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ABSTRACT 

A social network is basically a graph where nodes or vertices represent users/actors and links or edges represent 

the relationship among the actors. Analysis of social networks, especially community detection, is a continuously evolving 

research area. Genetic algorithms have been proven to be a fruitful method for detection of communities in social networks 

but the user time taken to detect these communities in large scale networks is quite considerable. In this paper, we enhance 

a simple genetic algorithm with optimum population size, mutation rate and selection strategy by parallelizing with 

MapReduce architecture for detecting quality community structures in a shortened time frame. We have used an enhanced 

framework for MapReduce which increases the performance of the genetic algorithm in a distributed environment. The 

result shows that the iterative parallel genetic algorithm (IPGA) converges to the optimized solution faster than the 

traditional method. 
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1. INTRODUCTION 

Social networking is one of the most widely used 

applications within the domain of the internet in the 

present day. Previously, users of the internet were 

consumers of information, but after the dawn of social 

networking, users are both the producers and consumers of 

information. Researchers are increasingly interested in the 

analysis of social networks due to different features of 

social networking data: the popularity of social networks, 

the ability to represent social networks as graphs, the 

availability of large volumes of data, and commercial 

interest. To analyze a social network, we have to represent 

the network as a graph G(V,E), where V is a set of nodes 

or actors and E is a set of edges or links that define the 

relationship between the actors. An edge represents an 

interaction (like, retweet, share, friendship) between two 

nodes. A feature of social networks is community structure 

and detection of communities in these networks is an 

important problem. In social networks, collections of 

actors are considered as communities. The characteristic 

feature that differentiates these communities is a high 

number of associations or interconnections among actors 

within a single community. Nodes within a community are 

far densely interconnected with each other and have a 

lower number of connections with nodes belonging to 

another community. In the graph below, the shaded 

portions are communities. 

 

 
  

Parallel Genetic algorithms have proved to be a 

successful methodology for detecting communities 

because the population based characteristic of GA allows 

the computation of fitness function of each individual in 

parallel. Hadoop MapReduce is a framework for 

developing applications that rapidly process vast amounts 

of data in parallel on large clusters of computing nodes. 

Therefore, it is an ideal candidate for high scalable 

parallelization of GAs. In this paper, we demonstrate the 

how a normal GA can be converted into map and reduce 

primitives. We implement the non-conventional 

MapReduce program and demonstrate its scalability to 

detect communities in large social networks.  

 

2. RELATED WORKS 

  

A. Community detection 

The community detection method proposed by 

Girvan and Newman became the base for further research 

in this field [2]. It was in this paper the concept of 

Modularity (Q) was defined. Modularity is popular 

community quality detection measure to measure the 

quality of communities detected. Many researchers 

proposed various algorithms such as fast greedy [3], label 

propagation [4], leading eigenvector [5], multilevel [6], 
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optimal, spinglass [8], walktrap [9], infomap [10] etc. that 

are based on the concept of modularity optimization with 

different or altered approaches. However, some of these 

algorithms require prior knowledge of the network 

(number of edges, vertices, communities etc.) whereas 

others performed poorly against large networks.  

 

B. Genetic algorithm 

Genetic Algorithm is a search heuristic 

optimization technique that mimics the manner of natural 

evolution [7]. The principle that governs GA is ‘select the 

best and discard the rest’. It is a methodto be considered 

especially when the solution space of the problem is vast 

and an exhaustive search for the most optimum solution is 

unfeasible. The algorithm repetitively modifies a 

population (all possible solutions to the problem) of 

individual solutions called chromosomes. At each step, the 

genetic algorithm randomly chooses the fittest individuals 

from the current population and uses them as parents to 

produce the offspring for the next generation. Fittest 

individuals are determined by comparing the individual 

with a certain value derived from the fitness function of 

the GA. Over successive generations, the population 

"evolves" to form an optimal solution for that particular 

problem.  

