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ABSTRACT 

In this paper, Variational iteration transform method is employed to determine the exact solution of the Burger 

equation which is one-dimensional and coupled Burger’s equations nonlinear partial differential equation.  This method is 

combined form of the Laplace transform and Variational iteration method. The explicit solutions obtained were compared 

to the exact solutions. The method finds the solution without any restrictive assumptions and free from round-off errors and 

therefore reduce the numerical computation to a great extent. The method is tested on two examples and coupled Burger’s 

equations. The results show that the new method is more effective and convenient to use and high accuracy of it is evident. 
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INTRODUCTION 

Burgers’ equation is a fundamental partial 

differential equation in fluid mechanics. It occurs in 

various areas of applied mathematics, such as modelling of 

dynamics, heat conduction, and acoustic waves, it is 

named for Johannes Martin us Burgers (1895-1981). 

Localized in a small part of space, play a major role in 

several different fields such as hydrodynamic, plasma 

physics, nonlinear optic, etc. The investigation of exact 

solutions of these nonlinear equations is interesting and 

important. In the past several decades, many authors had 

paid attention to study solutions of nonlinear equations by 

using various methods, such as Backland transformation 

[1,7], Darboux transformation [34], inverse scattering 

method [13], Hirota’s bilinear method [22], the tanh 

method [27], the sine-cosine method [40,41], the 

homogeneous balance method [35,42], the Riccati 

expansion method with constant coefficients [43,44]. 

"Recently, an extended tanh-function method and 

symbolic computation are suggested in [11] for solving the 

new coupled modified Burger’s equations to obtain four 

kinds of soliton solutions." This method has some merits 

in contrast with the tanh-function method.  It is not only 

using a simpler algorithm to produce an algebraic system, 

but also can pick up singular solutions with no extra effort 

[12,23,28,32,39]. 

Most of the developed schemes have their 

limitations like limited convergence, divergent results, 

linearization, discretization, unrealistic assumptions and 

no compatibility with the versatility of physical problems 

[8] in the Burger’s model of turbulence [4]. It is solved 

analytically for arbitrary initial conditions [24]. Finite 

element methods have been applied to fluid problems, 

Galerkin and Petrov-Galerkin finite element methods 

involving a time-dependent grid [6,21]. Numerical 

solution using cubic spline global trial functions were 

developed in [31] to obtain two systems or diagonally 

dominant equations which are solved to determine the 

evolution of the system. A collocation solution with cubic 

spline interpolation functions used to produce three 

coupled sets of equations for the dependent variable and 

its two first derivatives [5]. 

Since exact solutions of most of the differential 

equations do not exist, approximation and numerical 

methods are used for the solutions of the FDEs Ali et 

al.[3] applied B-spline finite element methods to the 

solution of Burger’s equation. The B-spline finite element 

approach applied with collocation method over a constant 

grid of cubic B-spline elements. Cubic B-spline had a 

resulting matrix system which is tri-diagonal and so solved 

by the Thomas algorithm. Soliman [33] used the similarity 

reductions to the partial differential equations from 

develop a scheme for solving the Burger’s equation. The 

coupled system is derived by Esipov [10]. It is simple 

model of sedimentation or evolution of scaled volume 

concentrations of two kinds of particles in fluid 

suspensions or colloids, under the effect of gravity [30]. 

The Variational iteration method was first 

proposed by He [14–17] and was successfully applied to 

autonomous ODE in [18], to nonlinear polycrystalline 

solids [29], and other fields. The combination of a Laplace 

transform  method, Variational iteration transform  

method, method of variation of constants and averaging 

method to establish an approximate solution of one degree 

of freedom weakly nonlinear system in [9]. The 

Variational iteration transform method has many merits 

and has much advantage over the Adomian method [37]. 

The aim of this paper is to extend the Variational iterations 

transform  method proposed by He [14-17,19,20] to solve 

two different types such as the one-dimensional Burger’s 

equation and coupled Burger’s equations and made a 

comparison with the results obtained by the Adomian 

decomposition method [2, 25, 26, 36, 38]. 

