
 VOL. 12, NO. 23, DECEMBER 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6981

AN EFFECTIVE FAULT TOLERANCE METHOD FOR COLLABORATIVE

EDITING WITH FICKLE OPERATIONS

G. Sekar.

1

and V. Vasanthraj
2

1PG and Research

Department of Computer Science, Dr. Ambedkar Govt. Arts College, Vyasarpadi, Chennai, India
2Dr. Ambedkar Govt. Arts College, Vyasarpadi, Chennai, India

E-Mail: gsekarg@yahoo.co.in

ABSTRACT

Collaborative editing refers to the editing groups which produce work products as the collection of individual

contribution. We present an implementation model on how to increase fault tolerance for collaborative editing systems

with fickle operations. Some of the recent research revealed that collaborative editing systems were constructed by the

Conflict free Replicated Data Types (CRDT). This new approach is shown to avoid the fault on the every user’s replicas

updates that should not affect the owner’s document. Every user can update their own document with some updates. At the

end, all the updates were transferred to the owner’s original document. In some case some of the user’s replica can update

with some mismatch updates that can also be reflected on the owner’s document. So these updates badly reduce the

reliability and integrity of the collaborative systems. The mismatch updates and the faults cause the whole document lead

to lessen its integrity and quality. In this paper, we carefully analyze, find the mismatch updates and the replica’s faults

towards this type of systems and reduce the fault tolerance. We define algorithms to find such fault mismatch and remove

that fault replica. Then we produce the original document without any fault updates.

Keywords: fault tolerance, fickle operations, distributed systems, editing systems.

INTRODUCTION
A distributed system [1] is a model in which

components located on networked computers

communicate and coordinate their actions by passing

messages. The components interact with each other in

order to achieve a common goal. A collaborative editor is

a form of collaborative software application that allows

several people to edit a computer file using different

computers; a practice is called collaborative editing [2]. A

collaborative editing system used to facilitate the multiple

users can edit a document over the Internet.

The different users can update the stored shared

document that relies on centralized server. The well

known Wikipedia is the best example for the most large

scale collaborative editing system. Here every user can

update some changes towards the document. That time it’s

not assured to give fully original same updates [3]. In

some of the times the user can update with mismatch data

with compared to others updates. These all updates with

mismatch data can transfer to the owner’s main document

that causes the fail of integrity and consistency. Every

collaborative editing system has to manage the integrity

and consistencies over the shared document. Conflict

updates affect the editing system if it contains mismatch

and wrong updates. Every local copy of the shared

document is maintained by the every replica using some

commutative or fickle operations [4].

Most of the research in collaborative editing

system has focused on these sequence or independent

operations to prove the stable reliability over the shared

document [5]. In every update on the local copies has a

relation over the concurrent operations and original

updates. This relationship achieves the state convergence

between the different replicas updates. In the centralized

server approach, mismatching updates are identified and

detected and compared with shared local copies updates.

Many of the researches over collaborative editing systems

prove the stability of convergence manage space and time

complexities and simultaneity and locking properties.

Every malicious attack over the collaborative

editing systems can be identified after the update was

made by the replica. It is not so easy to identify and detect

the replica as malicious at initial by server. Every replica

is doing concurrently some update over the local copies.