 

C. Traditional GA for community detection 

GA is quite effective in detecting communities 

[1]. In the traditional GA for community detection, 

network modularity value is used as the fitness value for 

each solution member. The algorithm commences by 

initializing a population. Each “chromosome” is 

represented by an array that has n elements (corresponding 

to the number of nodes). Each chromosome represents a 

community structure. Several chromosomes holding 

different community configurations form the initial 

population. Genetic operations are performed for many 

iterations on the initial population to obtain the optimal 

solution. Each iteration involves evaluation of fitness 

value of each chromosome, cross-over between individual 

members and mutation to form a new population ready for 

the next iteration. In every iteration, chromosomes are 

sorted based on their fitness values and the fittest 

chromosomes are retained for the next generations. This 

way (survival of the fittest), a good chromosome is never 

lost. In [1], the authors tested the accuracy of the GA on 

the well-known Zachary Karate Club dataset and obtained 

promising results. The algorithm ran successfully dividing 

the dataset into two communities just like the division 

within the club in real. Although the GA delivered 

acceptable results, it took a considerable amount of time to 

generate the exact result. 

 

 
 

Above is the result of the simulated GA on 

RStudio. The underlying hardware consisted of Intel® 

Core™ i5-490S CPU @ 3.00Ghz and 8 GB RAM. This is 

of course not the best system configuration in the world, 

nor is it the worst. This configuration is what can be 

expected on most users’ systems. Therefore, a speedup of 

the GA would be largely desirable. We also observed that 

the detected communities were not exactly like the real-

world division in the Karate club dataset. 

 

D. Parallel community detection on large graphs 

You Limitations in application of pre-existing 

community detection algorithms came into the light when 

these algorithms were used to detect communities on large 

scale networks. There are several studies on parallelizing 

the algorithms for identifying community structures in 

networks. The size of social networks is growing by the 

minute and the use of the earlier community detection 

algorithms is almost obsolete. MapReduce models have 

been used to tackle these large-scale networks [13]. 

Bahmani et al. [14] proposed an algorithm for finding the 

densest subgraph and implemented it using the 

MapReduce model. Li et al. 

[15] proposed MR-LPA,a parallel version of the 

label propagation algorithm using the MapReduce model. 

Yang and Lonardi [16] presented a parallel 

implementation of the Girvan-Newman algorithm. The 

evaluation results showed that the time taken to detect 

optimal communities decreased almost linearly as the 

number of reducers increased with negligible errors. 

 

3. IMPLEMENTATION USING ITERATIVE  

    PARALLEL GA WITH NON-CONVENTIONAL  

    MAPREDUCE 

The strategies suggested in the literature to 

parallelize Genetic Algorithms are discussed from [11]. 

Different approaches can be used to parallelize genetic 

algorithms. The most popular are: the fitness evaluation 

level (i.e. global parallelization model), population level 

(i.e. coarse-grained parallelization or island model) and the 

individual level (i.e. fine-grained parallelization or grid 

model).  In the global parallelization model, a node acting 

as a master, manages the population (i.e. applying genetic 

and selection operators) and distributes the individuals 

among slave nodes which compute the fitness values of 

the individuals. The key advantage of using this model is 

that it does not require any change to the design of 

traditional GA since the individual fitness evaluation is 

independent from the rest of the population. In the island 

model, the population is divided in several subpopulations 

of relatively large sizes which are in several islands (i.e. 

nodes). A Genetic Algorithm is executed on each 

subpopulation and subpopulations exchange information 

by allowing some individuals to migrate from one island 

to another per given temporal criteria. The main 

advantages of this model are: (i) different subpopulations 

explore different portions of the search-space; (ii) 

migrating individuals inject diversity into the converging 

population. Finally, in the grid model each individual is 

placed on a grid (i.e. each individual is assigned to a node) 

and all GA operations are performed in parallel, evaluating 

simultaneously the fitness value and applying locally the 

selection and genetic operations to a small neighborhood. 
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The main drawback of this approach is the overhead due 

to the numerous communications between grid nodes. 

