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ABSTRACT 

In this work a number of model based predictive controllers have been designed in order to regulate a (nonlinear) 

heated tank system. First, two controllers according to the EPSAC algorithm were designed, one with fixed and one with 

variable time delay. This algorithm requires a linear model, so the model was linearized around a certain equilibrium point. 

This gives bad results when the setpoint lies far from the equilibrium output temperature. The results obtained with a 

variable delay are better than when the time delay is assumed to be constant. Secondly, a NEPSAC controller was 

designed. A big advantage is that no linearization is required. Consequently, a correct model is available at each point. This 

explains why NEPSAC gives the best results of all controllers: a low settling time, no overshoot and equally good results 

for all setpoints. The influence of the prediction horizon was also investigated. A higher value for the prediction horizon 

results in a calmer system because the controller takes into account more future values. There are less fluctuations in the 

input and the output converges with less overshoot, but slower. Finally, the NEPSAC controller was tested on the real 

heated tank system. The tests show that despite a faulty model and a high sensitivity to noise, the controller still gives 

surprisingly good results. These are comparable to the simulation results. It can be concluded that the NEPSAC controller 

is very robust. 

 
Keywords: EPSAC, MBPC, NEPSAC, temperature control. 

 

1. INTRODUCTION 

Today, more advanced control methods are often 

used to control industrial processes. One of these methods 

is model based predictive control (MBPC). Its principal is 

simple. A process model is determined in advance, for 

example by identification. With the aid of this model the 

process output corresponding with different inputs is 

calculated. The input which gives the best results is then 

applied to the system. 

In this project the MBPC strategy is applied to 

the heated tank system in Figure-1. Cold water enters the 

tank, where it is heated with a constant amount of heat ܳ. 

A mechanical float switch ensures that the outlet and inlet 

flow are equal. We wish to control the outlet temperature 

by varying the flow ݍሺݐሻ. The output temperature is not 

measured directly after the outlet but at a distance ܮ. The 

tube through which the water flows, introduces extra 

dynamics and a time delay to the system. 

 

 
 

Figure-1. Heated tank system. 

There exist many different approaches to MBPC. 

In this contribution, the EPSAC (Extended Prediction 

Self-Adaptive Control) algorithm is used, assuming both a 

constant and a variable time delay. Then a comparison 

with the NEPSAC (Nonlinear Extended Prediction Self-

Adaptive Control) algorithm is done. This is the nonlinear 

variant of EPSAC. The big difference is that NEPSAC 

nowhere requires the linearization of the nonlinear process 

model. 

These controllers will be tested and evaluated in 

simulation. Afterwards the performance of the NEPSAC 

controller will be tested on the real tank. 

 

2. MATERIALS AND METHODS 
 

2.1 Process model 

Figure-2 shows a schematic representation of the 

heated tank system. Notice that the tube dynamics are 

viewed separately from the time delay introduced by the 

tube. 

 

 
 

Figure-2. Schematic representation of the system. 

 

The tank dynamics are given by: 

 𝜌 ܿ௣ ௧ܸ௔௡௞ ݀ ௧ܶ௔௡௞ሺݐሻ݀ݐ = ܳ + 𝜌 ܿ௣ ݍሺݐሻ( 𝑖ܶ௡ − ௧ܶ௔௡௞ሺݐሻ) 

 

This subsystem is nonlinear: the right hand side 

contains a product of the input ݍሺݐሻ and the output ௧ܶ௔௡௞ሺݐሻ.The tube dynamics are modeled as follows: 

mailto:diego.sendoya@usco.edu.co


                                    VOL. 12, NO. 23, DECEMBER 2017                                                                                                     ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                               6896 

௧ܶ௨௕௘ሺݏሻ௧ܶ௔௡௞ሺݏሻ = + ݏ௧௨௕௘𝜏௧௨௕௘ܭ  ͳ 

 

The output temperature is then 

 ௢ܶ௨௧ሺݐሻ = ௧ܶ௨௕௘(ݐ − ݀ሺݐሻ) 

 

where݀ሺݐሻis the variable time delay, which is dependent 

on the flow ݍሺݐሻ. The flow is equal to the speed of the 

water multiplied with the tube section: ݍ =  So the .ܵݒ

higher the flow, the faster the water goes through the tube 

and the smaller the time delay is. If the flow was constant, 

the delay would be constant too and equal to (in discrete 

time): 

 𝑁ௗ =  ௦ܶ ݍܵܮ

 

In this expression 𝑁ௗ is the time delay in number 

of sampling periods, ௦ܶ is the sampling period and ܵܮ the 

volume of the tube. However, the flow will not be 

constant. The time delay can then be estimated from: 

 

