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ABSTRACT 

Due to the extremely complicated pore structures and strong fluid-rock interaction, fluid flow in low permeability 
reservoir does not obey Darcy’s law. It is non-Darcy flow associated with threshold pressure gradient. Threshold pressure 
gradient (TPG) is the level of pressure gradient that has to be attained to enable fluid to overcome the viscous forces and 
start flowing. So, applying traditional well-testing theory in low permeability reservoir will lead to incorrect understanding 
of reservoir behavior; then, a new mathematical model for describing fluid flow in low permeability reservoir should be 
established. In non-Darcy flow in low permeability reservoirs, the fluid flow boundary is controlled by threshold pressure 
gradient and extended outward continuously as production goes on, while reservoir outside this boundary remains to 
original conditions. Once the moving boundary reaches physical reservoir boundary, it is called boundary dominated flow. 
This paper presents new mathematical models for boundary dominated flow under two different conditions: constant 
pressure boundary and closed boundary. Analytical solutions are obtained by using Greens’ function with a numerical 
approximation. It is concluded that, during transient flow, the pressure derivative is not a horizontal line but a concave 
curve which goes upwards. The bigger threshold pressure gradient brings bigger flow resistance, so the slower pressure 
wave propagates, and the later boundary dominated flow starts. During boundary dominated flow, the pressure derivative is 
independent of threshold pressure gradient. A numerical simulation is carried out to validate the analytical solution and 
approves the validity of the analytical solution. The solution proposed in this paper provides a suggestive tool for well-
testing in low permeability reservoir with threshold pressure gradient. 
 
Keywords: well pressure behavior, constant-flow boundary, closed boundary, pseudosteady-state period. 

 
1. INTRODUCTION 

Well testing offers an important tool for 
understanding hydrocarbons properties and characteristic 
of underground reservoir where oil and gas are trapped. In 
many years, Darcy’s law has been taken as the 
fundamental equation that governs the fluid flow in porous 
media, and provides the starting point of well testing 
theory. However, many experiments show that fluid flow 
does not obey Darcy’s law in low permeability reservoirs, 
Prada and Civan, 1999; Zeng et al., (2011), indicating  
non-Darcy flow associated with threshold pressure 
gradient(TPG). The reasons for non-Darcy flow in ultra-
low permeability reservoirs (K=(0.1-1.0)×10-3μm2) can be 
summarized as: strong fluid-rock interaction due to 
extremely narrow pore throat and large rock surface, 
obvious boundary-layer flow which varies with the 
different pressure gradient. 

The TPG is defined as the pressure gradient that 
has to be attained for fluid to start flowing. When the 
pressure gradient is smaller than TPG, flow velocity 
increases in a non-linear relationship, when pressure 
gradient exceeds TPG, flow velocity increases quickly and 
obeys linear relationship. The existence of TPG separates 
reservoir into two parts, pressure disturbance area, and 
undisturbed area. The boundary between the two areas is 
called moving boundary. Before the moving boundary 
reaches physical reservoir boundary; it is transient flow, 
after that, boundary dominated flow is dealt with. 

Substantial research has been done on transient 
flow in low permeability reservoir with TPG by 
predecessors. Pascal (1980) firstly studied the transient 

flow in a one-dimensional model with TPG, and derived 
the approximate analytical solution. Basnyev (1986) 
proposed a semi-analytical solution for transient radial 
flow with TPG based on material balance equations. Lu 
(2011) developed a model to describe transient flow in a 
radial geometry reservoir and obtained a solution with 
Green’s function, which high order of accuracy. 

However, few studies are performed for boundary 
dominated flow in low permeability reservoir with TPG. 
In some cases, well testing is carried out in latter filed life 
for reservoir management, during which time there is 
boundary dominated flow. So developing a mathematical 
model for boundary dominated flow and obtaining 
analytical solution are quite important. Among the well 
testing researches can be mentioned: the work of Escobar 
et al. (2014) on horizontal wells draining either 
homogeneous or naturally fractured formations.  Another 
work by Escobar et al. (2015) on hydraulically-fractured 
vertical wells and Zhao et al. (2915) who studied the effect 
of wellbore storage on the TPG for vertical wells. 