The owner document can reflect by all these local copies

updates. The fault updates and mismatch updates over on

the original document can lead into inconsistencies on the

centralized place [6]. But the important challenge on

collaborative editing system is to prove the stable of

convergence and integrity. A conflict-free replicated data

type (CRDT) [7] is a data structure which can

be replicated across multiple computers in a network,

where the replicas can be updated independently and

concurrently without coordination between the replicas

[8], and where it is always mathematically possible to

resolve inconsistencies which might result. Concurrent

updates to multiple replicas of the same data, without

coordination between the computers hosting the replicas,

can result in inconsistencies between the replicas, which in

the general case may not be resolvable. Restoring

consistency and data integrity when there are conflicts

between updates may require some or all of the updates to

be entirely or partially dropped. A possible approach

is optimistic replication, where all concurrent updates are

allowed to go through and the results are merged or

"resolved" later, with consistency between the

replicas eventually re-established. While optimistic

replication might not work in the general case, it turns out

that there is a significant and practically useful class of

data structures, CRDTs, where it does work and

mathematically always possible to merge or resolve

https://en.wikipedia.org/wiki/Data_structure
https://en.wikipedia.org/wiki/Replication_(computing)
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Optimistic_replication
https://en.wikipedia.org/wiki/Eventual_consistency

 VOL. 12, NO. 23, DECEMBER 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6982

concurrent updates on the data structure without conflicts.

This makes CRDTs ideal for optimistic replication [9].

In this paper, we present algorithms to find the

mismatch updates and faulty replica while the replica is

doing concurrent updates and remove that replica from the

group. In this way, we make the efficient fault tolerance

for collaborative systems to provide the more reliable data

with improved integrity. The mismatch update is done by

some replica those updates were find and removed by the

server with the help of algorithms. When the replica is

started to do update, time server can detect the update to

check whether the update is right or not. The primary

challenge is to handle an update done by the replicas to

find the malicious updates. We mitigate such threats and

ensure eventually consistency of the shared document. We

also give the maximum throughput of the shared document

without any mismatch updates.

BACKGROUND AND RELATED WORK

A. Fault tolerance

 Fault tolerance is the property that enables a

system to continue its operation in the event of failure of

some of its components. Fault tolerance is particularly

sought in high availability or life critical systems.

A fault in a system is some deviation from the expected

behavior of the system: a malfunction. Faults may be due

to a variety of factors, including hardware failure, software

bugs, operator (user) error, and network problems.

Faults can be classified into one of three

categories [1]:

 Transient faults

These occur once and then disappear. For

example, a network message doesn't reach its destination

but does when the message is retransmitted.

 Intermittent faults

Intermittent faults are characterized by a fault

occurring, then vanishing again, then reoccurring, then

vanishing. These can be the most annoying of component

faults. A loose connection is an example of this kind of

fault.

 Permanent faults

This type of failure is persistent (ie) it continues

to exist until the faulty component is repaired or replaced.

Examples of this fault are disk head crashes, software

bugs, and burnt-out power supplies.

Approaches to faults
We can try to design systems that minimize the

presence of faults. Fault avoidance is a process where we

go through design and validation steps to ensure that the

system avoids being faulty in the first place. This can

include formal validation, code inspection, testing, and

using robust hardware. Fault removal is an ex post

facto approach where faults were encountered in the

system and we managed to remove those faults. This could

have been done through testing, debugging, and

verification as well as replacing failed components with

better ones, adding heat sinks to fix thermal dissipation

problems, etc.

Fault tolerance is the realization that we will

always have faults (or the potential for faults) in our

system and that we have to design the system in such a

way that it will be tolerant of those faults. That is, the

system should compensate for the faults and continue to

function [10].

B. Fickle or commutative operations
In mathematics, an operation is commutative if

the order of the numbers used can be altered with the

result remaining the same. For example, addition and

multiplication are commutative operations. Operational

transformation was proposed to facilitate the convergence

of the states of different replicas by transforming

conflicting operations into commutative operations [11].

Fickle is another name of commutative

operations. The state based CRDTs are called Convergent

Replicated Data Types, where the states are merged by a

function which must by commutative, associative and

idempotent. The merge function provides a join for any

pair of replica states, so the set of all states forms a semi

lattice. The update function must monotonically increase

the internal state, according to the same partial order rules

as the semi lattice.

C. Collaborative editing systems
Collaborative editing is the editing of groups

producing works together through individual

contributions. Effective choices in group awareness,

participation, and coordination are critical to successful

collaborative writing outcomes. Collaborative editing

systems were worked by the principle of CRDT is

abbreviated of Conflict Replicated Data Types. However

the recent researches over the collaborative editing

systems many of the algorithms have been found like

Logoot [12], Treedoc [13] and WOOT [14].

