

oscillation of the cylinder is shown in Figure-3. 
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Figure-3. Record of the signal at steady oscillations. 

 

A typical sample of signal record of damped 

oscillation of the cylinder is shown in Figure-4. 

 

 
 

Figure-4. Record of the signal at damped oscillations. 

 

The signal is proportional to the tension of the 

lower spring. It turned out that the oscillation frequency 

does not depend on the velocity of the air. In the absence 

of flow in the test section, the oscillations of the cylinders 

on the elastic suspension were damped, and the oscillation 

frequency remained the same as in the oscillations due to 

the airflow. This fact confirms the smallness of the 

aerodynamic forces in comparison with the elastic forces. 

We suggested that the tension of the springs in the 

extremes of the dependence of the signal on time is equal 

to the tension of the springs under the action of a constant 

load, causing a deviation equal to the amplitude of the 

oscillations. This assumption made it possible to relate the 

amplitude of the oscillations to the maximum or minimum 

tension force of the lower spring detected by the 

instrument. Two calibration experiments were carried out. 

In one experiment, during the recording of the readings of 

the strain gauge a load of a known mass was hung to the 

point of attachment of the tail holder to the wire. Based on 

the measurement results, a change in the readings of the 

device, caused by a known force, was determined. In 

another calibration experiment, the displacement of the 

end of the tail holder was determined under the influence 

of suspending a load of known mass. 

Based on the results of two calibration 

experiments, the coefficient relating the amplitude of the 

tension oscillations of the lower spring with the amplitude 

of the cylinder's rotational oscillations was determined. 

 

 PROCESSING OF EXPERIMENTAL RESULTS 

As the basis of signal processing, it was 

suggested that the measured rotational angle of the 

cylinder  at time ti is the sum of the harmonic function B 

cos ti + C sin ti, constant E and a random variable i 

with zero expectation, which is an experimental error: 

 

iiii EtCtB   sincos                     (1) 

 

The period of oscillations T and the angular 

frequency of oscillations ω = 2 π/T are determined from 

the results of calculating the number of oscillations over a 

known time interval containing dozens of oscillation 

periods. Let n be the number of readings in one period, i = 

1, 2, 3, ... , n. Then, multiplying formula (1) sequentially 

by cos ti and sin ti and calculating the arithmetic 

average over all readings in the period, we get 
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The sums in equations (2) and (3), which contain 

only trigonometric functions, can be calculated. The 

parameter E is determined in the experiment in the 

absence of oscillations. If n is larger then 
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Thus, from the equations (2) and (3) we can find 

the parameters B, C and calculate the amplitude of 

rotational oscillation .22
CBA   

 

MATHEMATICAL MODEL OF ROTATIONAL 

OSCILLATIONS 

The equation of motion of a cylinder elastically 

fixed in a flow has the form: 
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,sa LLI 

                      (4) 

 

where I is the moment of inertia, La - moment of 

aerodynamic force, Ls - moment of the elastic force and 

frictional force. The dot above the symbol denotes 

differentiation with respect to time. 

The components of the force moment can be 

represented in the form 
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In formula (5), ρ is the air density; v is the 

velocity of the incoming flow; L is the length of the 

cylinder; 

S is the characteristic area that is equal to the area of 

the base of the cylinder; m is the coefficient of the 

aerodynamic force moment; 




m  is the coefficient of the 

aerodynamic derivative; k is the spring rate; l is the 

distance from the axis of rotation to the end of the tail 

holder; k1 is the coefficient corresponding to the viscous 

friction. 

The coefficient of the moment is proportional 

to, and the rotational derivative coefficient is described 

by the formula: 
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Expressions (6) include the dimensionless 

parameters C, 


C and δ. After substituting expressions 

(5, 6) into the equation of motion (4), we obtain 
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Assuming ȝ to be a small parameter, the equation 

(8) can be solved by the Krylov-Bogolyubov method [9]. 

As a result, we obtain equations for the slowly varying 

amplitudes A and the phase φ of oscillation: 
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In the case of steady oscillation with constant 

amplitude the derivative of the amplitude 

A is equal to 

zero and 
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Therefore, A
2
 is linear function of 1/v. 

