
 VOL. 12, NO. 23, DECEMBER 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6844

A PRO-ACTIVE FAULT TOLERANT DEADLINE HIT COUNT

BASED SCHEDULING IN COMPUTATIONAL GRID

S. Gokuldev

1
, C. Sowntharya

2
 and S. Manishankar

1

1Department of Computer Science, Amrita Vishwa Vidyapeetham, Mysore Campus, Karnataka, India
2Department of Computer Science and Engineering, Karpagam College of Engineering, Coimbatore, Tamil Nadu, India

E-Mail: gokuldevs@gmail.com

ABSTRACT

In grid systems, as the number of heterogeneous components increases in the networks, the chance of failure of

resources increases. Identifying the various faults that occurs and imparting tolerance to those faults has become the

principal area of concern. Many of the existing fault tolerant algorithms concentrate on increasing throughput and reducing

the response time but consider less on increasing user satisfaction. The proposed fault-tolerant check-pointing based

Deadline Hit Count (DHC) scheduling algorithm concentrates on increasing the efficiency of the resource through

identifying the faults and reducing the turn-around time. It also increases the user satisfaction as it combines both the

dynamic checkpointing approach and fault tolerant scheduling. In the proposed technique, a DHC scheduling algorithm

with check-pointing is implemented to identify and pro-actively tolerate faults to select the appropriate resources.

Experiments are performed to assess the performance of the proposed approach using GridSim tool and have shown better

performance.

Keywords: computational grid, deadline hit count, dynamic check-pointing, fault identification, fault tolerance, failure counter, success

indicator.

1. INTRODUCTION

Grid computing is another form of distributed

computing which enables selection and aggregation of a

very large number of geographically distributed resources

dynamically based on their availability and capability.

Considering the general aspects of grid computing

functions, though grid faces lot challenges with utilizing

the resources to its optimum level, tolerating the faults of

resources also plays a major role. In the generalized view

of grid system, the overview of the user job submission to

the grid system and the specific flow of dealing with the

grid job is described. Job scheduling is performed with the

system and the system also identifies the resource faults

and the fault tolerating mechanism as its objective. The

generalized view of grid architecture is depicted in Figure-

1. Initially the user submits the job to the scheduler. The

scheduler refers to the Grid Information Server (GIS) for

collecting information about the resources. The scheduler

then schedules the jobs to the appropriate master node in

different networks which in-turn schedules to its

individual worker nodes.

Figure-1. Generalized view of grid network.

Fault tolerance is the ability of the system to

execute the tasks efficiently even in the presence of faults.

The main scheduling methods used for fault tolerant

scheduling are pro-active and post-active scheduling. In

the former scheduling for fault tolerance, the fault factors

are considered prior to the scheduling decisions so that the

probabilities of occurrence of faults are minimized. In

post-active scheduling tasks, measures are taken to

overcome faults only after they have occurred. The fault

tolerance mechanisms used in most of the recent research

works are either check pointing or job replication

mechanisms. In the check pointing mechanisms, the check

points are generated at constant intervals of time and if

any fault/failure happens, the system rolls back to the

previous checkpoint. This reduces the total time taken to

complete the tasks as the tasks need not be executed again

from the scratch. With the fault tolerance mechanism

based on job-replication, the replica of jobs is created. The

main agenda behind this technique is that if a job fails due

to some reasons, the scheduler does not have to request the

user again for the same job as the replicas of the job exists

within the scheduler itself. Different algorithms use

different types of replications such as:

 Scheduler can decide the number of replicas

depending on the resource to which the jobs are

assigned.

 The user can provide the number of replicas

depending upon the priority of the tasks.

 The system itself could be trained to consider a fixed

number of replicas for each task statically for all

incoming jobs.

mailto:gokuldevs@gmail.com

 VOL. 12, NO. 23, DECEMBER 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6845

Designing a fault tolerant algorithm to decrease

the overall makes pan is a critical issue to be considered.