 

Variational Iteration Transform Method (VITM) 

 To illustrate the basic idea of this method, we 

consider a general nonlinear non-homogeneous partial 

differential equation with initial conditions of the form  

 𝔇u x, t + ℛu x, t + ℵu x, t = g x, t                              u x, = h x , , =  

Where 𝔇 is the second order linear differential operator 𝔇 = 𝜕2𝜕 2  , ℛis linear differential operator of less order 
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than 𝔇, ℵ represent the general nonlinear differential 

operator and g(x,t) is the source term. Taking Laplace 

Transform on both sides of Eq.(1) 

 L[𝔇u x, t ] + L[ℛu x, t ] + L[ℵu x, t ] = L[g x, t ]                  
 L[u x, t ] − , − , + 𝐿[ℛ , ]+ 𝐿[ℵ , ] = 𝐿[ , ]                   

 

Taking Inverse Laplace transform  , = + ℎ + 𝐿− [𝐿( , )]− 𝐿− [𝐿(ℛ , )]− 𝐿− [𝐿ℵ , ]                          

Derivative by 
∂∂t both sides of Eq.(4) u , = ℎ + 𝜕𝜕 𝐿− ( 𝐿 { , })− 𝜕𝜕 𝐿− ( 𝐿{ℛ , })− 𝜕𝜕 𝐿− ( 𝐿{ℵ , })                

By the correction function of irrational method  u𝑛+ , = 𝑛 ,− ∫ 𝑛 𝜉 , 𝜉
+ 𝜕𝜕𝜉 𝐿− 𝐿{ℛ 𝑛 , 𝜉 }+ 𝐿− ( 𝐿{ℵ 𝑛 , 𝜉 })− 𝐿− ( 𝐿{ , 𝜉 }) − ℎ 𝑑𝜉  

Finally, the solution u(x,t) is given by  u x, t = lim𝑛→∞ 𝑛 ,  

 

An illustrative paradigm 

 In this section, the (VITM) is implemented for 

tacking Burger's equations with initial conditions. We 

demonstrate the effectiveness of this method with two 

examples. Numerical results obtained by the proposed 

method are compared with Known results. 

 

Example 1: 

Consider one- dimensional Burger's equation of 

the form  

 u = 𝑥𝑥 − 𝑥                                                                         

 

The initial condition is  

 u x, = −                                                                         

 

Taking Laplace transform on both sides  

 L[u ] = 𝐿[ 𝑥𝑥] − 𝐿[ 𝑥]                                                       

This can be written as  sLu x, t − u x, = L [∂ u∂x ] − L [u ∂u∂x]                        

 

On applying the above specified initial conditions 

we get sL(u x, t ) − ( − ) = L [∂ u∂x ] − L [ ∂u∂x]            

 L[u x, t ] = − + 𝐿 [𝜕𝜕 ] − 𝐿 [  𝜕𝜕 ]            

 

Applying the inverse Laplace transform on both 

sides of Eq.(12), We get  

 u x, t = 𝐿− [ ] + 𝐿− [ 𝐿 𝜕𝜕 ] − 𝐿− [ ]− 𝐿− [ 𝐿 𝜕𝜕 ] u x, t = − + 𝐿− [𝐿 𝜕𝜕 ]− 𝐿− [ 𝐿 ( 𝜕𝜕 )]                              

Derivative by 
∂∂t both sides (13)  u , + 𝜕𝜕 [𝐿− ( 𝐿 (  𝜕𝜕 ))]

− 𝜕𝜕 [𝐿− ( 𝐿 𝜕𝜕 )] =            

Making the correction function is given  u𝑛+ ,= u𝑛 ,− ∫ 𝑛 𝜉 , 𝜉 + 𝜕𝜕𝜉 𝐿− 𝐿[ 𝑛 , 𝜉 𝑛 , 𝜉 ]
− 𝐿− 𝐿[ 𝑛 𝑥𝑥 , 𝜉 ] 𝑑𝜉                                    

We can use the initial condition to select u , = , = −  

Using this selection into the correction functional 

gives the following successive approximations  u , = −                                                                    u , = , − ∫ 𝜉 , 𝜉
+ 𝜕𝜕𝜉 𝐿− ( 𝐿[ , 𝜉 𝑥 , 𝜉 ])+ 𝐿− 𝐿[ 𝑥𝑥 , 𝜉 ] 𝑑𝜉 
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u , = − − ∫ (
+ 𝜕𝜕𝜉 𝐿− ( 𝐿 [( − ) ( )])
+ 𝐿− ( 𝐿 [ ]) ) 𝑑𝜉 u , = − −                                                       u ,= u ,− ∫ 𝜉 , 𝜉