The purposes of this paper are (1) to present a 
new mathematical model for boundary dominated flow in 
radial shape geometry and develop analytical solutions, 
both constant pressure boundary and closed boundary 
condition are considered; (2) to illustrate the effects of 
reservoir parameters on flow behavior, such as TPG and 
permeability, and validate the analytical solution with the 
numerical simulation. 
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2. MODEL DEVELOPMENT 
Consider the flow configuration as depicted in 

Figure-1. Flow in this geometry is described in a 
cylindrical coordinate system with its origin located just 
right at the center of the well. 
 

 
 

Figure-1. Schematic of a fully penetrating vertical well in 
the center of an isotropic reservoir. 

 
The following assumptions are made in order to 

simplify the problem: 
a) The well fully penetrates the reservoir with a radius 

rw. The reservoir is homogeneous and isotropic with 

constant permeability, K and porosity,. The top and 

the bottom boundary are impermeable. 

b) There contains a slightly compressible single-phase 

fluid with viscosity, ȝ. The reservoir temperature is 

constant. The reservoir rock is slightly compressible. 

c) Gravity force is negligible. Skin factor is zero. 

Wellbore storage effect is ignored because of the 

small wellbore radius. 

d) The fluid flow in the formation is governed by non-

Darcy flow associated with TPG. The reservoir fluid 

is produced through the fully penetrated well at a 

constant surface flow rate Qo. The wellbore radius is 

so small compared with reservoir radius that it’s 

treated as a line source well. 

The fluid flow in low permeability reservoir with 
TPG is described by following non-Darcy flow equation; 
Prada and Civan (1999), Hao et al., (2008), 
 

      ( >0)
P

r K

         
                                 (1) 
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
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where Ȟ is defined as threshold pressure gradient, effective 
permeability, fluid viscosity, and flow velocity through 
porous media respectively. 

The pressure diffusivity equation in low 
permeable porous media is, 
 

2

2

1 t
CP P P

r r r r K t

  
  
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Where ϕ, Ct are respectively the porosity and 

total compressibility of low permeability formation. 
The focus of this paper is to establish a 

mathematical model for boundary dominated flow and 
obtain the analytical solution, the pressure when boundary 
dominated flow starts is the exact reservoir pressure when 
moving boundary just reaches the physical outer 
boundary, it can be obtained from the pressure transient 
solution by Lu (2011). 
 

( , ) |
et t eP r t P                                                                (4) 

 
Where Pe is the pressure when moving boundary 

reaches the physical outer boundary, te is the time that 
moving boundary reaches the physical boundary. 

For closed boundary situation, there is no fluid 
supply into the reservoir, so the pressure at outer boundary 
keeps declining at a constant rate. 
 

t

P
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
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Where C is a constant. 

For constant pressure boundary situation, the 
pressure at the outer boundary keeps the same with 
original reservoir pressure. 
 

( , )
e
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P r t P


                                                           (6) 

 
The inner boundary conditions for both closed 

boundary and constant pressure boundary problem are the 
same, 
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The well is taken as a uniform line sink and it is a 

fully penetrating well, a point sink (0, 0,0) is located at the 
origin of the polar coordinates, its intensity is q, q has the 
same dimensional unit as the total well flow rate Qo, and 
Qo keeps constant during production. 
 

o D

w

H
Q qH q

R
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Then equation can be expressed as: 
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Where δ(r) is Dirac delta function. 
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2.1. Dimensionless transform 

For simplifying the process of equation 
derivation, dimensionless parameters are introduced into 
equations, 
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Consequently, equation(9) can be expressed in 

the following dimensionless form, 
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Where the following formula is used, 
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The boundary condition for a closed boundary 

and constant pressure boundary can be expressed as below 
respectively. 
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Where Rf is moving boundary front. 

