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ABSTRACT

In this paper, Variational iteration transform method is employed to determine the exact solution of the Burger
equation which is one-dimensional and coupled Burger’s equations nonlinear partial differential equation. This method is
combined form of the Laplace transform and Variational iteration method. The explicit solutions obtained were compared
to the exact solutions. The method finds the solution without any restrictive assumptions and free from round-off errors and
therefore reduce the numerical computation to a great extent. The method is tested on two examples and coupled Burger’s
equations. The results show that the new method is more effective and convenient to use and high accuracy of it is evident.

Keywords: Laplace transform, variational iteration transform method, burger’s equation, and nonlinear partial differential equation.

INTRODUCTION

Burgers’ equation is a fundamental partial
differential equation in fluid mechanics. It occurs in
various areas of applied mathematics, such as modelling of
dynamics, heat conduction, and acoustic waves, it is
named for Johannes Martin us Burgers (1895-1981).
Localized in a small part of space, play a major role in
several different fields such as hydrodynamic, plasma
physics, nonlinear optic, etc. The investigation of exact
solutions of these nonlinear equations is interesting and
important. In the past several decades, many authors had
paid attention to study solutions of nonlinear equations by
using various methods, such as Backland transformation
[1,7], Darboux transformation [34], inverse scattering
method [13], Hirota’s bilinear method [22], the tanh
method [27], the sine-cosine method [40,41], the
homogeneous balance method [35,42], the Riccati
expansion method with constant coefficients [43,44].
"Recently, an extended tanh-function method and
symbolic computation are suggested in [11] for solving the
new coupled modified Burger’s equations to obtain four
kinds of soliton solutions.” This method has some merits
in contrast with the tanh-function method. It is not only
using a simpler algorithm to produce an algebraic system,
but also can pick up singular solutions with no extra effort
[12,23,28,32,39].

Most of the developed schemes have their
limitations like limited convergence, divergent results,
linearization, discretization, unrealistic assumptions and
no compatibility with the versatility of physical problems
[8] in the Burger’s model of turbulence [4]. It is solved
analytically for arbitrary initial conditions [24]. Finite
element methods have been applied to fluid problems,
Galerkin and Petrov-Galerkin finite element methods
involving a time-dependent grid [6,21]. Numerical
solution using cubic spline global trial functions were
developed in [31] to obtain two systems or diagonally
dominant equations which are solved to determine the
evolution of the system. A collocation solution with cubic
spline interpolation functions used to produce three
coupled sets of equations for the dependent variable and
its two first derivatives [5].

Since exact solutions of most of the differential
equations do not exist, approximation and numerical
methods are used for the solutions of the FDEs Ali et
al.[3] applied B-spline finite element methods to the
solution of Burger’s equation. The B-spline finite element
approach applied with collocation method over a constant
grid of cubic B-spline elements. Cubic B-spline had a
resulting matrix system which is tri-diagonal and so solved
by the Thomas algorithm. Soliman [33] used the similarity
reductions to the partial differential equations from
develop a scheme for solving the Burger’s equation. The
coupled system is derived by Esipov [10]. It is simple
model of sedimentation or evolution of scaled volume
concentrations of two kinds of particles in fluid
suspensions or colloids, under the effect of gravity [30].

The Variational iteration method was first
proposed by He [14—17] and was successfully applied to
autonomous ODE in [18], to nonlinear polycrystalline
solids [29], and other fields. The combination of a Laplace
transform method, Variational iteration transform
method, method of variation of constants and averaging
method to establish an approximate solution of one degree
of freedom weakly nonlinear system in [9]. The
Variational iteration transform method has many merits
and has much advantage over the Adomian method [37].
The aim of this paper is to extend the Variational iterations
transform method proposed by He [14-17,19,20] to solve
two different types such as the one-dimensional Burger’s
equation and coupled Burger’s equations and made a
comparison with the results obtained by the Adomian
decomposition method [2, 25, 26, 36, 38].