In the existing system using Failure Tendency and Success

Indicator (SI) has been used for proposing a fault tolerant

scheduling algorithm which reduced the overall turn-

around time for the submitted jobs with minimal deadline

with the limited number of resources. User satisfaction is

also a parameter to measure the success rate of the system,

but in the existing system, identifying the occurrences of

faults has not been considered. Success indicator is a

parameter with a count value that dynamically gets

updated irrespective of the completion of jobs. An

automatic SI check-pointing mechanism has been

introduced that dynamically selects the threshold to update

the SI in both the presence and absence of faults. The

proposed idea is an efficient fault tolerant system which

introduces the idea to combine Deadline Hit Count (DHC)

and automatic SI check-pointing approach. DHC gives the

number of jobs successfully completed within the user

deadline constraint and SI check-pointing introduces the

automatic checkpoint depending on which the SI gets

updated. To achieve a decreasing turn-around time for jobs

with minimum deadline, the system selects the most

appropriate resources by considering the parameters such

as DHC, SI and FC for the execution of tasks. So there is

only less chance of failure of jobs and resources due to

appropriate selection of resources and assigning high load

to resources.

The above section provides an introduction the

problem statement. Section II discusses on the various

review of literature on existing scheduling and fault

tolerant methodologies, section III illustrates the proposed

DHC based scheduling and fault tolerant scheduling in

comparison with one of the existing methodologies,

section IV shows the experimental results and its

significance and section V covers the conclusion and

future scope of the proposed approach

2. REVIEW OF THE EXISTING FAULT

 TOLERANT APPROACHES

Fiaz Gul Khan et al (2010) made a comparison

among the most commonly used fault tolerant techniques

such as check pointing, retrying, alternative task and

alternative resource. The comparative study [1] addressed

also considered many system centric parameters such as

throughput, turn-around time which is a measure of the

total time taken from the time user submits the job till the

user receives the result, waiting time which is the measure

of the time that the user job has to wait in the queue before

the job gets scheduled under different workload conditions

with the described algorithms. In alternative task selection

technique where in case of task failure the system

resubmission of the task, it is observed that the algorithm

works well under high workload conditions as well as with

task failures. Since it causes less network delays, it gives

good performance. But, it is found that waiting time is

high due to re-submission of failed tasks. Check pointing

gives better results for different kinds of faults but only in

low workload conditions. In high workload conditions, it

is found to cause memory over-head.

Malarvizhi Nandagopal et al (2010) in their work,

proposed a fault tolerant algorithm to efficiently schedule

the tasks. Replication Resource Selection Algorithm

(RRSA) [2] is projected that provides Checkpoint

eplication Service (CRS). It reduces the Time to Repair

(TTR) of the submitted jobs in the grid and the proportion

of completed jobs within the given deadline has been

increased. But it has been observed that increasing the

throughput of the system has not been considered.

Amoon (2011), in the work addressed an

approach to deal with task failures even in the presence of

resource faults. The work focuses on selection of resources

during job replication [4] which depends on the failure

tendency of resources calculated using previous history of

resources such as response time. It is observed that the

system works efficiently by reducing the memory

overhead that is usually caused in job replication since the

replicas will be located and terminated after the task gets

completed. But since failure tendency is used as a

parameter for selection of resources, there are cases where

it becomes difficult to select the resource for scheduling.

P Keerthika et al (2011), a fault tolerant

scheduling algorithm [5] has been proposed based on

transmission time, fault rate and user deadline and the job

is expected to be completed within the user deadline by

assigning it to the most appropriate resource. The

algorithm has proved efficient with high hit rate (number

of jobs successfully completed within the specified

deadline) and less miss rate. The addressed algorithm

works well for static scheduling but the efficiency of the

system in dynamic scheduling has not been considered.

Jasma Balasangameshwara et al (2012) in their

work, introduced a fault tolerant hybrid load balancing

strategy namely AlgHybrid_LB [6]. The strategy takes

into account grid architecture, computer heterogeneity, job

characteristics, resource availability, communication

delay, resource unpredictability and job characteristics.

The system has an optimal utilization of computer nodes

and minimum response time. To locate effective sites,

AlgHybrid_LB integrates static and dynamic load

balancing techniques. The proposed approach is of low

complexity and reduces the number of additional

communication caused due to load balancing.

Altameem (2013) addressed the issue of fault

tolerance in grid systems using the method of job

replication [7]. Once the client submits the job and the

number of replicas of each job, the jobs are assigned to the

appropriate resources by considering the fail tendency of

resources which is the probability of a resource to fail. The

system is found to be working efficiently for job failures

but the problem of memory over-head created due to

excessive replication of jobs has not been considered.

P. Keerthika, et al (2013), in their work

developed a pro-active scheduling algorithm [8] with

improved fault tolerance and increased user satisfaction. A

new parameter of hit count to represent the number of

tasks successfully completed within the user deadline has

been introduced. It has been found that it produced

increased user satisfaction with increased tolerance to

 VOL. 12, NO. 23, DECEMBER 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6846

faults. But the efficiency of the algorithm under high

workload conditions has to be verified.