In the Logoot algorithm, it uses the scalable

optimistic replication for collaborative editing on the P2P

networks. According to the WOOT (With out Operational

Transformation) algorithm is the framework that ensure

the consistency without operational transform on the group

editors community. A real time group editor has used

these frameworks for the editing. The Treedoc is also a

mechanism for the commutative replicated data type

systems.

In the author of WOOT algorithm, proposed to

include the immutable identifiers for the position of

inserted or deleted, instead of using the index to the

position, which could be affected if another user has

submitted an insert or delete operation for an earlier

position. Likewise the Logoot algorithm uses a simpler

data structure for unique identification; however, it relies

on a casually ordered reliable multicast service for the

algorithm to work, which could limit its use in practical

systems. A tree data structure is used to generate totally

ordered unique identifiers for each element in the shared

document by according to the Treedoc algorithm.

 VOL. 12, NO. 23, DECEMBER 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6983

Many of the researches provide mechanism for

the collaborative editing but however the real challenge

for every mechanism to ensure the consistency and

integrity [15]. This is the primary challenge for every

Collaborative editing system using operational

transformations. The Operational Transformations are

simply denoted as the OT in the editing systems [16]. OT

has a reputation of being hard to understand. This

reputation has to rise even faster now to that Google has

published the Drive Realtime API, which is based on OT

and let’s third party apps use the same collaboration as

Google Docs.

WORKING OF PROPOSED ALGORITHM

In this paper, there are three algorithms - server

update, replica update and Write main updates. Each

algorithm has separate process to determine some

conditions satisfied.

All these algorithms perform with some

conditions regarding server available and replica updates.

The algorithms tell the process of the server and the

replicas update over the group of editing system. It is the

main process to find faulty replica and remove from the

group. Each process did the updates with perfect match

with other replica updates. The algorithm check every

update whether it is right or not with other update. Three

algorithms are namely as Server Update, Replica Update

and Write main update. Lets we see these algorithm

process in detail.

A. Server update
The function of the server update algorithm tells

about the server process that means the check of every

replica is available or not. When the entire replica is ready

to do the update on the local copies, this algorithm did the

availability or not at the time. The replica start time and

end time has been calculated in the nanoseconds to

transfer the updates to the main document. The exact time

is taken by the subtraction of the start time in the end time

in nanoseconds. After the checking the availability, the

server take the response of update transform to the main

document if and only if it is only right match update.

B. Replica update

The second algorithm said about the every replica

update with respect to the server actions. Here we have to

check the updates are right or not. In every replica update,

the replica update algorithm checks that replica’s update is

mismatch or correct match. Sometimes the replica can did

any mismatch update on the local copies. Those mismatch

updates were found and removed and also that replica is

also removed from the group. So it saves the entire

document from failure and integrity faults. Then the server

gets suitable updates from the respective replicas and

writes over the main document. This is applicable for all

replicas update.

C. Write main updates

In this part, updates of our all replicas contain rep

id, timestamp and data. But we want to extract only data

from the all the updates, however all the updates were

arrived and stored at the local copies but the server wants

only suitable update not at every replica updates. This

algorithm did all the updates were sort and transfer to the

main document. Here rep id and timestamp are stored at

local copies only for their future responses. Only the data

from the all the replica updates were write on the main

document. Here we cannot see any special characters on

our updates. Our whole update contains only pure data.

This is done by this algorithm for every replica update.

The working of every algorithm is so efficient

and simple, since they do not require any complex data

types and data structures.

D. Finding threats
Threat is meant by in our updates wrong data,

mismatch data, unauthorized access, document loss [17],

unavailability like this etc,. Our three algorithms have

 VOL. 12, NO. 23, DECEMBER 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6984

supported to find these threats and remove from our

process. Threat detection is much important in the

collaborative editing. Threat causes the whole document

leads to fail. Threat analyzes and removes process in

collaborative editing systems lead the good editing system

and good integrity. More threat and mismatch updates lead

to document into the inconsistencies and contains wrong

updates [18]. Lets we see what are the threats available

and the ways to treat them as follows.

