
 VOL. 12, NO. 23, DECEMBER 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6944

ITERATIVE PARALLEL GENETIC ALGORITHM FOR DETECTING

COMMUNITIES IN SOCIAL NETWORKS

Nikhil K. S., Ambika B.

and M. V. Judy

Departmentof Computer Science and IT, School of Arts and Sciences, Amrita University, Kochi, India

E-Mail: prodigionikhil@gmail.com

ABSTRACT

A social network is basically a graph where nodes or vertices represent users/actors and links or edges represent

the relationship among the actors. Analysis of social networks, especially community detection, is a continuously evolving

research area. Genetic algorithms have been proven to be a fruitful method for detection of communities in social networks

but the user time taken to detect these communities in large scale networks is quite considerable. In this paper, we enhance

a simple genetic algorithm with optimum population size, mutation rate and selection strategy by parallelizing with

MapReduce architecture for detecting quality community structures in a shortened time frame. We have used an enhanced

framework for MapReduce which increases the performance of the genetic algorithm in a distributed environment. The

result shows that the iterative parallel genetic algorithm (IPGA) converges to the optimized solution faster than the

traditional method.

Keywords: community detection, Hadoop, MapReduce, parallel genetic algorithm.

1. INTRODUCTION

Social networking is one of the most widely used

applications within the domain of the internet in the

present day. Previously, users of the internet were

consumers of information, but after the dawn of social

networking, users are both the producers and consumers of

information. Researchers are increasingly interested in the

analysis of social networks due to different features of

social networking data: the popularity of social networks,

the ability to represent social networks as graphs, the

availability of large volumes of data, and commercial

interest. To analyze a social network, we have to represent

the network as a graph G(V,E), where V is a set of nodes

or actors and E is a set of edges or links that define the

relationship between the actors. An edge represents an

interaction (like, retweet, share, friendship) between two

nodes. A feature of social networks is community structure

and detection of communities in these networks is an

important problem. In social networks, collections of

actors are considered as communities. The characteristic

feature that differentiates these communities is a high

number of associations or interconnections among actors

within a single community. Nodes within a community are

far densely interconnected with each other and have a

lower number of connections with nodes belonging to

another community. In the graph below, the shaded

portions are communities.

Parallel Genetic algorithms have proved to be a

successful methodology for detecting communities

because the population based characteristic of GA allows

the computation of fitness function of each individual in

parallel. Hadoop MapReduce is a framework for

developing applications that rapidly process vast amounts

of data in parallel on large clusters of computing nodes.

Therefore, it is an ideal candidate for high scalable

parallelization of GAs. In this paper, we demonstrate the

how a normal GA can be converted into map and reduce

primitives. We implement the non-conventional

MapReduce program and demonstrate its scalability to

detect communities in large social networks.

2. RELATED WORKS

A. Community detection

The community detection method proposed by

Girvan and Newman became the base for further research

in this field [2]. It was in this paper the concept of

Modularity (Q) was defined. Modularity is popular

community quality detection measure to measure the

quality of communities detected. Many researchers

proposed various algorithms such as fast greedy [3], label

propagation [4], leading eigenvector [5], multilevel [6],

mailto:prodigionikhil@gmail.com

 VOL. 12, NO. 23, DECEMBER 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6945

optimal, spinglass [8], walktrap [9], infomap [10] etc. that

are based on the concept of modularity optimization with

different or altered approaches. However, some of these

algorithms require prior knowledge of the network

(number of edges, vertices, communities etc.) whereas

others performed poorly against large networks.

B. Genetic algorithm

Genetic Algorithm is a search heuristic

optimization technique that mimics the manner of natural

evolution [7]. The principle that governs GA is ‘select the

best and discard the rest’. It is a methodto be considered

especially when the solution space of the problem is vast

and an exhaustive search for the most optimum solution is

unfeasible. The algorithm repetitively modifies a

population (all possible solutions to the problem) of

individual solutions called chromosomes. At each step, the

genetic algorithm randomly chooses the fittest individuals

from the current population and uses them as parents to

produce the offspring for the next generation. Fittest

individuals are determined by comparing the individual

with a certain value derived from the fitness function of

the GA. Over successive generations, the population

"evolves" to form an optimal solution for that particular

problem.