 Jairam Naik et al (2013) proposed a scheduling

algorithm for fault tolerance [9] to increase the efficiency

and overall throughput of the system. The work introduced

a new parameter called the Scheduling Success Indicator

(SSI) which is a grouping of resource experience and

success rate of the resources. It has been observed that

the system produced better results than the Fault Indicator

(FI) based systems where only the failure tendency of the

resource has been considered. SSI has been considered but

whether the jobs are being completed within the deadline

or not has not been considered.

Ch. Ramesh Babu et al (2014), presented a

strategy for automated checkpointing [10] based on

different scheduling algorithms and has been evaluated

using OpenMPI and the basic infrastructure delivered by

the BLCR 0.8 framework using TORQUE. It was found

that overheads due to checkpointing are reduced by

automatic checkpointing. It is also found that checkpoint

turnaround time is reduced by automated checkpointing

which acquired better performance over other techniques.

S.Supriya et al (2014) conducted a survey [11] on various

fault tolerance techniques, mechanisms and job

management. The work addressed the various techniques

in fault tolerance which is fault masking (preventing fault

in the resource) and reconfiguration (removal of faulty

resources). It was observed that check pointing mechanism

is an approach to reduce the failure recovery time with

reduced makespan.

P. Keerthika et al (2015) described a budget

constrained scheduling algorithm [12] that concentrated on

processing costs. Along with cost factor, it considered the

deadline of tasks to satisfy the user. This algorithm has

also been designed to take care about fault tolerance with

reduced makespan and proper utilization of resources. It

has been observed that since reducing cost and user

deadline of task has been considered, it has increased the

user satisfaction greatly. This algorithm is found to be

following a centralized approach which could be changed

to hierarchical to improve efficiency.

K Nirmala Devi et al (2015) described a

scheduling algorithm [13] by altering the execution time

dynamically to maximize the throughput. If any failure of

node happens, it efficiently reschedules the task to another

safe resource based on its previous work history. It has

been observed that the recommended algorithm maximizes

the throughput and minimizes overhead due to

checkpointing. The prediction approach considered history

of resources to predict the failure rate of resources.

M. Nakkeeran (2015) addressed fault tolerance in

resource failure and made a survey [14] on task

checkpointing and replication based fault tolerance. The

system achieved fault tolerance by dynamically adjusting

the number of checkpoints by Mean Failure Dependent

Checkpoint based job execution time and history of failure

information, which reduced checkpoint overhead and

increased the overall throughput. The system is not

considering the system overhead.

Sarpreet singh et al (2016), considered the faulty

nodes before the scheduling or execution of tasks [15] by

considering the resource history and take corrective

actions which minimizes execution time, increase

execution rate, reduce faults occurrence & execution cost.

It has been observed that even in the presence of faults, the

time taken to complete the execution of tasks by the

system is less as compared with post-active scheduling

techniques. Since it also uses check-pointing, it reduces

the restart time of the tasks.

It is observed that in the reviewed works, fault

indicator represents the total number of task successfully

completed versus the total number of tasks executed by the

grid resource. For example, if R1 and R2 are two

resources, R1 successfully completed 9 tasks out of 10 and

R2 has completed 90 tasks out of 100 submitted tasks. But

in such a case, fault indicator for both resources will be

0.9. Selection of resources proved to be difficult in such

situations. So the proposed work uses fault counter that

gives the measure of number of tasks failed to the total

number of task that is submitted to the grid. So the fault

counter for R1 and R2 will be 5% and 50% if the total

tasks submitted to the grid is 5000.

3. METHODOLOGY

3.1 Failure tendency and scheduling success indicator

 based fault tolerant scheduling
Scheduling Success Indicator (SSI) based fault

tolerant scheduling algorithm [9] introduced a new

parameter called the SSI that is used to group the

resources based on the resource history which indicates

the success rate of the resources. A parameter called

Failure Indicator (FI) is also used for computing the

resource faults. FI gives the percentage of resource failure

of individual resource. This helped the system to assign

jobs to the resources which has lesser failure rate.

In other words, the system chooses a best

resource for job considering lesser FI and higher SSI.

