
                                VOL. 13, NO. 2, JANUARY 2018                                                                                                      ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2018 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                 429 

EFFECTS OF NON-UNIFORM TEMPERATURE GRADIENTS 

ON SURFACE TENSION DRIVEN TWO COMPONENT 

MAGNETOCONVECTION IN A POROUS- 

FLUID SYSTEM 

 
Manjunatha N.1 and Sumithra R.2 

1School of Applied Sciences, REVA University, Bangalore, India 
2Department of Mathematics, Government Science College, Bangalore, India 

E-Mail: manjunatha.n@reva.edu.in  

 
ABSTRACT 

The Hydrothermal growth of crystals  is mathematically modelled as  the onset of Surface tension driven double 
diffusive magneto convection in a two-layer system comprising an incompressible two component, electrically conducting 
fluid saturated porous layer over which lies a layer of the same fluid in the presence a vertical magnetic field.  Both the 
upper boundary of the fluid layer and the lower boundary of the porous layer are rigid and insulating to both heat and mass.  
At the interface the velocity, shear stress, normal stress, heat, heat flux, mass and mass flux are assumed to be continuous 
conducive for Darcy-Brinkman model.  The resulting eigenvalue problem is solved exactly for both parabolic and inverted 
parabolic temperature profiles and analytical expressions of the Thermal Marangoni Number   are obtained.   Effects of 
variation of different physical parameters on the Thermal Marangoni Number for both profiles are compared. 
 
Keywords: surface tension, magnetic field, temperature profiles, Marangoni number. 

 
1. INTRODUCTION 

Double-diffusive convection is a mixing process 
driven by the interaction of two fluid components which 
diffuse at different rates. Leading expert Timour Radko [1] 
presents the first systematic overview of the classical 
theory of double-diffusive convection in a coherent 
narrative, bringing together the disparate literature in this 
developing field. Double diffusion convection holds 
importance in natural processes and engineering 
applications. Double diffusive convection occurs in sea 
water, the mantle flow in the earth’s crust as well as in 
many engineering and physical problems such as in 
contaminant transport in saturated soils, food processing, 
and the spread of pollutants, also appears in the modeling 
of solar ponds. Marangoni convection resulting from the 
local variation of surface tension due to a non-uniform 
temperature distribution is an interesting fluid mechanical 
problem. In the present investigation the double diffusive 
convection in a composite layer horizontally bounded by 
rigid walls presence of vertical magnetic field is 
considered and the resulting eigenvalue problem is solved 
exactly. The effects of variation of the important physical 
parameters and its thermal Marangoni number are 
obtained. The idea of using magnetic field is to 
dampenmelt turbulence and thereby improve microscopic 
homogeneity of the crystal has been first introduced 
independently by Utech and Flemmings [2] and Chedzey 
and Hurle [3]. In addition to damping out the turbulence 
and thereby removing the dopant striations, the magnetic 
field can be used to control the growth conditions at 
various stages in the growth process. 

Though some literature is available for single 
layers of fluid/porous layers, but in composite layers, there 
are very few. Double diffusive convection in composite 
layers has wide applications in crystal growth and 
solidification of alloys. Inspite of its wide applications not 

much work has been done in this area. Recently 
Siddheshwar and Pranesh [4] have obtained the effects of 
a non- uniform temperature gradient and magnetic field on 
the onset of convection driven by surface tension in a 
horizontal layer of Boussinesq fluid with suspended 
particles confined between an upper free / adiabatic 
boundary and a lower rigid / isothermal boundary have 
been considered. A linear stability analysis is performed. 
The Galerkin technique is used to obtain the eigen values. 
Shivakumara et al [5] have investigated the onset of 
surface tension driven convection in a two layer system 
comprising an incompressible fluid saturated porous layer 
over which lies a layer of the same fluid. The critical 
Marangoni number is obtained for insulating boundaries 
both by Regular Perturbation technique and also by exact 
method. S.P.M. Isa et al [6] have investigated the effect of 
magnetic field on the onset of Marangoni convection in a 
horizontal layer with a free-slip bottom heated from below 
and cooled from above with non-uniform basic 
temperature gradient is considered. Melviana Johnson Fu 
et al [7] have obtained the effect of a non-uniform basic 
temperature gradient and magnetic field on the onset of 
Marangoni convection in a horizontal micropolar fluid 
layer using the Rayleigh-Ritz technique. S.P.M. Isa et al 
[8] investigated the effect of non-uniform temperature 
gradient and magnetic field on Marangoni convection in a 
horizontal fluid layer heated from below and cooled from 
above with a constant heat flux. A linear stability analysis 
is performed. Norihan Md. Arifin et al [9] studied the 
effect of a non-uniform basic temperature gradient and 
magnetic field on the onset of Benard-Marangoni 
convection in a horizontal micropolar fluid layer using the 
Rayleigh-Ritz technique. Joseph et al [10] have obtained 
effects of electric field and non-uniform basic temperature 
gradient on the onset of Rayleigh- 
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Benard-Marangoni convection in a 
micropolarfluid is studied using the Galerkin technique. R. 
Sumithra and Manjunatha. N [11, 12] have obtained the 
closed form solution of the problem of surface tension 
driven magneto convection is investigated in a two layer 
system comprising an incompressible electrically 
conducting fluid saturated porous layer over which lies a 
layer of the same fluid in the presence of a vertical 
magnetic field. 
 