C. Traditional GA for community detection

GA is quite effective in detecting communities

[1]. In the traditional GA for community detection,

network modularity value is used as the fitness value for

each solution member. The algorithm commences by

initializing a population. Each “chromosome” is

represented by an array that has n elements (corresponding

to the number of nodes). Each chromosome represents a

community structure. Several chromosomes holding

different community configurations form the initial

population. Genetic operations are performed for many

iterations on the initial population to obtain the optimal

solution. Each iteration involves evaluation of fitness

value of each chromosome, cross-over between individual

members and mutation to form a new population ready for

the next iteration. In every iteration, chromosomes are

sorted based on their fitness values and the fittest

chromosomes are retained for the next generations. This

way (survival of the fittest), a good chromosome is never

lost. In [1], the authors tested the accuracy of the GA on

the well-known Zachary Karate Club dataset and obtained

promising results. The algorithm ran successfully dividing

the dataset into two communities just like the division

within the club in real. Although the GA delivered

acceptable results, it took a considerable amount of time to

generate the exact result.

Above is the result of the simulated GA on

RStudio. The underlying hardware consisted of Intel®

Core™ i5-490S CPU @ 3.00Ghz and 8 GB RAM. This is

of course not the best system configuration in the world,

nor is it the worst. This configuration is what can be

expected on most users’ systems. Therefore, a speedup of

the GA would be largely desirable. We also observed that

the detected communities were not exactly like the real-

world division in the Karate club dataset.

D. Parallel community detection on large graphs

You Limitations in application of pre-existing

community detection algorithms came into the light when

these algorithms were used to detect communities on large

scale networks. There are several studies on parallelizing

the algorithms for identifying community structures in

networks. The size of social networks is growing by the

minute and the use of the earlier community detection

algorithms is almost obsolete. MapReduce models have

been used to tackle these large-scale networks [13].

Bahmani et al. [14] proposed an algorithm for finding the

densest subgraph and implemented it using the

MapReduce model. Li et al.

[15] proposed MR-LPA,a parallel version of the

label propagation algorithm using the MapReduce model.

Yang and Lonardi [16] presented a parallel

implementation of the Girvan-Newman algorithm. The

evaluation results showed that the time taken to detect

optimal communities decreased almost linearly as the

number of reducers increased with negligible errors.

3. IMPLEMENTATION USING ITERATIVE

 PARALLEL GA WITH NON-CONVENTIONAL

 MAPREDUCE

The strategies suggested in the literature to

parallelize Genetic Algorithms are discussed from [11].

Different approaches can be used to parallelize genetic

algorithms. The most popular are: the fitness evaluation

level (i.e. global parallelization model), population level

(i.e. coarse-grained parallelization or island model) and the

individual level (i.e. fine-grained parallelization or grid

model). In the global parallelization model, a node acting

as a master, manages the population (i.e. applying genetic

and selection operators) and distributes the individuals

among slave nodes which compute the fitness values of

the individuals. The key advantage of using this model is

that it does not require any change to the design of

traditional GA since the individual fitness evaluation is

independent from the rest of the population. In the island

model, the population is divided in several subpopulations

of relatively large sizes which are in several islands (i.e.

nodes). A Genetic Algorithm is executed on each

subpopulation and subpopulations exchange information

by allowing some individuals to migrate from one island

to another per given temporal criteria. The main

advantages of this model are: (i) different subpopulations

explore different portions of the search-space; (ii)

migrating individuals inject diversity into the converging

population. Finally, in the grid model each individual is

placed on a grid (i.e. each individual is assigned to a node)

and all GA operations are performed in parallel, evaluating

simultaneously the fitness value and applying locally the

selection and genetic operations to a small neighborhood.

 VOL. 12, NO. 23, DECEMBER 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6946

The main drawback of this approach is the overhead due

to the numerous communications between grid nodes.

A. Enhanced MapReduce framework

MapReduce is a smart and flexible paradigm that

enables the development of large-scale distributed

applications. It is expressed in terms of two distinct

functions, Map and Reduce, which are combined in a

divide-and-conquer manner. The Map function’s

responsibility is to handle the parallelization while the

Reduce function gathers and merges the results. A master

node splits the initial input into several pieces where each

piece is identified by a unique key, and allots them via the

Map function to several slave nodes (i.e., Mappers) which

work independently but in parallel, performing the same

task on a different piece of input. As soon as a Mapper

finishes its own job, the output is identified and collected

via the Reducer function. Each Mapper emits a set of

intermediate key/value pairs which are used by the

Reducers to group all the intermediate values associated to

the same key and to compute the list of output results. The

program automatically invokes and allocates several

distinct Reducers that correspond to the number of distinct

intermediate keys. Several different implementations of

MapReduce are available for use today. Our algorithm is

implemented using the non-conventional Hadoop

MapReduce [17] where the sorting mechanism is bypassed

and invocation of the reduce function is modified so that it

can be called with a single record. Reducers no longer wait

to remotely read from Mappers and then to be grouped.

Due to this, performance is improved as Reducers need

not wait until the Mappers complete their entire work and

shuffling gets completed. Intermediate results foreach key

is not stored. Separate threads are maintained for every

Mapper. A single buffer retrieves all records. A separate

thread executes the Reduce function and is passed one

record at a time from the buffer in a first in first out

manner.