௦ܶ ∑ ݐሺݍ − 𝑖ሻ = 𝑁𝑑ܵܮ
𝑖=ଵ  

 

2.2 Predictive control 

The usual approach is to predict the process 

output ݕሺݐ + ݇ ሻ until the prediction horizonݐ|݇ = 𝑁ଶ’: ݕሺݐ + ͳ|ݐሻ to ݕሺݐ + 𝑁ଶ’|ݐሻ, based on the following model: 

ሻݐሺݕ  = ሻݐሺݔ + 𝑛ሺݐሻ 

 

Here ݔሺݐሻ is the model output and 𝑛ሺݐሻ is the 

noise on the process. 𝑛ሺݐሻalso contains the influence of 

both actual noise and modeling errors. This is clarified in 

Figure-3. 

 

 
 

Figure-3. Process model. 

 

The controller minimizes the difference between 

the predicted process output and a reference 

trajectoryݎሺݐ + ݇ሻ during the coincidence horizon ݇ = 𝑁ଵ’ 
to 𝑁ଶ’. This is done by minimizing the following cost 

function: 

 ∑ ݐሺݎ] + ሻݐ|݇ − ݐሺݕ + ’ሻ]²𝑁మݐ|݇
௞=𝑁భ’  

 

Normally 𝑁ଵ’ is chosen equal to the process time 

delay (𝑁ௗ + ͳ), because the influence of an input ݑሺݐሻ 

only becomes visible in the output ݕሺݐ + 𝑁ௗ + ͳ|ݐሻ. 𝑁ଶ’ is 

chosen so that 𝑁ଶ’ − 𝑁ଵ’ is constant. However, for the 

heated tank the time delay is variable, so 𝑁ଵ’ and 𝑁ଶ’ 
should be adjusted in every step. To avoid this, a slightly 

different model is used. This is shown in Figure-4. The 

time delay is separated from the rest of the process 

dynamics: 

 

 
 

Figure-4. Adjusted process model. 

 

Using this model ݖሺݐሻ = ݐሺݔ − 𝑁ௗሻ. So instead of 

estimating ݖሺݐ + 𝑁ଵ’|ݐሻ to ݖሺݐ + 𝑁ଶ’|ݐሻ it could be just as 

well estimate ݔሺݐ + ͳ|ݐሻ to ݔሺݐ + 𝑁ଶ’ − 𝑁ଵ’ + ͳ|ݐሻ. The 

noise is modeled in a way that each prediction 𝑛ሺݐ +  ሻݐ|݇

is equal to 𝑛ሺݐ|ݐሻ, thus the output prediction can be 

determined as 

ݐሺݕ  + ሻݐ|݇ = ݐሺݔ + ሻݐ|݈ + 𝑛ሺݐ|ݐሻ 

 

with ݇ = 𝑁ଵ’. . 𝑁ଶ’and ݈ = 𝑁ଵ. . 𝑁ଶ.Here𝑁ଵ = ͳ and 𝑁ଶ = 𝑁ଶ’ − 𝑁ଵ’ + ͳ. This altered model allows to work 

with constant values for 𝑁ଵ and 𝑁ଶ. 

The state of the system ݔሺݐ +  ሻ is estimated inݐ|݇

a parallel way. This means that predictions for ݔሺݐ +  ሻݐ|݇

are determined based on the values of previous inputs ݑ 

and previous states ݔ. Information present in previous 

outputs ݕ is not taken into account. This means that there 

is no check to see if the estimated states are staying 

aligned with the real output. Based on the information at 

time ݔ ,ݐሺݐ|ݐሻ can be determined exactly. This value is not 

a prediction but the actual value of the state ݔሺݐሻ and 

therefore has to be stored. 

The noise 𝑛ሺݐሻ is represented by white noise 𝑛௙ሺݐሻ going through a coloring filter. 
 𝑛ሺݐሻ = ଵሻ−ݍሺܦଵሻ−ݍሺܥ 𝑛௙ሺݐሻ 

 

The choice of the filter is a part of the controller 

design. Here the simplest filter that eliminates non-zero 

average disturbances was used. 

ଵሻ−ݍሺܦଵሻ−ݍሺܥ  = ͳͳ −  ଵ−ݍ

 

Since 𝑛௙ሺݐሻ is white noise, the best prediction for 

future values 𝑛௙ሺݐ +  ሻ is the noise average, which isݐ|݇

zero. With this information the process noise can be 

predicted as: 
 𝑛ሺݐ + ሻݐ|݇ = ଵሻ−ݍሺܦଵሻ−ݍሺܥ 𝑛௙ሺݐ + =                      ሻݐ|݇ 𝑛ሺݐ + ݇ − ͳ|ݐሻ + 𝑛௙ሺݐ + =                      ሻݐ|݇ 𝑛ሺݐ + ݇ − ͳ|ݐሻ                      =  …                      = 𝑛ሺݐ|ݐሻfor ݇ = 𝑁ଵ. . 𝑁ଶ 
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The value for 𝑛ሺݐ|ݐሻ is determined as the 

difference between the real output ݕሺݐሻ and the ouput ݖሺݐሻ = ݐሺݔ − 𝑁ௗሻ estimated from the process model. This 

can be seen easily from Figure-4. 