Variational Iteration Transform Method (VITM)

To illustrate the basic idea of this method, we
consider a general nonlinear non-homogeneous partial
differential equation with initial conditions of the form

Du(x,t) + Ru(x,t) + Ru(x, t) = g(x,t) (D
u(x,0) = h(x), u,(x,0) = f(x)

Where D is the second order linear differential operator
2

=2

o2 ,Ris linear differential operator of less order
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than ®, N represent the general nonlinear differential
operator and g(x,t) is the source term. Taking Laplace
Transform on both sides of Eq.(1)

L[Du(x, t)] + L[Ru(x, )] + L[Xu(x,t)] = L[g(x, t)] @3

s2L[u(x, t)] — su(x, 0) — u,(x,0) + L[Ru(x, t)]
+ L[Ru(x, t)] = L[g(x, t)] 3)

Taking Inverse Laplace transform
1
= f(x) + th(x) + S—ZL_I[L(g(x, )]
1
- L L(RED)]

- SizL‘I[LNu(x, t)] 4)

u(x, t)

Derivative by % both sides of Eq.(4)
0 1
u (e, £) = h(x) + aaL—i (S—ZlL (9. 0))
e (s_z L{Ru(x, t)})
1
o (s_z L{Ru(x, t)}) 5)

By the correction function of irrational method
Up1 (6, 1) = up(x, t)
t

- f ()¢ (6, )

1
af (L_ ( 2 L{Run(xl 6)}
1
17 (S LR, £))
1
-1 (S Lo ) - h(x)>)d€ ©

Finally, the solution u(x,t) is given by
u(x,t) = lim u,(x,t)
n—-oo

An illustrative paradigm

In this section, the (VITM) is implemented for
tacking Burger's equations with initial conditions. We
demonstrate the effectiveness of this method with two
examples. Numerical results obtained by the proposed
method are compared with Known results.

Example 1:
Consider one- dimensional Burger's equation of
the form

Up = Uxx — Uly ™

The initial condition is
2
ux,0) =1- p (8

Taking Laplace transform on both sides

Llu.] = Lluyy] — Lluu,] €))

This can be written as

sLu(x,t) —u(x,0) = L[ ] L[ (10)

On applying the above specified initial conditions
we get

sL(uxt) — <1 —%) = L[ZZ ] L[ —~ ] (11

LI e

Applying the inverse Laplace transform on both
sides of Eq.(12), We get

Lux 0] =

1
u(x,t) = L7t [ ]+L [ )] ‘1 sx
-[g L(“T)]
2 [L{3%
u(x, t)—l——+L 1[ <6x )]
P e

Derivative by % both sides (13)

L),
- L1 (EL (W»l =0 (14)

Making the correction function is given

( t)+a
u, (x, P

un+1(xr t)
= u,(x,t)
t
- j (e, ) + 52 U Ll 6, )t 0]
0
1
— L L) e D) dE (15)

We can use the initial condition to select
2

up(x,t) =ulx,0) =1——
X

Using this selection into the correction functional

gives the following successive approximations
2

ug(x,t) =1- p (16)
u; (x, t) = uplx, t)

- f (o) (x, &)

1
#2175 Lo D) )
+ L_I(EL[(uO)xx (X, 5)])))615
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2 t
u,(x,t) = 1—;—[(0

1
+ L7t (—L —3]
s lx
2 2t
ul(x,t)zl—g—p 17)
uy (x, )
- ul(x' t)
- [@eeo
0
d 1
+§ L ;L[ul(xﬂf)(ul)x(xﬂf)])
17 (S U)o 1)) ) dg (18)
2 2t
uz(x,t) = (1 —;) _X_tz
-2
-G
0
] 1 2 28\[2 4
—(L"1(= It T f Gt
* & < (SL [(1 x xz) <x2 * x3) ])
1 14 12¢
— 1 _=
L ( L x3  x* ])))
2 2t
uz(x,t) = (1 —;) —F
2t2
5 (19)
& 2tk
un(x,t)=1—ZF (20)
k=0
Finally, the solution is
u(x,t) = lim u,(x,t)
n—-oo
o 2tk
k=0
=1 2 21
=1--— (21)
Example2:
Consider one dimensional Burger's equation of
the form
Up = Uy — Ul (22)