MISMATCH UPDATES AND THREATS

A. Unauthorized access
The unauthorized access is one of the threats in

the collaborative editing systems. When the replica is

identified by as unauthorized by the owner, it is

immediately removed by the server. Because when the

inaccessible replica can have a chance to update the main

document it doesn’t know to do what and when. This will

lead to inconsistencies and faulty updates. When the

replica is found as the unauthorized of the group our

algorithm is used to check the access and their updates.

The update is mismatch or wrong that will automatically

remove from the group.

B. Mismatch updates and invalid data
The mismatch is meant by when one replica can

update some data in the main document as totally different

as others update then it is considered as a mismatch

update. In some cases for example four replicas is allowed

to update some data on the main document but the third

one did the different than other replica update. Then it will

reflect in the main document as different update. So the

main document is not valid due to the mismatch updates.

In another case, every replica can do with same data type

update for some update but there may one replica did

invalid data type update on the document cause the

inconsistencies and unexpected loss. So the validation of

every updates can be verified as true update and good

consistencies over the main document.

C. Malicious attack on the replica’s update
If some attacks over the replica during the update

process, the replica will fail to give the update. It’s the

malicious access or attack over the group communication.

When one replica can be accessed by the unauthorized it

would as block listed in the general of collaborative

editing systems [19]. In our mechanism when the replica

has ready to start the update every nanoseconds of the

update will check and drop by the algorithm. If there any

malicious updates and attacks over the replica, it would be

removed at initially then it will no longer to access the

main document. When the malicious user has given any

mismatch update to the main document, it will spoil the

document as faulty. So the every replica is identified at

initial update where made at the group of editing. A list of

blocked or malicious replicas where identified by the

server that they cannot have permission to access the main

document or any other further updates over the main

document.

These are some threats in the collaborative

editing systems. The threat analysis and threats should be

removed in the well manner on the collaborative system to

prevent the inconsistencies. Our process mechanism is

also identified and analyzed the malicious access and

updates. The above threats are presented in the every

collaborative editing system and some of the recent

researches give some possible solutions to maintain the

integrity and consistency.

RESULTS AND DISCUSSIONS

The figure (Figure-1) shows that four (R1, R2,

R3, R4) replica has a local copy updates. All these updates

are transferred to the main document. Here the every

replica can do some update with respect to the correct

updates. Each replica can have a local copy to maintain

their updates. All the updates are matched correctly then

the updates are transferred to the main document. In every

update the replica can have own copy for their future

reference.

Main Document

Local Copy Local Copy Local Copy Local Copy

Replica 1 Replica 2 Replica 3 Replica 4

Figure-1. Collaborative editing using multiple replicas.

If all the updates are ready to arrive at the main

document the main copy has sort all the updates. If the

update is in mismatch or wrong that replica is identified

and removed at the group. Then it doesn’t access no longer

on the main document. When the replica has command to

start up their update the server is identified that update is

right or wrong. When the wrong updates are made by the

replica and then it is removed from the group. In the

diagram the main document has owner replica that is the

response for all the replica updates. When R1, R2, R3, R4

has given some updates to the main document the server

has to identify firstly check all the replica is available or

not. To avoid the confusion for multiple replica the main

document replica is absent at the Figure-1. If the

unauthorized access and malicious updates were found

from R1, R2, R3 and R4 by the server update algorithm, it

is identified and removed at the initial stage. Further it has

no access to do update over the main document. When all

the replicas were started to do their updates the start and

end time is calculated in nanoseconds. It is the timestamp

of every replica. Timestamp is very important to consider

sorting every updates. After the timestamp is calculated

the server update algorithm correspondingly receives the

updates from the all replicas. In this update has all the data

along their id and timestamp in nanoseconds. Then all the

 VOL. 12, NO. 23, DECEMBER 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6985

updates were verified as the perfect update, it is

transferred to the main document, since it should have

perfect updates. When the mismatch and malicious

updates were found at the replica update the server

immediately removed from the group. The malicious

access and the updates at the while replica update the

updates are ignored by the main document. So the original

updates were sort and transfer to the main document.