 𝑛ሺݐ|ݐሻ = ሻݐሺݕ − ݐሺݔ − 𝑁ௗሻ 

 

Through ݔሺݐ + ݐሺݕ ሻ, the predicted outputݐ|݇ +  .ݑ ሻ is dependent on the applied control inputݐ|݇

This tries to find the optimal input during the control 

horizon: ݑሺݐሻ toݑሺݐ + 𝑁௨ − ͳሻ, so the first 𝑁௨ samples of 

the future input are variable. For the rest of the prediction, 

the input is held constant at ݑሺݐ + 𝑁௨ − ͳሻ. The applied 

control input is split up in two parts. 

ݐሺݑ  + ሻݐ|݇ = ݐ௕௔௦௘ሺݑ + ሻݐ|݇ + 𝛿ݑሺݐ + =݇  ሻݐ|݇ Ͳ. . 𝑁ଶ − ͳ 

Due to this, the output contains two parts too. 

ݐሺݕ  + ሻݐ|݇ = ݐ௕௔௦௘ሺݕ + ሻݐ|݇ + ݐ௢௣௧ሺݕ + ݇    ሻݐ|݇ = ͳ. . 𝑁ଶ 

ݐ௕௔௦௘ሺݕ  +  ሻ is the process output due to the basic futureݐ|݇

control scenario ݑ௕௔௦௘ሺݐ + ݐ௢௣௧ሺݕ .ሻݐ|݇ +  ሻ is theݐ|݇

output due to the optimizing future control actions 𝛿ݑሺݐ +  ሻ. The latter are determined so that the resultingݐ|݇

output predictions ݕሺݐ +  ሻ minimize the cost functionݐ|݇

defined earlier. These can be found as follows. If the 

following vectors are defined, 

 𝑌 = ݐሺݕ] + 𝑁ଵ|ݐሻ … ݐሺݕ + 𝑁ଶ|ݐሻ]𝑇 
 𝑌̅ = ݐ௕௔௦௘ሺݕ] + 𝑁ଵ|ݐሻ … ݐ௕௔௦௘ሺݕ + 𝑁ଶ|ݐሻ]𝑇 
 𝑌௢௣௧ = ݐ௢௣௧ሺݕ] + 𝑁ଵ|ݐሻ … ݐ௢௣௧ሺݕ + 𝑁ଶ|ݐሻ]𝑇  

 

Can be stated that 

 𝑌 = 𝑌̅ + 𝑌௢௣௧  

 𝑌̅can be determined through the above procedure (as the 

sum of ݔሺݐ + ݐሻ and 𝑛ሺݐ|݇ + ݐ௕௔௦௘ሺݑ ሻ) since the control inputݐ|݇ +  ሻ is known. 𝑌௢௣௧ is dependent on a controlݐ|݇

input does not know yet. The relation between 𝑌௢௣௧ and the 

unknown control input 𝛿ݑሺݐ +  ሻ can be expressed asݐ|݇

follows: 

 𝑌௢௣௧ = 𝐺ܷ 

 

with 

 𝐺 = [ℎ𝑁భ…ℎ𝑁మ
……… ℎ𝑁భ−𝑁𝑢+ଶ…ℎ𝑁మ−𝑁𝑢+ଶ

݃𝑁భ−𝑁𝑢+ଵ…݃𝑁మ−𝑁𝑢+ଵ] 

 ܷ = [𝛿ݑሺݐ|ݐሻ … 𝛿ݑሺݐ + 𝑁௨ − ͳ|ݐሻ]𝑇 

 

In the 𝐺-matrix, ℎ𝑖 are the coefficients of the unit 

impulse response of the system and ݃𝑖 are the coefficients 

of the unit step response. 