For convenience, every variable, domain, initial 
and boundary conditions would be taken as dimensionless, 
but we drop the subscript D for simplicity. 
 
2.2. Analytical solution using Green’s function 

Define the following parameter and drop 
subscript D for simplicity, 
 

P r                                                               (19) 

 
Consequently, 
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Thus, we obtain following equations about Ψ, 
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G is the Green's function of the above problem, 

there hold, 
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Using the method of undetermined coefficients, it 

is assumed that moving boundary location at time t is Rf, 
so the solution can be derived using Green’s function. 
Thus the solution to Equation (25) is: 
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Lu(2011) gave the detailed pressure solution for 

transient flow, so the detail is not given here. The solution 
is shown below, 
 

3

3
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e
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 
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In which te is the time that moving boundary 

reaches physical boundary and boundary dominated flow 
starts. 

The pressure transient at te is as follows, and 
engineering accuracy could be attained by considering one 
hundred terms of the summations (n=1 to n=100). 
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Equation(28) is the initial pressure condition of 

for boundary dominated flow problem. 
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2.3. Closed outer boundary 

If the reservoir is with closed outer boundary, it is 
known that ∂P/∂r=0 at r=Re. 
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It is Newman boundary condition for this case. 

The Green's function for Newman boundary can be found 
in page 438 of Cole et al. (2010). 
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Where; 
 

 

 

1 0

100
2 2 0

220
1 0

2 2100
2 0

22 2
1 0

( , , ,0) /

( / )1
( ) 1 exp ( ) /

( )

1 exp( / ) ( / )1

( )

t

t
n e

n e

ne n

n e n e
e

ne n n

I G t r d H

J r R
t R d

HR J

t R J r R
t R

HR J

 

  
 

 
  







                
              

       







(33) 

 
Where Ȝn (n=1,2,3, …) are roots of the following equation: 
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Note that in Equation(35), 
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2.4. Constant pressure outer boundary 

For constant outer boundary condition, the 
pressure at r=Re always equals to reservoir initial pressure 
Pi, according to dimensionless pressure definition, we 
have: 
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If G is the Green's function for the problem 
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For the Green's function, there holds, 
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(44) 

 
Where βn(n=1,2,3, ...) are the roots of Bessel function of 
zero order, 
 

0 ( ) 0, ( 1, 2,3,...)nJ n      (45) 

 
Green's function for Dirichlet boundary can be 

found in  in page 437 of Cole et al. (2010). 
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Where; 
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2.5. Transform from dimensionless solutions into  

dimensional solutions 

Incorporating the dimensionless parameters into 
the dimensionless analytical solutions for boundary 
dominated flow, and obtaining the dimensional solutions 
of pressure distribution in the reservoir. The results are 
shown below in SI unit. 
 
2.5.1. Closed outer boundary 
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2.5.2. Constant pressure outer boundary 
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3. PRESSURE BEHAVIOR ANALYSIS 

By using the new mathematical models for 
boundary dominated flow, parameter sensitivity on 
pressure and production behavior are studied. These 
models for non-Darcy flow with threshold pressure 
gradient are also compared with the traditional Darcy’s 
flow model, in order to reveal the pressure behavior 
difference during production. 
 
3.1. Closed boundary 

Figure-2 shows the effect of threshold pressure 
gradient on pressure PwD and pressure derivative PwD

’
tD, 

and it’s compared with that of Darcy’s flow. 
 

 
 

Figure-2. Log-log plot of dimensionless bottomhole 
pressure and pressure derivative vs. dimensionless time tD 
in boundary dominated flow period with closed boundary. 
 

 
 

Figure-3. Log-log plot of dimensionless bottomhole 
pressure and pressure derivative vs. dimensionless time 

tDin boundary dominated flow period with closed 
boundary (ωD=0.09). 