In the write on document algorithm is used to

check the update has no special characters and rep id. It

has only the update of the replica data only. It is done by

the command of <ReplaceAll (“[^a-zA-Z_]”,” “)>. It is

used to determine the number of special characters

allowed in the main document. The write main update

algorithm is the response to write the whole update on the

main document. It has initially timestamp, id and data. But

later the document is filtered only replica data only. The

replica id and the timestamp has stored at only in the

replica local copies only. In our mechanism all the updates

transferred by one by one at the replicas, finally every

replica updates were sort and stored at the main copy.

Every timestamp is calculated at the nanoseconds that are

partially calculated as start time and end time. The start

time is meant by the when the replica is started and the

end time is denoted as the update is done at the local copy.

The throughput of the every process in the replica update

is denoted by some process. The total elapsed time is

calculated in the nanoseconds. A graph is drawn for the

replica update and the document throughput. Document

throughput is defined by how the document has only pure

update without any faults on the minimum time manner.

We sort all the updates from the replica updates. Here all

replicas can give the updates to the main document but

however which one gives correct update in the minimum

time units is considered. We sort all their updates

according to the timestamps only. The timestamp is taken

in the nano seconds to calculate accurate update time.

Normally, the throughput should be maximum for

every main document. It is based on the replica’s

performances over the main document. In our mechanism,

we take six replicas for the replica update graph. Six

replicas namely R1, R2, R3, R4, R5, and R6 are

considered. The arrival time of the six replicas has been

taken in the nanoseconds (NS). Separately the update time

of the R1, R2, R3, R4, R5 and R6 timestamps has been

taken in the nanoseconds. Here we can draw the line graph

for the six replicas update and arrival performances.

Table-1. Replica update time.

Replicas
Arrival time (in

Ns)

Update time

(in Ns)

R1 1048 1800

R2 2068 2800

R3 2880 3180

R4 3148 3520

R5 3600 3848

R6 5042 5640

The table (Table-1) shows that the arrival time

and the update time of the six replicas. The graph has been

plotted according to the nano second values. All the

replicas can arrive in the different time slots and make the

updates over the main document. Here if there any

maximum time interval between the arrival and the update,

that replica is ignored by the main document. There is the

some sequence time intervals all the replicas did the

update over the main document. Here there are two lines

are plotted, one for the arrival time and another one for the

update time. The entire replica produces the update in the

time increasing flow because here the no more mismatch

updates and the malicious attacks on the replicas. If there

any some attacks and faults the line has been fall from

high to low manner.

Figure-2. Replicas update line chart.

Using this replica update graph (Figure-2), the

throughput of the document has been calculated in the

milliseconds. The timestamp of nano seconds is converted

into milliseconds. In our mechanism the throughput is

 VOL. 12, NO. 23, DECEMBER 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6986

defined as the fraction of the update time and arrival time

in milliseconds. First of all, the conversion of the

nanoseconds to millisecond is 1 nano seconds=1e-6. The

method of the throughput is defined as:

Throughput = X 1000000 ms
Update time in Nano Sec

Arrival Time in Nano Sec

In the above calculation, we can utilize our

document throughput in milliseconds. The throughput

chart of the six replicas update over the main document

has been plotted below. The throughput of the main

document is used to determine that which replica has more

perfect update over the main document. For example, R1

arrived as early and give immediate update than others. So

R1 has the maximum throughput than other replicas. The

main document of the throughput is plotted in Figure-3.

Figure-3. Replica throughput.