From this scheduling approach, it has been observed that

the system produced better results when compared with

many of the latest existing techniques and it showed

improved throughput. Since the work focused only on

success rate of the resource and failure tendency and not

focused much on user satisfaction. This paved the way to

propose a new scheduling and fault tolerant technique to

focus on user satisfaction by considering deadline

constraint through assigning optimal resource by

considering success rate and failure rate of the resources.

3.2 Proposed pro-active fault tolerant deadline hit

 count based scheduling

The proposed system follows a pro-active fault

tolerant scheduling approach which takes actions prior to

scheduling of tasks to minimize the occurrence of faults

and the overall turn-around time. Along with SI and FC,

an additional parameter called DHC is used which

computes the measure of the number of jobs successfully

completed within the user deadline. The user submits the

job with the QoS requirements to the grid system i.e., the

 VOL. 12, NO. 23, DECEMBER 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6847

user deadline. Before scheduling the jobs to the resources,

the scheduler, once after receiving the job from the user,

consults the Resource Information Server (RIS) for FC, SI

and DHC of resources which are computed based on the

history of resources which is updated in RIS by the fault

handler. The jobs are scheduled to the appropriate

resources based on the corresponding computed counter

values so that the occurrences of resource faults are

minimized. The illustration of the proposed system model

is shown in Figure-2.

Figure-2. System model.

The proposed system minimizes the resource

faults and task faults by selecting appropriate resources to

the incoming tasks by considering parameters such as FI,

SI and DHC. Since the optimum resources for the jobs are

selected, the system decreases the overall time taken to

complete the set of user submitted tasks.

a) User submits the jobs with the task deadline as QOS

requirement to the grid scheduler.

b) Once when the scheduler receives the job, this sends a

request to the RIS informing about the task to be

done.

c) RIS consists of information about the computing

resources. It maintains a table which consists of the

network_id, resource_id, deadline hit-count, success

rate of the resources and deadline. When a request for

a resource arrives, the RIS, based on the computing

information, finds the optimum resource and informs

the scheduler with respective resource_id and

network_id.

d) According to the size and deadline of different jobs,

the system decides the number of resources and the

number of searches to be performed to find optimum

resources among the idle ones.

e) The scheduler decides the allocation of resources

based on the received information.

f) At constant intervals of time, the resources in the

network send live messages to find whether they are

alive.

g) Case 1: If a live message has not been received from

a resource which has been executing the tasks, then

the master reports to the fault handler about the

failure. Fault handler does the appropriate

computation, updates the information in the RIS.

h) Case 2: If the job is executed successfully, the

computed job is send to the scheduler and a

notification is sent to the information handler and

simultaneously RIS is updated.

i) In both the cases, the SI acts as an automatic

checkpoint count value that gets updated at

dynamically selected intervals of time depending on

the presence and absence of faults.

j) Case A: In the presence of resource fault, the static

value which is fixed as threshold for checkpointing

interval changes. The new value for checkpoint will

be initiated for the threshold, from the time of fault

occurred.

k) Case B: In the absence of fault, ie. if job is completed

successfully, the threshold time interval remains

constant which provides a mechanism for fault

identification.

The scheduling decisions are taken by the

scheduler depending on different parameters. The

computations regarding the values of the different counters

are performed in the information handler. The

mathematical formulations for these counters are as

follows:

Initially,

FC = Ci (1)

SI = Ci (2)

DHC = Ci (3)

where ‘Ci’ is a constant and it is initially assigned to all

the counters.

A constant unique value is assigned initially to all

these three parameters so that it provides an easy

mechanism to calculate and compare all the counters for

the GIS and to the scheduler to make the scheduling

decisions for all appropriate resources.

 VOL. 12, NO. 23, DECEMBER 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6848

The FC, SI and DHC of resources ‘i’ is defined as

follows:

FC = Ci+Ei (4)

where,

 (5)

Ei gives the fraction of jobs failed against the

total number of jobs allocated. FC is a counter that gets

incremented when a resource fails in execution and even

when a resource fails sending live message to the master

node.

SI = Ci+Fi (6)

where,

 (7)

Fi is the fraction of jobs completed successfully

against the total number of jobs submitted. SI is a counter

value that gets incremented whenever a job gets completed

successfully irrespective of user deadline.

DHC = Ci + Gi (8)

where,

 (9)

Gi provides the fraction of total time taken by the

resource to complete the task against the user provided

deadline.