B. Proposed iterative parallel GA based on

 MapReduce
A hybrid model by combining the first and

second parallelization strategies using the enhanced

MapReduce is the basic idea behind the algorithm. The

distributed model design [18] based on the polytypic

concept of a species being represented by several types

that are capable of mating and producing promising

offspring is used. Breeding and evaluation are typically

carried out in isolation on each island. To be consistent

with biological motivations, it was noted that migration

should occur after a period of stasis. However, difficulty in

defining stasis or equilibrium meant that migration

occurred after G generations.

In the sequential version, all processing is

performed on a single processor, whereas in the parallel

version, the processing load is divided among several

processors/mappers (slaves), under the direction of a

master processor. An iteration of the GA is encapsulated

as a separate MapReduce job and the chromosome fitness

evaluation task is parallelized among several Mappers.

Reducers collect the results concerning each island based

on the key value and perform genetic operations such as

parent selection, crossover and mutation, survival

selection and migration process which are necessary to

produce a new generation following a global

parallelization model. Migration is done after G

generations during which the best individuals in each

island are sent to each neighbour thereby replacing the

worst individuals.

Figure-1 shows the proposed architecture based

on Hadoop MapReduce and is composed of the following

main components: A Parallel Genetic Algorithm, a Master,

many Mappers and Reducers (considered as an island),

together with two other units, namely Input Stream and

Output Stream, which are responsible to split the data for

the Mappers and to store the Reducer output into the

Hadoop Distributed File System (HDFS) respectively.

These components communicate with each other

exploiting the HDFS distributed file system provided by

Hadoop, while the communications within the Hadoop

framework (i.e., those between the master and slave

nodes) are carried out via socket using SSH (Secure

SHell).The Parallel Genetic Algorithm module takes a

sequence of community structures as input. Once the GA

terminates, it returns a predicted structure as output.

Split phase: In this phase the InputFormat

module gets the current population (i.e., the sequence of

community configurations composing the current

population) from the HDFS and processes it to split it in

crunch of data (i.e., input split) to be distributed among the

Mapper modules. The number of input splits is

dynamically computed based on the number of available

Mappers.

The Master module is responsible to coordinate

and supervise the assignment of resources and the

computations, taking care also of the load balancing

aspects. Once the InputFormat begins to emit the <key,

value> pairs - exploiting the RecordReader component of

Hadoop - the underlying Hadoop framework is

automatically notified and the Master component is

invoked to assign the input split produced by the

InputFormat to the available Mappers

Map phase: In this phase, each Mapper carries

out its task on the received input split in a parallel and

independent way. Each Mapper performs the genetic

operations, once such evaluation is completed, each

Mapper generates a new pair <key, value>, where value is

a pair <chromosome, fitness value>. The key is generated

by the Master module based on the number of islands and

is assigned to Reducers.

Reduce phase: As soon as a Mapper evaluates a

chromosome, the corresponding data (i.e., key (island

number), chromosome, and fitness value) is sent to the

Reducer. Once the entire population corresponding to the

island is available to the Reducer, it can perform the

survival selection and apply on the new generation the

crossover and mutation operators to produce new offspring

to be evaluated in the next MapReduce job. To obtain the

entire population, the Reducer must wait until all Mappers

have replied although genetic operations can be performed

 VOL. 12, NO. 23, DECEMBER 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6947

as and when it receives a pair of chromosomes from the

single buffer.

Figure-1. Architecture of the proposed GA with enhanced

MapReduce framework.

Table-1. Pseudocode for parallel GA.

Table-2. Pseudocode for MapReduce Mapper ().

Table-3. Pseudocode for MapReduce Reducer ().

However, selection can be done only after all

chromosomes undergo genetic operations. Also, each

Mapper evaluates approximately the same number of

chromosomes and if they are executed in parallel, they

require approximately the same time. Finally, the data

regarding the new offspring is saved by the Output Format

- using the Record Writer - into the HDFS, allowing the

Parallel Genetic Algorithm module to verify whether the

termination criteria holds. The Master module in this

phase is responsible to notify the Parallel Genetic

Algorithm to restart computation by invoking the

MapReduce Job for new offspring created by Reducer.

Comparison between traditional GA and iterative

parallel GA

Table-4 shows the results from running a GA to

find the optimum community structure in the Zachary’s

Karate Club dataset and best structure for community

detection problem. It is observed that the Parallel GA finds

optimum solution much faster than traditional GA.

Table-4. Comparison between traditional GA and

parallel GA.

Algorithm Modularity
Community

sizes

Time

taken

GA 0.42 2 86238

IPGA 0.42 2 10770

The Table shows the variations in performance of

compared methods. We used higher mutation rates in

combination with crossover. The population size was

250.With PGA we could speed up convergence of GA and

detect good quality communities.