So R1 has the highest throughput on the main

document and has perfect updates over the main

document. Other replica has some delay and causes some

fault update and recovers later. Let’s compare R3, R4, R5,

R6 with its sequence arrival and update; but they are

delayed with compared to the R1. So they are same level

of throughput with less than the R1. Thus the way of the

multiple replica update through this method. In some case

of the any malicious attack and fault update that also can

reflect in the graph. It is also identified in the line which

falls from high to low. If there is no more error that replica

will give the high throughput.

CONCLUSIONS

The recent researches have proposed about the

collaborative editing system to participate with multiple

operations on same time with many mechanisms. However

all the research show that the importance and concept of

integrity and consistencies. Out work also showed that the

reliability and integrity of the editing system is maintained

in high order. We can also consider the removal of the

replica in the group of editing which is vulnerable to

attacks and threats. The CRBT based system has

revolutionized by the many recent researches and new

mechanisms. We proposed three basic algorithms to find

and evaluate the mismatch update and perfect update over

the main document. Here we can also prove that which

replica can give the high and low throughput over the

main document. The throughput between the main and

local copies has been found and analyzed by the line

charts. Our mechanism has proved to detect and removal

the malicious and mismatch update over the multiple

replica update. Here we can satisfy our mechanism by

finding and removing malicious attacks, saving perfect

updates and most importantly we can maintain the strong

integrity and more reliable performance over the main

document. Thus the approach of algorithm to maintain

consistency and reliability on the fickle operations at

Collaborative editing systems has been implemented

successfully. There are many researches is going on the

group of editing systems. As a future enhancement, we can

consider the protection of collaborative editing system

from other left over threats and challenges. We can also

implement the new mechanism to fast the update with

accuracy. We can do the session management for each

replica to do automatic update over the main copies. We

can also define one garbage collector to correct the

mismatch update and recover the updates from the fails.

We also implement the firewall booster over the each

replica to avoid the unexpected crashes. The new

encryption and decryption method for separately for every

replica to do session update between local and main

copies. New hardware approaches and mechanism will

arrive for the strong fault tolerance at this type of editing

system at soon. These will lead to the ongoing research

over the distributed computing environment. The

advanced future enhancement on the Collaborative Editing

is ongoing research on the computer networking sites.

They will arrive at the future on the editing systems

platforms.

 VOL. 12, NO. 23, DECEMBER 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6987

REFERENCES

[1] Tanenbaum Andrew S. 1995. Distributed Operating

Systems. Englewood Cliffs, N.J: Prentice

Hall. ISBN 0-13-219908-4.

[2] Brenes J. A., López G. & Guerrero L. A. 2017.

Development and evaluation of augmented object

prototypes for notifications in collaborative writing

environments. In Advances in Human Factors and

System Interactions (pp. 301-312). Springer

International Publishing.

[3] Sila Ozen Guclu, Tanir Ozcelebi, Johan Lukkien.

2016. Distributed Fault Detection in Smart Spaces

Based on Trust Management. In: Proceedings of the

2016 Elsevier Science Direct 7
th

 International

Conference on Ambient Systems, Networks and

Technologies (ANT 2016). pp. 66-73.

[4] Dunne J., Jiang M. Z., Shao H. & Xue Z. Y. 2016.

U.S. Patent No. 9, 471, 897. Washington, DC: U.S.

Patent and Trademark Office.

[5] Zibin Zheng, Michel R. Lyu. 2015. Selecting an

Optimal Fault Tolerance Strategy for Reliable

Service-Oriented Systems with Local and Global

Constraints. In: Proceedings of the 2015 IEEE

Transactions on Computers. 64: 219-232.

[6] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E.

Wong. 2007. Zyzzyva: Speculative byzantine fault

tolerance. In: Proceedings of 21
st
 ACM Symposium

on Operating Systems Principles.