The first equation (9) can be transformed to the 

form 
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EXPERIMENTAL RESULTS 

Cylinder has the length L = 0.28 m, diameter D = 

0.14 m (see Figure-1). Aspect ratio Ȝ = L/D = 2. 

Experiments were performed without the coaxial disk and 

with the disk. The ratio of the disk diameter and cylinder 

diameter d/D was 0.536, 0.714 and 0.893. The ratio of the 

gap between disk and cylinder and cylinder diameter g/D 

was 0.5, 0.607 and 0.714. 

Figure-5 shows the dependence of the square of 

oscillation amplitude of the cylinder without coaxial disk 

on 1/v. Marks in the Figure-5 are near the straight line.   

 

 
 

Figure-5. Dependence of square of amplitude A
2 
on 1/v. 

Steady oscillation of the cylinder without coaxial disk. 

 

This fact is in accordance with the predictions of 

the mathematical model. It is possible to determine the 

parameters δ and k2 in the equation (10) using the method 

of least squares. 

The steady oscillation exists in the case of the 

cylinder with the small disk and the small gap between 

disk and cylinder. The dependence of A
2
 on 1/v is 

presented in the Figure-6. However, the amplitude of 

oscillation in less than the amplitude in the case of the 

cylinder without disk. 
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Figure-6. Dependence of square of amplitude A
2 
on 

1/v. Steady oscillation of the cylinder with  disk. 

d/D = 0.536, g/D = 0.5. 

 

Two cases mentioned above confirm the 

predictions of the mathematical model (10). 

Others configurations of the geometry 

demonstrate the damped oscillations at different velocity 

of inlet flow. In the Figure-7 there is the dependence of the 

logarithm of amplitude of oscillation on time.   

 

 
 

Figure-7. Dependence of the logarithm of amplitude of 

oscillation on time: 1 - flow velocity v is equal to zero, 

2 - v = 12.5 m/s, d/D = 0.893, g/D = 0.607. 

 

Dependence of ln (A) on time at v = 0 is a linear 

function. Parameter η does not depend on amplitude of 

oscillations. Another dependence in the Figure-7 at v = 

12.5 m/s is not a linear function. If amplitude decreases 

then parameter η reduces. This type of damped oscillation 

exists if d/D = 0.714 or d/D = 0.893. If d/D = 0.536 and 

g/D > 0.5 then another type of damped oscillation is 

realized. Dependence of ln (A) on time for this type of 

oscillations is presented in the Figure-8. If amplitude of 

oscillation A decreases then parameter η increases.  

  

 

 
 

Figure-8. Dependence of the logarithm of amplitude of 

oscillation on time: v = 19.1 m/s, d/D = 0.536, g/D = 

0.714. 

 

Equation (11) can be presented in the form: 
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The time range was divided into sections, each of 

which contained 7 periods of oscillation. For each section, 

a straight segment approximated the dependence of 

logarithm of the amplitude on time at velocity vi. The 

slope of segment ηi and average values of the amplitudes 

Ai were determined. The method of least squares can be 

used to calculate the parameters of equation (12) 2/2k ,  

)2/( L , )8/( L .  

Data with a small amplitude of oscillations were 

excluded from the consideration due to the large error in 

determining the logarithm of the amplitude. Results of the 

data processing are presented in the Figure-9, Figure-10, 

Figure-11 and Figures-12. 

 

 
 

Figure-9. Dependence of  on amplitude of oscillation: 

d/D = 0.536, g/D = 0.607; 1, 5 - v = 0, 2; 6- v = 9.8 m/s; 3, 

7- v = 15.2 m/s; 4, 8- v = 20.9 m/s; 1, 2, 3, 4- experiment; 

5, 6, 7, 8 - approximation. 

 

Solid line in the figures corresponds to the 

approximation (12).  
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For d/D = 0.536 and g/D = 0.607 (Figure-9) the 

damping of oscillations is provided by viscous friction. If 

the amplitude of oscillations is small then aerodynamic 

force reduces damping. Parameter  is growing. 

Increasing of g/D up to 0.714 (Figure-10) leads to the 

elimination of the influence of aerodynamic forces on the 

damping of oscillations.  