The cost function to minimize then becomes: 

 ሺܴ − 𝑌ሻ𝑇ሺܴ − 𝑌ሻ = [ሺܴ − 𝑌̅ሻ − 𝐺ܷ]𝑇[ሺܴ − 𝑌̅ሻ − 𝐺ܷ] 
 

which can be solved for ܷ as follows 

 ܷ∗ = ሺ𝐺𝑇𝐺ሻ−ଵ𝐺𝑇ሺܴ − 𝑌̅ሻ 

 

For linear systems the optimal system input then 

becomes: 

ݐሺݑ  + ሻݐ|݇ = ݐ௕௔௦௘ሺݑ + ሻݐ|݇ + ܷ∗ሺ݇ + ͳሻ ݇ = Ͳ. . 𝑁ଶ − ͳ 

 

This is so because for linear systems the sum of 

two inputs leads to an output that is equal to the sum of the 

outputs corresponding with each input applied separately. 

For nonlinear systems this property is no longer valid. An 

iterative procedure is used in which ݑ௕௔௦௘ is adapted as 

follows: 

௕௔௦௘,௡௘𝑤ݑ  = ௕௔௦௘,௢௟ௗݑ + 𝛿ݑ 

 

in which 𝛿ݑ is determined based on ݑ௕௔௦௘,௢௟ௗ . The 

procedure is repeated until 𝛿ݑ becomes virtually zero. The 

optimal system input is then 

ݐሺݑ  + ሻݐ|݇ = ݐ௕௔௦௘ሺݑ + ݇   ሻݐ|݇ = Ͳ. . 𝑁ଶ − ͳ 
 

In both cases only the first value of the calculated 

optimal input, ݑሺݐ|ݐሻ, is applied. 

 

2.3 Simulating and testing 

For all controllers a control horizon 𝑁௨ = ͳ was 

used. This simplifies some matters: ݑ௕௔௦௘ሺݐ +  ሻ isݐ|݇

defined by one single value ݑ௕௔௦௘ሺݐ|ݐሻ, ܷ becomes a 

scalar and 𝐺 reduces itself to a ሺ𝑁ଶ − 𝑁ଵ + ͳሻ × ͳ– 
column vector containing the system unit step response 

coefficients. 

 𝐺 = [݃𝑁భ … ݃𝑁మ]𝑇 

 

First, an EPSAC controller was designed. This 

procedure assumes a linear model. Therefore the process 

model was linearized model around an equilibrium point 

for the flow. The matrix 𝐺 is also determined based on this 

linearized model. In a first step a fixed time delay was 

assumed, corresponding with the equilibrium flow. Then 

the time delay was made variable, dependent on the 

actually used flow. 

Second, a NEPSAC controller was implemented. 

Here, the actual nonlinear process model was used in an 

iterative procedure to find the optimal input. Note that for 

nonlinear systems the system step response is dependent 

on the operating point of the system. 𝐺 therefore has to be 

redetermined in every step. This is done based on the 
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nonlinear model. Take notice that in the NEPSAC 

algorithm linearization is nowhere required. 

Finally, the NEPSAC algorithm was tested on the 

real heated tank. In order to do that, it was necessary to 

build in the algorithm in the controller system regulating 

the tank. For simulating and testing the used sampling 

time is 4s. 

 

3. RESULTS AND DISCUSSIONS 

 

3.1 EPSAC 

EPSAC requires a linear model for the process. 

The system model consists of two parts: the tank dynamics 

and the tube dynamics. The tube dynamics are already 

linear. 

 ௧ܶ௨௕௘ሺݏሻ௧ܶ௔௡௞ሺݏሻ = + ݏ௧௨௕௘𝜏௧௨௕௘ܭ  ͳ 

 

The tank dynamics are not. They need to be 

linearized. The linearization was made around the 

equilibrium point ݍ∗ = Ͳ.Ͳͳ͸͹ l/s. 

 ρ cpV୲ୟnk dT୲ୟnkሺtሻdt = Q + ρ cp qሺtሻ(Tin − T୲ୟnkሺtሻ) 

 

For the equilibrium point: ݂ሺݍ∗, ௧ܶ௔௡௞∗ሻ = Ͳ. In 

this way the equilibrium value for the tank temperature 

can be found. 

 

௧ܶ௔௡௞∗ = ܳ𝜌ܿ௣ݍ∗ + 𝑖ܶ௡ = ͵Ͳ.͹͵ͷ °C 

 

The equilibrium value for the tube temperature 

ݏ) = Ͳ) is then 

 ௧ܶ௨௕௘∗ = ௧௨௕௘ܭ ௧ܶ௔௡௞∗ = ͵Ͳ.Ͷʹͺ °C 
 

Linearizing the tank dynamics yields the 

following transfer function: 

 T୲ୟnk̅̅ ̅̅ ̅̅ ሺsሻq̅ሺsሻ =  Tin − T୲ୟnk∗V୲ୟnks + q∗ 

 