+ 𝜕𝜕𝜉 (𝐿− 𝐿[ , 𝜉 𝑥 , 𝜉 ]
+ 𝐿− ( 𝐿[ 𝑥𝑥 , 𝜉 ]) ) 𝑑𝜉                                           
u , = ( − ) −

− ∫  −
+ 𝜕𝜕𝜉 𝐿− 𝐿 [( − − 𝜉) ( + 𝜉) ])− 𝐿− ( 𝐿 [ − 𝜉])  u , = ( − ) −−                                                      
 

 

𝑛 , = − ∑ 𝑘𝑘+𝑛
𝑘=                                                       

 

Finally, the solution is  , = lim𝑛→∞ 𝑛 ,  = − ∑ 𝑘𝑘+∞
𝑘=                                                          = − −                                                                             

 

Example2: 

Consider one dimensional Burger's equation of 

the form  

 = 𝑥𝑥 − 𝑥                                                                     

 

Subject to the initial condition  

 , =                                                                              
 

Taking Laplace transform on both sides  

𝐿[ ] = 𝐿[ 𝑥𝑥] − 𝐿[ 𝑥]                                                    

This can be written as  𝐿[ , ] − , = 𝐿 [𝜕𝜕 ] − 𝐿 [ 𝜕𝜕 ]                  

 

On applying the above specified initial condition 

we get  

 sL[u x, t ] − x = L [𝜕𝜕 ] − 𝐿 [  𝜕𝜕 ]                              L[u x, t ] = x + 𝐿 [𝜕𝜕 ] − 𝐿 [ 𝜕𝜕 ]                          

 

Applying the inverse Laplace transform to both 

sides of Eq.(27), we get  

 u x, t = 𝐿− [ ] + 𝐿− [ 𝐿 [𝜕𝜕 ]] − 𝐿− [𝐿 [ 𝜕𝜕 ]] 
u x, t = + 𝐿− [ 𝐿 [𝜕𝜕 ]] − 𝐿− [ 𝐿 [ 𝜕𝜕 ]]         

Derivative by 
∂∂t both sides (28) u x, t = 𝜕𝜕 𝐿− [ 𝐿 𝜕𝜕 ] − 𝐿− [ 𝐿 𝜕𝜕 ]  

Or  u x, t − 𝜕𝜕 𝐿− [ 𝐿 𝜕𝜕 ] − 𝐿− [ 𝐿 ( 𝜕𝜕 )]=                                                            
Making the correction function is given  u𝑛+ x, t = u𝑛 x, t− ∫ ( 𝜉 , 𝜉

− 𝜕𝜕𝜉 𝐿− [ 𝐿 𝜕 𝑛𝜕 ]
− 𝐿− [ 𝐿 ( 𝑛 𝜕 𝑛𝜕 )] ) 𝑑𝜉             

 

We can use the initial condition to 

selectu x, t = , = . Using this selection into the 

correction functional gives the following successive 

approximations. 

 u x, t =                                                                          u x, t=  u x, t− ∫ ( 𝜉 , 𝜉 − 𝜕𝜕𝜉 𝐿− 𝐿 [𝜕𝜕 ] − 𝐿− [ 𝐿 ( 𝜕𝜕 )] ) 𝑑𝜉
 

= − ∫ − 𝜕𝜕𝜉 𝐿− [ 𝐿 ] − 𝐿− [ 𝐿 ] 𝑑𝜉  
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u x, t = u x, t − ∫ ( u x, ξ − ∂∂ξ L− [s L ∂ u∂x ]t

− L− [s L u ∂u∂x ] ) dξ 

= − − ∫ − − 𝜕𝜕𝜉 𝐿− [ 𝐿 ]
− 𝐿− [ 𝐿[ − − ]] 𝑑𝜉 = − +                                                             , = , − ∫ 𝜉 , 𝜉