 
The curves for all the four cases can be divided 

into two regimes, early-middle time regime, and late time 
regime. For ωD=0, which is Darcy’s flow, PwD is smallest 
among all the four cases, it indicates that the flow 

resistance for Darcy’s flow is smallest, the pressure 
derivative PwD

’
tD is a horizontal line and equals to 0.5 in 

early-middle time regime, in late time regime, as the 
moving boundary reaches physical boundary, the pressure 
derivative PwD

’
tD start to derivate from horizontal line, 

pressure drop speed increases. For all cases ωD≠0, As 
ωDincrease from 0.09 to 0.25, the PwD increase, the 
pressure derivative PwD

’
tD   derivate from the horizontal 

line, the bigger ωD is, the more PwD
’
tDdeviates from the 

horizontal line. It is seen that in pressure derivative curve, 
as ωDincrease, the latter the turning point of PwD

’
tD 

appears, so the latter boundary dominated flow appears. 
For Figure-3, the curves for all the four cases can 

be divided into two regimes, early-middle time regime and 
late time regime. It is seen that the bigger reD is, the later 
PwD

’tD starts to increase, indicating that the later steady-
state flow appears. 
 
3.2. Constant pressure boundary 

 

 
 

Figure-4. Log-log plot of dimensionless bottomhole 
pressure and pressure derivative vs. dimensionless time 

tDin boundary dominated flow period with constant 
pressure boundary. 

 

 
 

Figure-5. Log-log plot of dimensionless bottomhole 
pressure and pressure derivative vs. dimensionless time tD 

in boundary dominated flow period with constant pressure 
boundary (ωD=0.09). 
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It is seen that the bigger reD is, the later PwD
’
tD 

starts to decrease, indicating that the later steady-state flow 
appears. See Figures4 and 5. 
 
4. COMPARISON WITH SIMULATION RESULT 

Validation of the new mathematical models is 
achieved by comparing it with numerical simulation result. 
A radial geometry flow model with 100*1*1 grids is 
constructed to simulate the pressure distribution in a 
reservoir associated with threshold pressure gradient, and 
the grid dimensions in radial, theta, z directions are 3 ft, 
360°, 20ft respectively, as shown in Figure-6. The 
production well is located in the grid (1,1,1). The model 
formation properties and fluid properties are listed in 
Table-1. 

The keyword THPRES sets the threshold 
pressure for flow between adjacent equilibration regions, 
fluid in grids which belong to different equilibration 
regions will not start to flow unless the pressure difference 
between these grids is bigger than the threshold pressure 
value set by THPRES keyword. A case of ω=20 psi/ft are 
studied. 
 
4.1. Closed boundary 

Plotting the pressure versus time on Cartesian 
plot, and comparing it with the analytical solution. The 
result is shown in Figure-7. It is seen that analytical 
solution curve matches with simulation run curve well, 
error range is smaller than 10 %.  
 

 
 

Figure-6. Schematic of mesh generation in a 
circular reservoir. 

 
 
 
 
 
 
 
 
 
 
 
 

Table-1. Formation properties of the radial model. 
 

Parameters Value 

Reservoir radius, Re 150 ft 

Reservoir Thickness, H 20 ft 

Porosity,  0.1 

radial permeability, kr 0.5 mD 

azimuthal permeability, kθ 0.5 mD 

Z-permeability, kz 0.5 mD 

Oil compressibility, Co 2E-5 1/psi 

Oil FVF, Bo 1.25 

Oil viscosity, ȝo 0.5 cp 

Formation compressibility 2E-5 1/psi 

Threshold pressure gradient ω 0, 5, 15, 25 psi/ft 

 

 
 

Figure-7. Cartesian plot of bottomhole pressure vstime for 
Analytical model and Eclipse simulation 

run (ω=20 psi/ft). 
 