The input and output have now become the 

deviations from the equilibrium point, ̅ݍ = ݍ − and ௧ܶ௔௡௞̅̅ ∗ݍ ̅̅ ̅̅ ̅ = ௧ܶ௔௡௞ − ௧ܶ௔௡௞∗. The total system transfer function 

is then 

 TF = T୲ୟnk̅̅ ̅̅ ̅̅ ሺsሻq̅ሺsሻ T୲୳ୠe̅̅ ̅̅ ̅̅ ሺsሻT୲ୟnk̅̅ ̅̅ ̅̅ ሺsሻ 

 

with ௧ܶ௨௕௘̅̅ ̅̅ ̅̅ ̅ = ௧ܶ௨௕௘ − ௧ܶ௨௕௘∗. Discretizing this transfer 

function finally gives: 

 dTF = Bሺq−ଵሻAሺq−ଵሻ = − ͵.ͷ͸͵q−ଵ − ͵.͵͵͸q−ଶͳ − ͳ.ͺͳͶ q−ଵ + Ͳ.ͺʹͳq−ଶ 

 

Based on this discrete transfer function ݔሺݐሻ =௧ܶ௨௕௘̅̅ ̅̅ ̅̅ ̅ሺݐሻcan be estimated as 

 xሺtሻ = −aଵ xሺt − ͳሻ − aଶ xሺt − ʹሻ + bଵ uሺt − ͳሻ + bଶ uሺt − ʹሻ 

 

In this ݑሺݐሻ is equal to ̅ݍሺݐሻ. The actual input and 

system state are then respectively ݑሺݐሻ + ሻݐሺݔ and ∗ݍ +௧ܶ௨௕௘∗. The 𝐺-matrix can be found as the first 𝑁ଶ values 

generated by step(dTF). 

During the first 200 s the process is brought to its 

equilibrium by applying a constant input flow equal to ݍ∗. 

The system output will then, after a certain time, become 

equal to ௧ܶ௨௕௘∗. After that, it is allowed the controller to 

regulate the input, and change the system setpoint in order 

to see its performance. 

The (real) process output is generated by a 

Simulink file which contains the complete nonlinear 

model of the system. This file requires two vectors, one 

containing the time and one containing the applied flow, 

as input. The model output, defined as ݖሺݐሻ in Figure-4, is 

determined as ݔሺݐ − 𝑁ௗሻ with ݔሺݐሻ estimated as explained 

above. 

The optimal input at time ݑ ,ݐ∗ሺݐ|ݐሻ, is then 

calculated using the methods explained in section 2. As 

basic input ݑ௕௔௦௘ሺݐሻ = ݐሺݑ − ͳሻ was used. However, there 

are some constraints on the flow. It has to lie between 

0.005 l/s and 0.03 l/s. This was resolved in a suboptimal 

way, using clipping. The optimal input was determined 

and if it was too high, 0.03 was put; if it was too low, it 

was redefined as 0.005. 

 

3.1.1. Fixed time delay 

In a first step the time delay was assumed to be 

constant and equal to the delay corresponding with ݍ∗. 

 𝑁ௗ = ∗ݍܵܮ ௦ܶ = ͳͷ.ʹ͹ s 

 

The delay has to have a discrete value so it was 

rounded to 𝑁ௗ = ͳͷ. Ignoring the dependency of the time 

delay on the flow applied in the previous steps, will lead to 

less accurate values of the model output ݖሺݐሻ = ݐሺݔ −𝑁ௗሻ. This, in turn, will lead to worse estimation of the 

noise 𝑛ሺݐሻ. 

Figure-5 shows the model output ݖሺݐሻ and the 

real process output ݕሺݐሻ for a prediction horizon 𝑁ଶ = ͳͷ. 

It also shows the applied control input ݑሺݐሻ. 
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Figure-5. Results for EPSAC with fixed time delay 

for 𝑁ଶ = ͳͷ. 

 

The model is linearized in a point corresponding 

with an output temperature equal to ௧ܶ௨௕௘∗ = ͵Ͳ.ʹͶͺ °C. 

When the setpoint is close to this value, as in the first step 

(3°C higher than ௧ܶ௨௕௘∗), convergence to the setpoint is 

reasonably fast and doesn’t show too much overshoot. But 

as soon as the setpoint lies a bit further, results worsen 

fast. The second setpoint step, which is only 6°C higher 

than ௧ܶ௨௕௘∗, already shows a lot of overshoot, as well in 

the process as in the model output. The output will 

oscillate for a long time before finally settling on the 

setpoint. It can be seen a lot of peaks and quick changes in 

the corresponding input. This explains the oscillatory 

behavior. At the third step (9°C higher), it can be seen that 

the system model is now so bad that the output can no 

longer follow the setpoint. The system becomes unstable. 