Subject to the initial condition
u(x,0) = x (23)

Taking Laplace transform on both sides

Lluc] = Lluy,] — Lluu,] (24)

This can be written as

L t 0)=L ou L ou 25

LG, 0] - u(x,0) = L5 = L]u | (25)
On applying the above specified initial condition

we get

LuGe 0] — x = L] 2 L ou 26)

sLlu(x, x=LI=7 U=

Lfutx, ] = X 1L 0%u 1L[ ou @7

o dx? ax

Applying the inverse Laplace transform to both

sides of Eq.(27), we get
1L 0%u -1 L 0du
F™) [5 gl

— 28
[ [” ox ]] (28)
Derivative by % both sides (28)

a 1 [1 0%u 1 1 Ju
Or )

xt) O (1 -1L o% L [1L( au)]
Hel ot s \0x? ox
=0 (29)
Making the correction function is given

U1 (%, 0) = U, (x,0) .

-| ((uu)g(x,f)
% <L—1 [1L 0%,

(e (5]

o) oo

We can use the initial condition to
selectuy(x,t) = u(x,0) = x. Using this selection into the
correction functional gives the following successive
approximations.

u(x,t) = L1 []+L

'1
,t = L_1 —_
ulx,t) =x+ 6x2 l

ug(x,t) = x 3D
u; (x,t)
= uy(xt)

- ((uo);(x o (150 [i,xu] w1 (v %)D) “

0

t a . 1 B 1
e of(o - -] - 1 Leomds 32)
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u,(x,t) = uy(x,t)

‘ o [1 (9%,
—f((ul(x,i)—a—E(L 1[§L<6x2 )]
0

11 du,
-L [EL(ulg]) d

t 6 1
=x—tx — J-(—x _a_f(L_l I:;L(O):I
0
1
- L‘I[EL[(X —tx)(1 = v)]]))dé
=x — xt + xt? (33)

us(x, t) = uy(x, t)

- f ((uz)g(x;f)
9 L (22)
0¢ s\ 0x?
- a5

=x—xt+xt2—f(—x+2xf
0

- %(L‘l EL(O)]
— L7t EL((x —&x+xEH(A-¢
' 62)])>d6

uz(x,t) = x — xt + xt? — xt3 (34)
) :
w,(x,t) = Z(—l)kxtk (35)
k=0
Taken — oo

u(x, t) = lim u,(x,t)
n—-oo

u(x,t) = Z(—l)kxtk
k=0

X
u(x, t) = 1—+t (36)

Example 3: Coupled Burger's equation
For the purpose of illustration of the Variational
iteration transform method for solving the homogeneous

form of coupled Burger's equations, we will consider the
system of equations.

Uy — Uy — 2ul, + (uv), =0, (37)
Vp — Uy — 200, + (uv), =0 (38)

The solutions of which are to be obtained subject
to initial conditions.

u(x,0) = sin(x),v(x,0) = sin(x) (39)

Applying the algorithm of Laplace transform on
equations (37), (38) we have

Llu; — uyy — 2uu, + (uv),] =0 (40)
Llvy — vy — 2005 + (uv),] = 0 41

sL{u(x,t)] — u(x, 0) — Llu,,] — 2L[uu,] + L[(uv),]
=0 (42)

sLv(x,t)] — v(x,0) — L[vy,] — 2L[vv,] + L[(uv),]
=0 (43)

Using the given initial conditions on equations
(42), (43), we have

sL{u(x,t)] — sin(x) — L[uy,] — 2L[uu,] + L[(uv),]
=0 (44)
sL[v(x, t)] — sin(x) — Llvy,] — 2L[vv,] + L[(uv),]
=0 (45)

Then applying the inverse Laplace transform to
equations (44), (45)

u(x,t) = L1 E sin(x)] + L1 (% [uxx]) + 2Lt (g [uux])
= LY (L[(uv),]) (46)

v(x,t) =Lt E sin(x)] + L1 (g [vxx]) +2L71 (g [vvx])
= L7 (L[(uw),]) (47)