DHC contributes more in the proposed DHC

based fault-tolerant scheduling algorithm. It is a measure

of number of jobs successfully completed within the user

given deadline. DHC counter gets incremented only when

the above mentioned condition is met i.e., only when the

job is completed within the user given deadline. Thus, the

proposed DHC based system incorporates pro-active fault

tolerant scheduling with check pointing approach for fault

tolerance and fault identification respectively. Once when

a fault is identified using the check pointing technique, the

FC rate of the respective faulty resource dynamically

increases and contributes a negative impact on the

resource while scheduling decisions are taken. This leads

to the significant improvements in the system and also

improves the overall performance of the grid system.

4. EXPERIMENTAL RESULTS
The experiments are conducted with the

simulation set up in the simulation environment,

considering two clusters with 50 computing resources

each. The experimental results for 9000 jobs with minimal

deadline of 500 milliseconds as QoS constraint is depicted

in Figure-3. As the system allocates minimum number of

resources to get the job done considering the QoS

requirements, the system finds the exact matching

resources for the incoming jobs and the execution time is

observed.

Figure-3. Execution time of DHC scheduling.

From the observations made, it is found that the

for 9000 jobs with minimal deadline, the turn-around time

obtained is minimal as compared with the existing fault

tolerant based scheduling approach. The results provides

an evident comparison between the existing Success

Indicator fault tolerant approach and the proposed deadline

hit count based approach and proves that the proposed

approach produced better results. The simulation is also

experimented for varying workloads with varying number

of resources and varying number of searches.

The experimental results show that with limited

number of resources and for the jobs with minimal

deadline, the proposed fault tolerant based scheduling

algorithm works efficiently. The algorithm produced less

turn-around time for jobs with minimal deadline and under

limited resources. The algorithm shows improved results

and better user-satisfaction as it works well for jobs with

minimal deadline by producing less turn-around time.

Simulations had been conducted for comparing

the existing SSI based system with the proposed DHC

based system.

 VOL. 12, NO. 23, DECEMBER 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6849

Table-1. Comparative study of turn-around time of SSI

versus DHC based systems.

No. of tasks

SSI based

fault tolerant

scheduling

DHC based fault

tolerant scheduling

500 673 592

1000 892 746

1500 947 869

2000 1050 900

4000 2099 1110

9000 4978 1150

The Table-1 shows the comparison of turn-

around time of the two approaches, SSI and DHC based

fault tolerant scheduling algorithms considering 500,

1000, 1500 and 2000 tasks.

Observations from the above table provides a

clarity on the fact that the DHC based system produces

better turn-around time as compared with SSI based

system. As it produces less turn-around time for higher

number of tasks with minimal deadline, it is assured that

the proposed approach contributes in increasing user

satisfaction as jobs gets completed within the limited

available time. Since most suitable resources are selected

for execution by considering various parameters,

probability of occurrence of faults are found to be

minimized.

Figure-4. Comparison of the existing approach with DHC

scheduling based on resource cost.

In Figure-4, the cost of resources is plotted

against the number of resources. It is clearly observed that

the proposed pro-active fault tolerant scheduling algorithm

produces less cost for resources as compared with the

other existing SSI based fault tolerant algorithm.

In Figure-5, the turn-around time is plotted

against the number of resources and it is observed.

Figure-5. Comparison of the existing approach with DHC

scheduling based on execution time.

There is a drastic decrease in the total time taken

by the proposed DHC algorithm when compared with the

existing SSI based fault tolerant approach.

With certain number of resources from the

simulation results, it has been observed that the turn-

around time has been stabilized and it is parallel to x-axis.

Hence, the conclusion is that, as the number of jobs and

resources increase, after a certain threshold value, the turn-

around time becomes static for some particular number of

resource and again the time increases with respect to the

resource which conveys that the turn-around time which is

static increases the user satisfaction as far as any higher

number of jobs are concerned. Hence the system produces

minimized turn-around time.

The proposed approach contributes on reducing

the total turn-around time and simultaneously helps in

identification of faults using check-pointing technique. It

has been observed that the implemented check-pointing

technique helps in identification of faults which is inferred

from the variation in threshold time that updates the SI. If

a time variation in observed in the time SI is updated, it is

concluded that a fault has occurred which has caused the

variation.

5. CONCLUSIONS AND FUTURE SCOPE

An efficient fault tolerant scheduling algorithm

with fault identification is developed and implemented.