This can be seen in the input, which starts to oscillate 

between its minimum and maximum values, and in the 

output: the second peak is higher than the first one. As 

soon as the setpoint comes in a range of 3°C again, the 

controller starts giving good results again. The last 

setpoint change is followed quickly and without 

overshoot. 

Figure-6 shows the same variables (model output, 

process output and input) but for a controller with a 

prediction horizon equal to 30. 

 

 
 

 
 

Figure-6. Results for EPSAC with fixed time delay 

for 𝑁ଶ = ͵Ͳ. 

 

Here it can be seen that in input is a lot less 

nervous. A higher prediction horizon results in a calmer 

(but slower) system reaction. The overshoot in the output 

is a bit lower, but not very much so. Although the input 

doesn’t vary so quickly, it can be still seen it reaching its 

extremes at the third setpoint step. The system will still 

become unstable. This can also be seen very clearly here 

from the fact that the second output peak is a lot higher 

than the first one. 

 

3.1.2. Variable time delay 
Now it is taken into account that the time delay is 

actually variable. 𝑁ௗ is determined as the highest number 

for which 

 

௦ܶ ∑ ݐሺݍ − 𝑖ሻ < 𝑁𝑑ܵܮ
𝑖=ଵ  

 

Figure-7 shows the output, the input and the time 

delay obtained with an EPSAC controller with variable 

time delay and a prediction horizon 𝑁ଶ = ͳͷ. 
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Figure-7. Results for EPSAC with variable time delay 

for 𝑁ଶ = ͳͷ. 

 

In comparison with a fixed time delay, results are 

already a lot better. The system stays stable everywhere 

and only at the third step (of 9°C) the system still 

oscillates when the setpoint changes again. Taking into 

account the variability of the time delay, is a big 

improvement for our model. It becomes a lot more 

realistic. Predictive control heavily relies on the quality of 

the model at hand. With an improved model the output 

prediction is better, leading to a more accurate 

determination of the optimal input. This allows setpoints 

to be followed in a wider range around the equilibrium 

point ௧ܶ௨௕௘∗. 

It can be clearly seen in the input that every time 

the setpoint goes up, that the input shows a downward 

peak. This is logical because if the flow decreases a lot, 

the water stays in the tank a lot longer, giving it more time 

to be heated. This results in a higher output temperature. 

When the setpoint decreases, the opposite effect can be 

seen. This change in the input and the output in an 

opposite way was also present in the previous cases, since 

it is a direct consequence of the system physics, but there 

it couldn’t be seen quite so clearly. 

The time delay is, as expected, proportional with 

the inverse of the input. It can be seen peaks at the same 

time, but in the opposite direction. The delay is, most of 

the time, significantly higher than the equilibrium value 

(𝑁ௗ = ͳͷ) at which it was fixed in the previous paragraph. 

This is again an indication that results for a fixed time 

delay were bad because of an inaccurate model. 

Figure-8 shows the results for an EPSAC 

controller with variable time delay and prediction horizon 𝑁ଶ = ͵Ͳ. 

 

 
 

 
 

 
 

Figure-8. Results for EPSAC with variable time delay 

for 𝑁ଶ = ͵Ͳ. 

 

Again there are less fluctuations in the input. It 

changes more gradually. The peaks in the input are also 

smaller. The input stays between 0.007 l/s and 0.026 l/s, 

whereas for 𝑁ଶ = ͳͷ it still reaches its limits at some 

points. The output shows less overshoot too. So it is again 

confirmed that a higher prediction horizon leads to a 

calmer system response. It is perhaps a bit slower, but that 

is hardly noticeable here. 

 

3.2 NEPSAC 

Just as for the EPSAC controller, the system was 

going to its equilibrium point in the first 200s by applying ݍ∗ without controlling the process. After 200s there is a 

setpoint change and the NEPSAC controller starts to 

regulate the input. The reference trajectory is the same 

sequence of setpoints as used for simulating the EPSAC 

controller. 

Unlike EPSAC, NEPSAC doesnot require a 

linear model. The system equations donot need to be 

linearized. The (real) process output is again generated by 
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a Simulink file. The prediction for the system state ݔሺݐሻ is 

generated by a second Simulinkfile, which contains the 

nonlinear plant model without the time delay or anything 

to do with it. Both need the previous applied input and the 

time as input vectors. The variable time delay is then again 

estimated as the largest number for which 

 

௦ܶ ∑ ݐሺݍ − 𝑖ሻ < 𝑁𝑑ܵܮ
𝑖=ଵ  

 