Derivative by% both sides to equations (46),(47)

u(x,t) = %(L‘1 (%L[uxx]> + 2Lt (%L[uux])

et GL[(uv)x])> (48)

ve(x, t) = %(L‘l (%L[vxx]> + 2Lt (%L[vvx])

e (%L[(uv»])) (49)

Making the correction function are given
s (6) = 10,05, 1)

v t (% (L‘l (5 L))

+ 20 (S Ll ),

- (%L[(unvnm))) @ (50)
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PraaCe8) = 5,0

+f (% (1 (Ge10)

+ 207 (Lo (v,

-1 GL[(unvn)x])» Gy
We can use the initial condition to select

Uy (x,t) = vo(x, t) = u(x,0) = v(x,0)
= sin(x) (52)

uy (%, t)
=uy(x,t)

v (% (5 (G Ltcwona) + 217 (S LlunCuol)
1
-1 L[(uovo)x]))> @ (53)

uy (x,t)
= sin(x)

ffof 1
+L (a (L (;L[— sm(x)])
+ 2Lt (%L[sin(x) cos(x)])
1
_ (;L[Z sin(x) cos(x)])>> d¢ (54)
uy(x,t) = sin(x) — tsin(x) (55)
vi(x,t) = vo(x,t)
o[ _ 1
+f (a (1 (Guteo)
+ 201 (S Liva(vo)

(G L[(uovg)x])» & (56

vy (x, t)
= sin(x)

el oo
" 1
4+ 271 (;L[sin(x) COS(X)])

_ 1t (%L[Z sin(x) cos(x)])>> dé (57)

v, (x,t) = sin(x) — tsin(x) (58)

u,(x, t) = uq (x, t)

+f t (% (L—l (GLl0)1)
+or (%L[u1 ().])

-1 (%L[(ulvnx]))) d (59)

u,(x,t)
= sin(x) — tsin(x)

ol (1 ) )
+ J; (a (L (E L[—sin(x) + Esm(x)])
+ 2Lt <§L[sin(x) cos(x) — 2€sin(x) cos(x)
+ Ezsin(x)cos(x)]>
-1 (% L[2(sin(x) cos(x) — 2€sin(x) cos(x)

+ E5in(x)cos(x)) ]))) d (60)

2
U, (x, t) = sin(x) — tsin(x) + %sin(x) (61)

v,(x,t) = sin(x) — tsin(x)
tio (1 )
+f0 (a <L (;L[— sin(x)
+ Esin(x)])
+ 2Lt <§L[sin(x) cos(x)
— 2Esin(x) cos(x) + Ezsin(x)cos(x)])

-1 (% L[2(sin(x) cos(x)
— 2&sin(x) cos(x)

+ E5in(x)cos(x)) ]))) i (62)

2

v,(x,t) = sin(x) — tsin(x) + %sin(x) (63):
u,(x,t)
2 3
= sin(x) — tsin(x) + %sin(x) —3 sin(x) + -+
[ .
+ o sin(x) (64)
2 3
v (%, t) = sin(x) — tsin(x) + Esin(x) —3 sin(x) + -+
o ! !
+ asm(x) (65)
u,(x,t) =sin(x) ) (-1)*— (66)
& k!
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tk

vy(x,t) =sin(x) Y (-Dk— (67)
2 D

Finally, the solution is
u(x,t) = lim u,(x,t)
n—-oo

* k
= sin(x) Z(—l)k%
k=0

u,(x,t) =sin(x) et (68)
v(x,t) = lll_rgo va(%, 1)

o k
= sin(x) Z (—1)k%
k=0

vp(x,t) = sin(x) et (69)

CONCLUSIONS

In this paper, the Variational iteration transform
method has been successfully applied to finding the
solution of a Burger’s and coupled Burger’s equations.
The solution obtained by the Variational iteration
transform method is an infinite power series for
appropriate initial condition, which can, in turn, be
expressed in a closed form, the exact solution. The results
show that the Variational iteration method is a powerful
mathematical tool to solving Burger’s and coupled
Burger’s equations; it is also a promising method to solve
other nonlinear equations.
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