The system pro-actively considers fault, schedules the

tasks but post-actively collects the data and identifies

whether the fault has occurred or not. FC, SI, DHC has

been used in the proposed work which improved the

overall performance of computational grid system by

reducing the response time of jobs and also increases the

overall user satisfaction. This is achieved by selecting

most appropriate resources in the computational

environment, as well as helping in identifying whether the

fault has occurred or not. The proposed system resulted

with improved performance showing significant results

compared with fault tolerant based existing systems.

 VOL. 12, NO. 23, DECEMBER 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6850

The scope is to include fault tolerance to

increased number of faults and to improve other system

centric parameters such as throughput, utilization of

resources which could further help to enhance the grid

system performance. Also the work could be extended to

support excessive number of jobs with minimal deadline

and limited number of resources.

REFERENCES

[1] J. H. Abawajy. 2004. Fault-Tolerant Scheduling

Policy for Grid Computing Systems. Proc. of the 18
th

International Parallel and Distributed Processing

Symposium (IPDPS’04) IEEE. Vol. 14, no., pp. 238b,

IPDPS.2004.1303290.

[2] Fiaz Gul, Kalim Qureshi and Babar Nazi R. 2010.

Performance evaluation of fault tolerance techniques

in grid computing system. Computers & Electrical

Engineering. 36.6, pp. 1110-1122.

[3] Nandagopal Malarvizhi and V. Rhymend Uthariaraj.

2010. Fault tolerant scheduling strategy for

computational grid environment. International Journal

of Engineering Science and Technology. 2.9: 4361-

4372.

[4] Amoon M. 2011. A development of fault-tolerant and

scheduling system for grid computing. GESJ:

Computer Science & Telecommunications. 32.3: 44-

52.

[5] Keerthika, P., and N. Kasthuri. 2011. A New

Proactive Fault Tolerant Approach for Scheduling in

Computational Grid. In: Proc. of International Conf.

On Web Services Computing (ICWSC) published by

International Journal of Computer Applications.

201(1): 55-59.

[6] Balasangameshwara Jasma, and Nedunchezhian

Raju. 2012. A hybrid policy for fault tolerant load

balancing in grid computing environments. Journal of

Network and computer Applications. 35.1, pp. 412-

422.

[7] Altameem T. 2013. Fault tolerance techniques in grid

computing systems. International Journal of Computer

Science and Information Technologies. 4.6, pp. 858-

862.

[8] Keerthika P. and N. Kasthuri. 2013. An efficient grid

scheduling algorithm with fault tolerance and user

satisfaction. Mathematical Problems in Engineering.

pp. 1-9.

[9] Naik, K. Jairam, and N. Satyanarayana. 2013. A

novel fault-tolerant task scheduling algorithm for

computational grids. In: Proc. of International Conf.

On Advanced Computing Technologies (ICACT),

15th International Conference on. IEEE.

[10] Babu Ch Ramesh and Ch DV Subba Rao. 2014.

Automatic checkpointing based fault tolerance in

computational grid. In: Proc. of International Conf.

Computing, Management and Telecommunications

(ComManTel), International Conference on. IEEE.

pp. 41-45.

[11] S. Supriya, S.Dinesh Babu. 2014. A Survey on Fault

Toerance Mechanisms for job scheduling in Grid

computing. IOSR Journal of Computer Engineering

(IOSR-JCE). 16(2): 120-122.

[12] Keerthika P. and P. Suresh. 2015. A Multiconstrained

Grid Scheduling Algorithm with Load Balancing and

Fault Tolerance. The Scientific World Journal. 2015:

1-10.

[13] Tamilarasi A. 2015. Dynamic Scheduling in Grid

Envronent with the Improvement of Fault Tolerant

Level. Indian Journal of Science and Technology. 8:

507-515.

[14] Nakkeeran M. 2015. A Survey on Task Checkponting

and Replication based Fault Tolerance in Grid

Computing. International Research Journal on

Engineering and Technology. 02(09): 135-144.

[15] S. Manishankar, Sandhya R. and Bhagyashree S.

2016. Dynamic load balancing for cloud partition in

public cloud model using VISTA scheduler algorithm.

Journal of Theoretical and Applied Information

Technology. 87: 285-290.

[16] Ra Pillay, Chandran, S. K, and Punnekkat. 2010.

Optimizing resources in real-time scheduling for fault

tolerant processors. In: Proc. of International Conf. on

1st International Conference on Parallel, Distributed

and Grid Computing. pp. 101-106.