− 𝜕𝜕𝜉 𝐿− [ 𝐿 𝜕𝜕 ]− 𝐿− [ 𝐿 ( − 𝜕𝜕 )] 𝑑𝜉 

= − + − ∫ − + 𝜉
− 𝜕𝜕𝜉 𝐿− [ 𝐿 ]− 𝐿− [ 𝐿( − 𝜉 + 𝜉 − 𝜉+ 𝜉 ]) 𝑑𝜉 , = − + −                                     

 

𝑛 , = ∑ − 𝑘 𝑘𝑛
𝑘=                                                  

Take 𝑛 → ∞ , = lim𝑛→∞ 𝑛 ,  , = ∑ − 𝑘 𝑘∞
𝑘=  , = +                                                                       

 

Example 3: Coupled Burger's equation 

For the purpose of illustration of the Variational 

iteration transform method for solving the homogeneous 

form of coupled Burger's equations, we will consider the 

system of equations. 

 − 𝑥𝑥 − 𝑥 + 𝑥 = ,                                         
 − 𝑥𝑥 − 𝑥 + 𝑥 =                                            

 

The solutions of which are to be obtained subject 

to initial conditions. 

 , = sin , , = sin                                 

Applying the algorithm of Laplace transform on 

equations (37), (38) we have  

 𝐿[ − 𝑥𝑥 − 𝑥 + 𝑥] =                                   

 𝐿[ − 𝑥𝑥 − 𝑥 + 𝑥] =                                     
 𝐿[ , ] − , − 𝐿[ 𝑥𝑥] − 𝐿[ 𝑥] + 𝐿[ 𝑥]=                                                           

 𝐿[ , ] − , − 𝐿[ 𝑥𝑥] − 𝐿[ 𝑥] + 𝐿[ 𝑥]=                                                           

 

Using the given initial conditions on equations 

(42), (43), we have 

 𝐿[ , ] − sin − 𝐿[ 𝑥𝑥] − 𝐿[ 𝑥] + 𝐿[ 𝑥]=                                                           

 𝐿[ , ] − sin − 𝐿[ 𝑥𝑥] − 𝐿[ 𝑥] + 𝐿[ 𝑥]=                                                                    
Then applying the inverse Laplace transform to 

equations (44), (45) 

 , = 𝐿− [ sin ] + 𝐿− (𝐿 [ 𝑥𝑥]) + 𝐿− (𝐿 [ 𝑥])− 𝐿− 𝐿[ 𝑥]                                           
 , = 𝐿− [ sin ] + 𝐿− (𝐿 [ 𝑥𝑥]) + 𝐿− (𝐿 [ 𝑥])− 𝐿− 𝐿[ 𝑥]                                           
 

Derivative by 
𝜕𝜕   both sides to equations (46),(47)  

 , = 𝜕𝜕 𝐿− ( 𝐿[ 𝑥𝑥]) + 𝐿− ( 𝐿[ 𝑥])− 𝐿− ( 𝐿[ 𝑥])                           

 , = 𝜕𝜕 𝐿− ( 𝐿[ 𝑥𝑥]) + 𝐿− ( 𝐿[ 𝑥])− 𝐿− ( 𝐿[ 𝑥])                          

 

Making the correction function are given  

 𝑛+ , = 𝑛 ,+ ∫ ( 𝜕𝜕 𝐿− ( 𝐿[ 𝑛 𝑥𝑥])+ 𝐿− ( 𝐿[ 𝑛 𝑛 𝑥])− 𝐿− ( 𝐿[ 𝑛 𝑛 𝑥]) ) 𝑑𝜉     
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𝑛+ , = 𝑛 ,+ ∫ ( 𝜕𝜕 𝐿− ( 𝐿[ 𝑛 𝑥𝑥])+ 𝐿− ( 𝐿[ 𝑛 𝑛 𝑥])− 𝐿− ( 𝐿[ 𝑛 𝑛 𝑥]) ) 𝑑𝜉              

 

We can use the initial condition to select 

 , = , = , = ,= sin                                                                                   

 u x, t= u x, t+ ∫ ( ∂∂t L− (s L[ u xx]) + L− (s L[u u x])t
− L− (s L[ u v x]) ) dξ                                                   