 

 
 

Figure-10. Dependence of  on amplitude of oscillation: 

d/D = 0.536, g/D = 0.714; 1, 5 - v = 0, 2; 6 - v = 10.2 m/s; 

3, 7- v = 15.2 m/s; 4, 8- v = 21.0 m/s; 1, 2, 3, 4 - 

experiment; 5, 6, 7, 8 – approximation. 

 

If d/D = 0.893 (Figure-11) then there is reducing 

of parameter  due to aerodynamic force at small 

amplitude of oscillation. 

 

 
 

Figure-11. Dependence of  on amplitude of oscillation: 

d/D = 0.893, g/D = 0.607; 1, 5 - v = 0, 2; 6 - v = 10.2 m/s; 

3, 7-v = 15.2 m/s; 4, 8-v = 21.1 m/s; 1, 2, 3, 4- experiment; 

5, 6, 7, 8- approximation. 

 

 
 

Figure-12. Dependence of  on amplitude of oscillation: 

d/D = 0.893, g/D = 0.714; 1, 5 - v = 0, 2; 6- v = 9.8 m/s; 3, 

7- v = 15.4 m/s; 4, 8- v = 21.0 m/s; 1, 2, 3, 4- experiment; 

5, 6, 7, 8- approximation. 

 

Figure-12 shows that at g/D = 0.714 the influence 

of the aerodynamic force on oscillation damping increases. 

 

CONCLUSIONS 
A coaxial disk in front of the cylinder not only 

reduces the drag of the cylinder, but also changes the 

dynamic characteristics of the cylinder. Without a disk, an 

elastically fixed cylinder in the flow performs rotational 

oscillations with constant amplitude. A disk of small 

diameter, located close to the cylinder, reduces the 

amplitude of rotational oscillation. Increasing of the 

distance between the disk and the cylinder causes the 

damped rotational oscillations. The influence of the 

aerodynamic force on the damping of the oscillations 

depends on the disk diameter and the gap between disk 

and cylinder. The damping increases with the increasing of 

disk diameter and the distance between the disk and the 

cylinder. A mathematical model is proposed for describing 

the rotational oscillation of a cylinder with a disk. 

 

REFERENCES 

 

[1] Saunders W.S. 1966. Apparatus for reducing linear 

and lateral wind resistance in a tractor-trailer 

combination vehicle. US Patent No. 3241876. 

[2] Koenig K, Roshko A. 1985.  An experimental study 

of geometrical effects on the drag and flow field of 

two bodies separated by a gap. J. Fluid Mech. 156: 

167-204. 

[3] Parkinson G. V., Smith J. D. 1964. The square prism 

as an aeroelastic non-linear oscillator. Quarterly 

Journal of Mechanics and Applied Mathematics. 17:  

225-239. 

[4] Ryabinin A.N., Lyusin V.D. 2015. Galloping of small 

aspect ratio square cylinder. ARPN Journal of 

Engineering and Applied Sciences.  10(1): 134-138. 



                                    VOL. 12, NO. 23, DECEMBER 2017                                                                                                     ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                              6808 

[5] Bratt J.B. 1963. Wind tunnel techniques for the 

measurements of oscillatory derivatives. Aeronautical 

research council report and memoranda. No. 3310: 53. 

[6] Luschenko I.V., Ryabinin A.N. 2007. Experimental 

studies of the cylinder oscillations in the air stream. 

Vestnik Sankt-Peterburgskogo universiteta. Ser. 1. 

Issue 2: 120-123 [In Russian]. 

[7] Ryabinin A.N, Kiselev N.A. 2016. Effect of rotational 

axis position of the cylinder on its rotational 

oscillations in the air stream. Vestnik Sankt-

Peterburgskogo universiteta. Ser. 1. 3(61): 2: 315-323 

[In Russian]. 

[8] Ryabinin A.N., Tyurin B.F. 1993. The behavior of the 

load suspended under a helicopter.  Vestnik Sankt-

Peterburgskogo universiteta. Ser. 1. Issue 1: 87-91 [In 

Russian]. 

[9] Bogoliubov N.N., Mitrropolski Y.A. 1961. 

Asymptotic method in the theory of non-lenear 

oscillations. Gordon and Breach, New York, USA. 