4.2. Constant pressure boundary 

Fetkovich aquifer model is employed to 
simulation the constant pressure boundary. AQUFET 
keyword is used in Eclipse data file to specify the 
Fetkovich aquifer. The pressure for Fetkovich aquifer is 
equal to initial reservoir pressure.  

Pressure versus time on Cartesian plot is shown 
in Figure-8. It is seen that analytical solution curve 
matches with simulation run curve well. Bottomhole 
pressure does not decrease anymore when it reaches 
constant pressure boundary. 
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Figure-8. Cartesian plot of bottomhole pressure vs 
time for Analytical model and Eclipse simulation 

run(ω=20 psi/ft). 
 
CONCLUSIONS 

For the model of transient flow, the bottomhole 
pressure behavior, moving boundary front position, and 
pressure distribution in the reservoir are investigated. The 
conclusions are as shown below: 
 
a) The threshold pressure gradient ω is defined as the 

level of pressure gradient that has to be attained to 
enable the fluid to overcome the viscous forces and 
start to flow when the pressure draw-down acts on 
that fluid medium. It widely exists in low 
permeability reservoir. 

b) The bigger threshold pressure gradient ω is, the bigger 
pressure drop it need to make the fluid start flowing, 
which will lead to bigger pressure drop will be in the 
reservoir and bottomhole. 

c) The existence of threshold pressure gradient 
intensifies the uneven distribution of pressure along 
radial distance, more pressure drop happens around 
the wellbore. 

d) The moving boundary front position Rf is linear 
relationship with t1/3, and it is a function of production 
rate, threshold pressure gradient, porosity, formation 
thickness, but not a function of permeability. 

e) Bottomhole pressure Pwf is a linear relationship with 
t
1/3, the bigger threshold pressure gradient ω is, the 

bigger bottomhole pressure drop in the well is. 
f) The bigger threshold pressure gradient ω is, the later 

the moving boundary front reaches physical 
boundary, the later the transient flow finish and 
boundary dominated flow to start. 

g) For the boundary dominated flow, there are two cases: 

closed boundary condition and constant pressure 

boundary condition. The bottomhole pressure 

behavior, moving boundary front position, and 

pressure distribution in the reservoir are investigated. 

The conclusions are as shown below. 

 
 
 
 

For closed boundary condition: 
a) It becomes a pseudo-steady state if production time is 

long enough. At each point of the reservoir, the 

pressure drop is the same per unit time. 

b) The bigger threshold pressure gradient ω is, the bigger 
pressure drop speed is when in pseudo-steady state 

flow. 

For constant pressure boundary condition: 
c) It becomes a steady state if production time is long 

enough. The pressure distribution in the reservoir will 

not change if the well producing at a constant rate. 

Nomenclature 

 

A flow area of wellbore 

K effective permeability 

P pressure 

r radial distance 

G Green’s function 

Ct total compressibility 

h thickness 

t time 

B formation volume factor 

H pay zone thickness 

Rw wellbore radius 

Rf moving boundary front 

Re reservoir outer boundary 

Qo oil flow rate 

Greek symbols 
 

δ(r) Dirac delta function 

ȝ Fluid viscosity 

Ȝn nth root of J1(x)=0 

βn nth root of J0(x)=0 

ω Threshold pressure gradient 

ϕ Porosity 

Subscripts 
 

D Dimensionless 

f moving boundary front 

e reservoir outer boundary 

o oil 

i initial 

w well 
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Appendix A: Dimensional factors table 

Factor Dimension SI units Field units 

Distance L m ft 

Area L2 m2 acre 

Temperature T Kelvin Rankine 

Pressure mL-1t-2 Pa psi 

Permeability L2 m2 mD 

Viscosity mL-1t-1 Pa.s cp 

Flow rate L3t-1 m3s-1 MMSCF/day 

Pseudo 
pressure 

mL1t-3 Pa/s (MMpsi)2/cp 
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