 ,= sin+ ∫ ( 𝜕𝜕 𝐿− ( 𝐿[− sin ])+ 𝐿− ( 𝐿[sin cos ])− 𝐿− ( 𝐿[ sin cos ]) ) 𝑑𝜉                                  

 , = sin − tsin x                                                

 v x, t = v x, t + ∫ ( ∂∂t L− (s L[ v xx])t
+ L− (s L[vn v x])− L− (s L[ u v x]) ) dξ                

 ,= sin+ ∫ ( 𝜕𝜕 𝐿− ( 𝐿[− sin ])+ 𝐿− ( 𝐿[sin cos ])− 𝐿− ( 𝐿[ sin cos ]) ) 𝑑𝜉                             

 , = sin − tsin x  

, = , + ∫ ( 𝜕𝜕 𝐿− ( 𝐿[ 𝑥𝑥])+ 𝐿− ( 𝐿[ 𝑥])− 𝐿− ( 𝐿[ 𝑥]) ) 𝑑𝜉   ,= sin − 𝑖𝑛+ ∫ ( ∂∂t L− (s L[− sin x + ξsin x ])t
+ L− (s L[sin x cos x − ξ sin x cos x+ ξ sin x cos x ])− L− (s L[ sin x cos x − ξ sin x cos x+ ξ sin x cos x  ]) ) dξ                                              

 , = sin x − tsin x + ! sin                          

 v x, t = sin x − tsin x+ ∫ ( ∂∂t L− (s L[− sin xt
+ ξsin x ])+ L− (s L[sin x cos x− ξ sin x cos x + ξ sin x cos x ])− L− (s L[ sin x cos x− ξ sin x cos x+ ξ sin x cos x  ]) ) dξ             

 v x, t = sin x − tsin x + t ! sin x                         

 un x, t= sin x − tsin x + t ! sin x − t! sin x ++ tnn! sin x                                                                            

 vn x, t = sin x − tsin x + t ! sin x − t! sin x ++ tnn! sin x  

 un x, t = sin x ∑ − kn
k=

tkk!                                             
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vn x, t = sin x ∑ − kn
k=

tkk!                                             

 

Finally, the solution is  u x, t = limn→∞ un x, t  = sin x ∑ − k∞
k=

tkk! 
 un x, t = sin x e−t                                                             v x, t = limn→∞ vn x, t  = sin x ∑ − k∞

k=
tkk! 

 vn x, t = sin x e−t                                                             

 

CONCLUSIONS 

In this paper, the Variational iteration transform 

method has been successfully applied to finding the 

solution of a Burger’s and coupled Burger’s equations. 

The solution obtained by the Variational iteration 

transform method is an infinite power series for 

appropriate initial condition, which can, in turn, be 

expressed in a closed form, the exact solution. The results 

show that the Variational iteration method is a powerful 

mathematical tool to solving Burger’s and coupled 

Burger’s equations; it is also a promising method to solve 

other nonlinear equations.  

 

REFERENCES 

 

[1] M.J. Ablowitz, P.A. Clarkson, Solitons. 1991. 

Nonlinear Evolution Equations and Inverse 

Scattering, Cambridge University Press, Cambridge. 

[2] G. Adomian. 1995. Math. Comput. Modelling. 22: 

103. 

[3] A.H.A. Ali, G.A. Gardner, L.R.T. Gardner. 

1992.Comput. Methods Appl. Mech. Eng. 100: 325-

337. 

[4] J. Burgers. 1984.in: Advances in Applied Mechanics, 

Academic Press, New York. pp. 171-199. 

[5] J. Caldwell, E. Hinton, et al. 19987. (Eds.), Numerical 

Methods for Nonlinear Problems, Pineridge, Swansea. 

3: 253-261. 

[6] J. Caldwell, P. Wanless, A.E. Cook. 1981. Appl. 

Math. Modelling. 5: 189 -193. 

[7] A. Coely, et al. 2001. (Eds.), Backlund and Darboux 

Transformations, American Mathematical Society, 

Providence, RI. 

[8] J.D. Cole. 1951. Quart. Appl. Math. 9: 225-236. 

[9] Gh.E. Draganescu, V. Capalnasan. 2004. Internat. J. 

Nonlinear Sci. Numer. Simulation. 4: 219-226. 