The noise is determined as the difference between 

the model output ݖሺݐሻ = ݐሺݔ − 𝑁ௗሻ and the real process 

output. With predictions for ݔሺݐ + ݐሻ and 𝑛ሺݐ|݇ + ݐ௕௔௦௘ሺݕ ,ሻݐ|݇ +  ሻ can be calculated. As initial basic input itݐ|݇

was used again ݑ௕௔௦௘ሺݐሻ = ݐሺݑ − ͳሻ. ݑ௕௔௦௘ሺݐሻ is then 

modified in an iterative procedure, as explained in section 

2. This keeps iterating as long as the optimizing input 𝛿ݑሺݐሻ is higher than ͳͲ−6. This is sufficiently smaller than 

the minimal value for the input (0.005 l/s) to be able to be 

regarded as zero. The final value for ݑ௕௔௦௘ሺݐሻ is then the 

optimal input which has to be applied at time ݐ. This value 

is again limited between 0.005 l/s and 0.3 l/s. 

To find the optimizing input, the 𝐺-matrix with 

the system step response coefficients is required. Because 

of the nonlinear model, this matrix is no longer constant. 

The system response to a step will be different in each 

operating point. In every iteration 𝐺 is determined based 

on the nonlinear system model. First, the system is 

simulated with a constant input equal to ݑ௕௔௦௘ሺݐሻ, so the 

system stays in its operating point. This is done by the 

second Simulink file. The values for ݔሺݐ + 𝑁ଵ|ݐሻ to ݔሺݐ + 𝑁ଶ|ݐሻ are stored as the matrix 𝐺ଶ. Next, a constant 

input ݑ௕௔௦௘ሺݐሻ + step is applied, so a step is applied on 

top of the operating flow. ݔሺݐ + 𝑁ଵ|ݐሻ to ݔሺݐ + 𝑁ଶ|ݐሻ are 

stored in 𝐺ଵ. The matrix 𝐺, containing the unit step 

responses ݃𝑁భ  to ݃𝑁మ , is then 

 𝐺 = 𝐺ଵ − 𝐺ଶ݌݁ݐݏ  

 

The system response is also dependent on the size 

of the applied step. To obtain good predictions, the size of 

this step should be in the same order of magnitude as the 

changes in the input during a single time step. Based on 

the simulations for the EPSAC controller, a step equal to 

0.001 l/s was taken. 

Figure-9 shows the process and the model output 

obtained with a NEPSAC controller with 𝑁ଶ = ͳͷ. It also 

shows the corresponding input, the variable time delay and 

the number of iterations needed in each step. 

 

 
 

 
 

 
 

 
 

Figure-9. Results for NEPSAC with 𝑁ଶ = ͳͷ. 

 

It can be seen that this controller gives very good 

results. The output follows the setpoint changes without 

overshoot and within a small time. Notice that results are 

equally good for all setpoints. This is due to the fact that 

the model was not linearized. The correct model is being 

used in all points. It also accounted for the variability of 

the time delay. Consequently, the model is very good. This 

leads to good predictions and a very good control of the 

process. 

The input is comparable to that for the EPSAC 

with variable time delay (𝑁ଶ = ͳͷ) but the control efforts 

are even more concentrated around the setpoint changes. 

The time delay is again complementary to the input. 

Maximum five iterations are used. It can be seen 

that the number of iterations goes up every time the 

setpoint changes. If the output is in regime, on the 

setpoint, one iteration is sufficient. This is logical since the 
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previous input ݑሺݐ − ͳሻ =  ሻ will then already beݐ௕௔௦௘ሺݑ

the optimal input. 

Figure-10 shows the results for a NEPSAC 

controller with a prediction horizon 𝑁ଶ = ͵Ͳ. 

 

 
 

 
 

 
 

 
 

Figure-10. Results for NEPSAC with 𝑁ଶ = ͵Ͳ. 

 

The input is again very calm. There are no 

fluctuations present, not even little ones, whereas for𝑁ଶ =ͳͷ there are. The peaks in the input, when the setpoint 

changes, are also a lot smaller. The controller can better 

estimate the effect of the input, because it looks further 

ahead. Even the number of iterations shows less 

fluctuations. 

The output reacts earlier but slower to changes in 

the setpoint. At the first setpoint change, the real delay 

between input and output can be seen. The controller only 

starts working at the moment the setpoint changes. It 

immediately adjusts the input but the effect only becomes 

visible after a certain time. For the other setpoint changes, 

the output starts converging to the new setpoint 

immediately. This is because the controller looks far 

enough into the future to see the setpoint change ahead. It 

already starts to adjust the input before the setpoint 

change, at a moment such that the effect becomes visible 

at the setpoint change. For 𝑁ଶ = ͳͷ changes will also be 

anticipated, but they will be detected later. This results in 

the fact that there is still a delay between the moment the 

setpoint changes and the moment the output starts to 

converge, though it is smaller than the delay at the first 

setpoint step. Note that, although the output for the 

controller with 𝑁ଶ = ͳͷ starts reacting later, it reaches the 

setpoint at the same time as the output for 𝑁ଶ = ͵Ͳ. This 

implies that for the second controller (𝑁ଶ = ͵Ͳ) the output 

reacts more slowly. 