RESULTS AND FURTHER DISCUSSIONS

Parallel genetic Algorithm outperforms the

traditional GA significantly on community detection

problems, especially as the problem size increases in terms

of time and optimality. It is also seen that IPGA too

detects quality community structures in social networks.

Figure-2. Communities detected in Zachary’s

Karate Club.

 VOL. 12, NO. 23, DECEMBER 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6948

Results also showed that a random migration

selection was more effective than aggressive selection

strategy which caused the population to get stuck in local

optima. Memory management is one of the main problems

that could arise for large sets of data as obtained partial

results are stored after the Map Stage in memory only.

This could result in overflow. A suggested solution to this

problem could be to move the contents which are least

recently used into files. A Hash table could be used to

keep the track of files which have been moved on to the

file and for faster access. Various other hybrid models of

parallelization can be tested on benchmark problems like

community detection.

REFERENCES

[1] Mursel Tasgin, Amac Herdagdelen and Haluk Bingol.

2008. Community Detection in Complex Networks

Using Genetic Algorithms. Department of Computer

Engineering Bogazici University, Turkey (Dated:

February 2).

[2] M. E. J. Newman and M. Girvan. Finding and

evaluating community structure in networks.

Department of Physics and Center for the Study of

Complex Systems, University of Michigan, Santa Fe

Institute, Department of Physics, Cornell University.

[3] Newman M. 2004. Fast algorithm for detecting

community structure in networks. Phys. Rev. E. 69,

066133.

[4] Raghavan U.N.; Albert R.; Kumara S. 2007. Near

linear time algorithm to detect community structures

in large-scale networks. Phys. Rev. E. 76, 036106.

[5] M. E. J. Newman. Finding community structure in

networks using the eigenvectors of matrices.

Department of Physics and Center for the Study of

Complex Systems, University of Michigan.

[6] Bruce Hendrickson and Robertleleand. A Multilevel

Algorithm for Partituoning Graphs. Sandia National

Laboratories.

[7] Holland J.H. 1975. Adaptation in Natural and

Artificial Systems. University of Michigan Press, Ann

Arbor, Michigan.

[8] Jorg Reichardt1 and Stefan Bornholdt1. Statistical

Mechanics of Community Detection. 1Institute for

Theoretical Physics, University of Bremen, German.

[9] Pascal Pons and MatthieuLatapy. Computing

Communities in Large Networks Using Random

Walks. LIAFA - CNRS and Universit´e Paris 7

[10] Martin Rosvall, Carl Bergstrom. Maps of random

walks on complex networks reveal community

structure. Proceedings of the National Academy of

Sciences.

[11] Di Geronimo L.; Ferrucci F.; Murolo A.; Sarro F.A.

2012. Parallel Genetic Algorithm Based on Hadoop

MapReduce for the Automatic Generation of JUnit

Test Suites. 2012 IEEE Fifth International Conference

on, Issue Date: 17-21.

[12] W N Martin, Jens Lienig and James P Cohoon.

Population Structures Island (migration) models:

evolutionary algorithms based on punctuated

equilibria. Handbook of Evolutionary computation,

May 97 Release.

[13] Seunghyeon Moon a, Jae-Gil Lee b, MinseoKangb.

Scalable Community Detection from networks by

computing edge betweenness on MapReduce. KAIST

Institute for IT Convergence; Department of

Knowledge Service Engineering, KAIST, 291

Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic

of Korea.

[14] B. Bahmani R., Kumar S., Vassilvitskii. Densest

subgraph in streaming and MapReduce.

[15] Q. Li, Z. Wang, W. Wang, Y. Liu, P. Wang, T. Yu.

2011. LI-MR: a local iteration map/reduce model and

its application to mine community structure in large-

scale networks. Proceedings of the 2011 IEEE

International Conference on Data Mining Workshops

(ICDMW). pp. 174-179.

[16] Q. Yang, S. Lonardi. 2007. A parallel edge-

betweenness clustering tool for protein–protein

interaction networks. Int. J. Data Min. Bioinform.

1(3): 241-247.

[17] Ashutosh Rajan and M V Judy.2013. An Enhanced

Map Reduce Framework for Improving the

Performance of Massively Scalable Private Clouds.

International Journal of Computer Applications

(IJCA), Proceedings on Amrita International

Conference of Women in Computing - 2013

AICWIC(3): 24-26. Published by Foundation of

Computer Science, New York, USA.

[18] Wiese K. and Goodwin, S.D. 1998. Parallel Genetic

Algorithms for Constrained Ordering Problems.

Proceedings of the 1lth International Florida Artificial

Intelligence Research Symposium, FLAIRS’98, pp.

l0l-105.