 

A. Enhanced MapReduce framework 

MapReduce is a smart and flexible paradigm that 

enables the development of large-scale distributed 

applications. It is expressed in terms of two distinct 

functions, Map and Reduce, which are combined in a 

divide-and-conquer manner. The Map function’s 

responsibility is to handle the parallelization while the 

Reduce function gathers and merges the results. A master 

node splits the initial input into several pieces where each 

piece is identified by a unique key, and allots them via the 

Map function to several slave nodes (i.e., Mappers) which 

work independently but in parallel, performing the same 

task on a different piece of input. As soon as a Mapper 

finishes its own job, the output is identified and collected 

via the Reducer function. Each Mapper emits a set of 

intermediate key/value pairs which are used by the 

Reducers to group all the intermediate values associated to 

the same key and to compute the list of output results. The 

program automatically invokes and allocates several 

distinct Reducers that correspond to the number of distinct 

intermediate keys. Several different implementations of 

MapReduce are available for use today. Our algorithm is 

implemented using the non-conventional Hadoop 

MapReduce [17] where the sorting mechanism is bypassed 

and invocation of the reduce function is modified so that it 

can be called with a single record. Reducers no longer wait 

to remotely read from Mappers and then to be grouped. 

Due to this, performance is improved as Reducers need 

not wait until the Mappers complete their entire work and 

shuffling gets completed. Intermediate results foreach key 

is not stored.  Separate threads are maintained for every 

Mapper. A single buffer retrieves all records. A separate 

thread executes the Reduce function and is passed one 

record at a time from the buffer in a first in first out 

manner. 

 

B. Proposed iterative parallel GA based on  

     MapReduce 
A hybrid model by combining the first and 

second parallelization strategies using the enhanced 

MapReduce is the basic idea behind the algorithm. The 

distributed model design [18] based on the polytypic 

concept of a species being represented by several types 

that are capable of mating and producing promising 

offspring is used. Breeding and evaluation are typically 

carried out in isolation on each island. To be consistent 

with biological motivations, it was noted that migration 

should occur after a period of stasis. However, difficulty in 

defining stasis or equilibrium meant that migration 

occurred after G generations. 

In the sequential version, all processing is 

performed on a single processor, whereas in the parallel 

version, the processing load is divided among several 

processors/mappers (slaves), under the direction of a 

master processor. An iteration of the GA is encapsulated 

as a separate MapReduce job and the chromosome fitness 

evaluation task is parallelized among several Mappers. 

Reducers collect the results concerning each island based 

on the key value and perform genetic operations such as 

parent selection, crossover and mutation, survival 

selection and migration process which are necessary to 

produce a new generation following a global 

parallelization model. Migration is done after G 

generations during which the best individuals in each 

island are sent to each neighbour thereby replacing the 

worst individuals. 

Figure-1 shows the proposed architecture based 

on Hadoop MapReduce and is composed of the following 

main components: A Parallel Genetic Algorithm, a Master, 

many Mappers and Reducers (considered as an island), 

together with two other units, namely Input Stream and 

Output Stream, which are responsible to split the data for 

the Mappers and to store the Reducer output into the 

Hadoop Distributed File System (HDFS) respectively. 

These components communicate with each other 

exploiting the HDFS distributed file system provided by 

Hadoop, while the communications within the Hadoop 

framework (i.e., those between the master and slave 

nodes) are carried out via socket using SSH (Secure 

SHell).The Parallel Genetic Algorithm module takes a 

sequence of community structures as input. Once the GA 

terminates, it returns a predicted structure as output. 

Split phase: In this phase the InputFormat 

module gets the current population (i.e., the sequence of 

community configurations composing the current 

population) from the HDFS and processes it to split it in 

crunch of data (i.e., input split) to be distributed among the 

Mapper modules. The number of input splits is 

dynamically computed based on the number of available 

Mappers. 