[10] S.E. Esipov. 1995. Phys. Rev. E. 52: 3711-3718. 

[11] E. Fan. 2001. Phys. Lett. A 282 (2001) 18. 

[12] E.G. Fan, H.Q. Zhang. 1998. Phys. Lett. A. 246: 403. 

[13] C.S. Gardner, J.M. Green, M.D. Kruskal, R.M. Miura. 

1967. Phys. Rev. Lett. 19: 1095. 

[14] J.H. He. 2005. Comm. Nonlinear Sci. Numer. 

Simulation 2 (4) (1997) 230-235. M.A. Abdou, A.A. 

Soliman / Journal of Computational and Applied 

Mathematics. 181: 245-251 251. 

[15] J.H. He. 1998.Comput. Methods Appl. Mech. Eng. 

167: 57-68. 

[16] J.H. He. 1998.Comput. Methods Appl. Mech. Eng. 

167: 69-73. 

[17] J.H. He. 1999. Internat. J. Non-linear Mech. 34: 699-

708. 

[18] J.H. He. 2000. Appl. Math. Comput. 114(2,3): 115-

123. 

[19] J.H. He. 2002. Approximate Analytical Methods in 

Science and Engineering, Henan Sci. & Tech. Press, 

Zhengzhou, (in Chinese). 

[20] J.H. He. 2003. Generalized Variational Principles in 

Fluids, Science & Culture Publishing House of China, 

Hong Kong, in Chinese). 

[21] B.M. Herbst, S.W. Schoombie, A.R. Mitchell. 1982. 

Internat. J. Numer. Methods Eng. 18: 1321-1336. 

[22] R. Hirota. 1971. Phys. Rev. Lett. 27: 1192. 

[23] R. Hirota, J. Satsuma. 1981. Phys. Lett. A. 85: 407. 

[24] E. Hopf. 1950. The partial differential equation, 

Comm. Pure Appl. Math. 3: 201-230. 

[25] D. Kaya. 2001. Internat. J. Math. Math. Sci. 27: 675. 

[26] D.Kaya. 2003. Appl. Math. Comput. 144: 353-363. 

[27] W. Malfeit. 1992. Amer. J. Phys. 60: 650. 

[28] W. Malfliet. 1992. Amer. J. Phys. 60: 650. 



                                    VOL. 12, NO. 23, DECEMBER 2017                                                                                                     ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                               6932 

[29] V. Marinca. 2002. Internat. J. Nonlinear Sci. Numer. 

Simulation. 3: 107-120. 

[30] J. Nee, J. Duan. 1998. Appl. Math. Lett. 11(1): 5761. 

[31] S.G. Rubin, R.A. Graves. 1975. Computers and 

Fluids, vol. 3, Pergamon Press, Oxford. p. 136. 

[32] J. Satsuma, R. Hirota. 1982. J. Phys. Soc. Japan. 51: 

332. 

[33] A.A. Soliman. 2000. International Conference on 

Computational Fluid Dynamics, Beijing, China. pp. 

559-566. 

[34] M. Wadati, H. Sanuki, K. Konno. 1975.Prog. Theor. 

Phys. 53: 419. 

[35] M.L. Wang. 1996. Phys. Lett. A. 215: 279. 

[36] A.M. Wazwaz. 2000. Appl. Math. Comput. 111: 53. 

[37] A.M. Wazwaz. 2001.Comput. Math. Appl. 4: 1237-

1244. 

[38] A.M. Wazwaz. 2001. Chaos SolitonsFractical. 12: 

2283. 

[39] Y.T. Wu, X.G. Geng, X.B. Hu, S.M. Zhu. 1999. Phys. 

Lett. A. 255: 259. 

[40] C.T. Yan. 1966. Phys. Lett. A. 224: 77. 

[41] Z.Y. Yan, H.Q. Zhang. 2000. Appl. Math. Mech. 21: 

382. 

[42] Z.Y. Yan, H.Q. Zhang. 2001. J. Phys. A. 34: 1785. 

[43] Z.Y. Yan, H.Q. Zhang. 2001. Phys. Lett. A. 285: 355. 

[44] Z.Y. Yan. 2001. Phys. Lett. A. 292: 100. 