Now it is wanted to observe what the absolutely 

necessary number of iterations to obtain reasonable results 

is. The NEPSAC controller with 𝑁ଶ = ͵Ͳwas applied to 

the system, limiting the number of iterations to one. This 

was done by commenting the "while dU>epsilon"-loop. 

Figure-11 shows the obtained results. These are 

identical to the ones in Figure-10. It can be concluded that, 

in simulation, more than one iteration isn’t even necessary. 

In a single step the calculated input is already close 

enough to the optimal input to give excellent results. 

 

 
 

 
 

Figure-11. Results for NEPSAC (𝑁ଶ = ͵Ͳ) with the 

number of iterations limited to 1. 

 

3.3 Testing on the real plant 

Finally, the NEPSAC controller was tested on the 

actual heated tank. In order to do this, the algorithm was 

implemented in a Matlab file. After that, it was possible to 

use the graphical interface that was available. A prediction 

horizon 𝑁ଶ = ͵Ͳ was used. The used number of iterations 𝑁𝑖 in each step had to be chosen by the user too. 𝑁𝑖 =ͳͷwas selected. This was the maximum value (otherwise 
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the calculations would start taking too long), to obtain as 

good results as possible. 

Figure-12 only shows the test results for when the 

system had stabilized. At first, the output didn’t converge 

to the given setpoint within a reasonable time. By 

repeatedly changing the setpoint to a value close to the 

current value of the output temperature, the system was 

stabilized. Once the system was stabilized, the output 

followed the setpoint steps nicely, as long as these were 

not taken too big (a few degrees). The settling time is 

approximately 250s (a little less). This is comparable with 

the simulations. It is now being compared with the first 

setpoint step in the simulations, because on the real plant, 

the controller doesn’t know beforehand when the setpoint 

will change. This results in a situation comparable with 

only starting the control at the moment of a setpoint 

change. 

 

 
 

 
 

 
 

 
 

Figure-12. Test results for the NEPSAC controller. 

 

There is a significant difference between the real 

tank and tube temperatures and those estimated from the 

model. The estimated temperatures are systematically 4 to 

5°C lower than in reality. This can also be seen in the 

process noise which is more or less constant around 4.5°C. 

As stated before, the noise also represents modeling errors. 

The system model was identified some time ago. It is clear 

that the system parameters have changed since. The fact 

that the real temperatures are always a few degrees higher 

than expected, leads us to suspect that the amount of heat 

added in the tank has increased over the time. 

Nevertheless, the results obtained with this faulty model 

are pretty good. This indicates that the NEPSAC controller 

is very robust. 

Another conclusion that can be drawn from the 

tests is that the system is highly sensitive to noise. There 

are lot of little oscillations in the process output and the 

input flow. Simply leaning on the Table (at 3250 s) results 

in visibly higher oscillations in the results for the output, 

the input and the noise. At 1700 s, someone touched the 

mixer. This resulted in a big noise peak that is visible in all 

plots. Otherwise, the noise plot contains a more or less 

constant value and some peaks at the moments the setpoint 

changes. Looking at the input, it can be seen that the input 

is very similar to that in the simulations for NEPSAC with 𝑁ଶ = ͳͷ, noise aside. This is again an indication that the 

NEPSAC is working correctly despite a bad model and a 

lot of noise. 

 

REFERENCES 

 

De Keyser, R. 2003. A Gent’le Approach to predictive 

control, UNESCO Encyclopedia of Life Support Systems 

(EoLSS), Eolss Publishers Co Ltd, Oxford. 

 

Normey-Rico J. E. 1999. Predicción para Control, 

Doctoral Thesis, Universidad de Sevilla, Spain. 

 

Normey-Rico J.E., Camacho E. F. 2007. Control of dead-

time processes, Springer-Verlag, London, U.K. 

 

Sendoya-Losada D. F., Robayo Betancourt F., Salgado 

Patrón J. 2016. Time delay estimation for BIS monitor 

used in general anesthesia. ARPN Journal of Engineering 

and Applied Sciences. 12(7): 2120-2129. 

 

Sendoya-Losada D. F., Robayo Betancourt, F., Salgado 

Patrón J. 2016. Application of a predictive controller with 

variable time delay in general anesthesia. ARPN Journal 

of Engineering and Applied Sciences. 12(8): 2661-2667. 