[7] https://en.wikipedia.org/wiki/Conflict-

free_replicated_data_type

[8] Adrian W. T., Nalepa G. J. & Ligęza A. 2016.
Usefulness of Inconsistency in Collaborative

Knowledge Authoring in Semantic Wiki. In

Knowledge, Information and Creativity Support

Systems: Recent Trends, Advances and Solutions (pp.

13-25). Springer International Publishing.

[9] Lv X., He F., Cai W. & Cheng Y. 2016, May. An

efficient collaborative editing algorithm supporting

string-based operations. In: Computer Supported

Cooperative Work in Design (CSCWD), 2016 IEEE

20
th

 International Conference on (pp. 45-50). IEEE.

[10] G. Oster, P. Urso, P. Molli and A. Imine. 2005.

Proving correctness of trans-formation functions in

collaborative editing systems. INRIA, Rapport de

recherche RR-5795.

[11] Cheng Y., He F., Wu Y. & Zhang D. 2016. Meta-

operation conflict resolution for human–human

interaction in collaborative feature-based CAD

systems. Cluster Computing. 19(1): 237-253.

[12] Wenbing Zhao, Mamdouh Babi, William Yang,

Xiong Luo, Yueqin Zhu, Jack Yang, Chaomin Luo,

Mary Yang. 2016. Byzantine fault tolerance for

collaborative editing with commutative operations. In:

proceeding of the of the IEEE International

Conference on Services Computing. IEEE. pp. 0246-

0251.

[13] S. Weiss, P. Urso and P. Molli. 2009. Logoot: a

scalable optimistic replication algorithm for

collaborative editing on p2p networks. In:

Proceedings of the 29
th

 IEEE International Conference

on Distributed Computing Systems. IEEE. pp. 404-

412.

[14] N. Preguica, J. M. Marques, M. Shapiro and M. Letia.

2009. A commutative replicated data type for

cooperative editing. In: Distributed Computing

Systems, 2009. ICDCS’09. 29
th

 IEEE International

Conference on. IEEE. pp. 395-403.

[15] Lie Chen, Wei Zhou. Byzantine Fault Tolerance with

Window Mechanism for Replicated Services. In:

Proceedings of the 2015 fifth IEEE International

Conference on Instrumentation and Measurement,

Computer, Communication and Control (IMCCC). pp.

1255-1258.

[16] P A Alsberg, J D. Day. 1976. A principle for resilient

sharing of distributed resources. Proceedings of the

2
nd

international conference on Software engineering.

pp. 562-570.

[17] Wenbing Zhao, Mamdouh Babi, William

Yang, Xiong Luo, Yueqin Zhu. 2016. Enable

Concurrent Byzantine Fault Tolerance Computing

with Software Transactional Memory. in Proceedings

of the 2016 IEEE International Conference on Electro

Information Technology (EIT). pp. 675-720.

[18] M A Naseen, Amal Ganesh, Sunitha C. 2016. A Study

on Byzantine Fault Tolerance Methods in Distributed

Networks. In: Proceedings of 2016 Elsevier Science

Direct Fourth International Conference on Recent

Trends in Computer Science & Engineering Elsevier

Science Direct. pp. 50-54.

https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-13-219908-4
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Wenbing%20Zhao.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Mamdouh%20Babi.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.William%20Yang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Xiong%20Luo.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Yueqin%20Zhu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Jack%20Yang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Chaomin%20Luo.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Mary%20Yang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Wenbing%20Zhao.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Mamdouh%20Babi.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.William%20Yang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.William%20Yang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Xiong%20Luo.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Yueqin%20Zhu.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7527136
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7527136

 VOL. 12, NO. 23, DECEMBER 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6988

[19] Rong Ding, Xiaoguang Li, Tongyu Zhu, Zhenhan

Zhong, Jufu Zhang. 2011. Research on Intelligent

Fault Location for Multistage in Large-scale

Distributed Measurement Environment. In:

Proceedings of the 2011 Elsevier on Advanced in

Control Engineering and Information Science. pp.

2403-2407.