The Master module is responsible to coordinate 

and supervise the assignment of resources and the 

computations, taking care also of the load balancing 

aspects. Once the InputFormat begins to emit the <key, 

value> pairs - exploiting the RecordReader component of 

Hadoop - the underlying Hadoop framework is 

automatically notified and the Master component is 

invoked to assign the input split produced by the 

InputFormat to the available Mappers 

Map phase: In this phase, each Mapper carries 

out its task on the received input split in a parallel and 

independent way. Each Mapper performs the genetic 

operations, once such evaluation is completed, each 

Mapper generates a new pair <key, value>, where value is 

a pair <chromosome, fitness value>. The key is generated 

by the Master module based on the number of islands and 

is assigned to Reducers. 

Reduce phase: As soon as a Mapper evaluates a 

chromosome, the corresponding data (i.e., key (island 

number), chromosome, and fitness value) is sent to the 

Reducer. Once the entire population corresponding to the 

island is available to the Reducer, it can perform the 

survival selection and apply on the new generation the 

crossover and mutation operators to produce new offspring 

to be evaluated in the next MapReduce job. To obtain the 

entire population, the Reducer must wait until all Mappers 

have replied although genetic operations can be performed 
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as and when it receives a pair of chromosomes from the 

single buffer.  

 

 
 

Figure-1. Architecture of the proposed GA with enhanced 

MapReduce framework. 

 

Table-1. Pseudocode for parallel GA. 
 

 
 

Table-2. Pseudocode for MapReduce Mapper (). 
 

 
 

Table-3. Pseudocode for MapReduce Reducer (). 
 

 

 
 

However, selection can be done only after all 

chromosomes undergo genetic operations. Also, each 

Mapper evaluates approximately the same number of 

chromosomes and if they are executed in parallel, they 

require approximately the same time. Finally, the data 

regarding the new offspring is saved by the Output Format 

- using the Record Writer - into the HDFS, allowing the 

Parallel Genetic Algorithm module to verify whether the 

termination criteria holds. The Master module in this 

phase is responsible to notify the Parallel Genetic 

Algorithm to restart computation by invoking the 

MapReduce Job for new offspring created by Reducer. 

 

Comparison between traditional GA and iterative 

parallel GA 

Table-4 shows the results from running a GA to 

find the optimum community structure in the Zachary’s 

Karate Club dataset and best structure for community 

detection problem. It is observed that the Parallel GA finds 

optimum solution much faster than traditional GA. 

 

Table-4. Comparison between traditional GA and 

parallel GA. 
 

Algorithm Modularity 
Community 

sizes 

Time 

taken 

GA 0.42 2 86238 

IPGA 0.42 2 10770 

 

The Table shows the variations in performance of 

compared methods. We used higher mutation rates in 

combination with crossover. The population size was 

250.With PGA we could speed up convergence of GA and 

detect good quality communities. 

 

RESULTS AND FURTHER DISCUSSIONS 

Parallel genetic Algorithm outperforms the 

traditional GA significantly on community detection 

problems, especially as the problem size increases in terms 

of time and optimality. It is also seen that IPGA too 

detects quality community structures in social networks.  

 

 
 

Figure-2. Communities detected in Zachary’s 

Karate Club. 
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Results also showed that a random migration 

selection was more effective than aggressive selection 

strategy which caused the population to get stuck in local 

optima. Memory management is one of the main problems 

that could arise for large sets of data as obtained partial 

results are stored after the Map Stage in memory only. 

This could result in overflow. A suggested solution to this 

problem could be to move the contents which are least 

recently used into files. A Hash table could be used to 

keep the track of files which have been moved on to the 

file and for faster access. Various other hybrid models of 

parallelization can be tested on benchmark problems like 

community detection. 
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