2. FORMULATION OF THE PROBLEM 

Consider a horizontal two-component, 
electrically conducting fluid saturated isotropic sparsely 
packed porous layer of thickness 

md underlying a two 

component fluid layer of thickness d with imposed 

magnetic field intensity 0H  in the vertical z – direction. 

The lower surface of the porous layer is rigid and the 
upper surface of the fluid layer is free with surface tension 
effects depending on both temperature and concentration. 
Both the boundaries are kept at different constant 
temperatures and salinities.  A Cartesian coordinate 
system is chosen with the origin at the interface between 
porous and fluid layers and the z – axis, vertically 
upwards.  The continuity, solenoidal property of the 
magnetic field, momentum, energy, species concentration 
and magnetic induction are, for the fluid layer 
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For the porous layer, 
 

0m mq  
r

                                   (7) 

 

0m H  
r

                                   (8) 

 

 

 

2

0 2

1 1m
m m m m m m m m

m p m

q
q q P q

t

q H H
K

 
 
 

        

  

r
r r r

r rr

               
(9) 

 

  2m
m m m m m m

T
A q T T

t


   


r

                                          (10) 

 

  2m
m m m m m m

C
q C k C

t
     


r

                              (11) 

 

2
m m m em m m

H
q H H

t
      


r
r rr

                               (12) 

 

Where  , ,q u v w
r

 is the velocity vector, H
r

 is 

the magnetic field, 0  is the fluid density, t  is the time,  

 is the fluid viscosity,
2
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    is the total pressure,

p  is the magnetic permeability, T  is the temperature,   

is the thermal diffusivity of the fluid,
ck  is the solute 

diffusivity of the fluid, C  is the concentration or the 

salinity field,  
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permeability of the porous medium,
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ratio of heat capacities, 
pC  is the specific heat,   is the 

porosity, m
em


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  is the effective magnetic viscosity and 

the subscripts ‘m’ and ‘f’ refer to the porous medium and 
the fluid respectively. 

The basic state is quiescent, in the fluid layer 
 

   
   0

0,0,0, , ,
, , , , , ,

,

b b

b

P z T z
u v w P T C H

C z H z

 
        

r

                        

(13) 

 
 and in the porous layer 
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where the subscript ‘b’ denotes the basic state.  

The temperature and species concentration distributions

 ,bT z  mmbT z  and  ,bC z  mmbC z  respectively are 

found to be  
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We superimpose infinitesimal disturbances on the 
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where the primed quantities are the perturbed 
once over their equilibrium counterparts.  Now Equations. 
(19) and (20) are substituted into the Equations. (1) to (12) 
and are linearized in the usual manner.  Next, the pressure 
term is eliminated from (3) and (9) by taking curl twice on 
these two equations and only the vertical component is 
retained.  The variables are then non dimensionalized 

using
2
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Introducing the normal mode solutions of the 
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dimensional horizontal wave numbers must be the same 

for the fluid and porous layers, we must have m

m

a a

d d
  and 

hence ˆ
ma da . 

Substituting Equations. (29) and (30) into the  
Equations. (21) to (28)   and  denoting the differential 

operator 
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  and 
mz
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

 by D  and
mD  respectively, an 

eigenvalue problem consisting of the following ordinary 
differential equations is obtained, 
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Since the principle of exchange instability holds 

for surface tension driven convection in fluid layer and 
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3. BOUNDARY CONDITIONS 
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lower boundary of the porous layer are rigid and insulating 
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normal stress, heat, heat flux, mass and mass flux are 
assumed to be continuous conducive for Darcy-Brinkman 
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expansion and are 
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The Equations. (39) to (44) are to be solved with 

respect to the boundary conditions (45). 
 
4. METHOD OF SOLUTION  

The solutions of W  and mW are found to be,  
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  and ' ( 1,2,3,......8)iAs i  are 

constants and the expressions for ( )W z  and ( )m mW z are 

appropriately written as 
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(49) 

 

where ' ( 1,2,3,......7)ia s i  are determined using the 

velocity boundary conditions of (45), we get 
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5. LINEAR TEMPERATURE PROFILE 
 
Here taking  

( ) 1h z  and ( ) 1m mh z  (50) Substituting equation 

(50) into the heat equations (40) and (43), the expressions 

for  and m  are obtained as 
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                          (50) 
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where ' ( 20,...23)ia s i  are constants to be 

determined by using the temperature boundary conditions 
of (45), we get 
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The species concentration equations (41) and 

(44), the expressions for S and mS  are obtained as 

 

 1 16 17 2( ) ( )S z A a Coshaz a Sinhaz f z  
                           (53) 

 

 1 18 19 2( ) ( )m m m m m m m mS z A a Cosha z a Sinha z f z  
             (54) 

 
Where 
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where ' ( 16,...19)ia s i  are constants to be 

determined by using the concentration boundary 
conditions of (45), we get  
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Now the thermal Marangoni number is obtained 

by the boundary condition  145 as  
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6. PARABOLIC TEMPERATURE PROFILE 

Following Sparrow et al [15], we consider a 
parabolic temperature profile of the form 
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                                         (56) 

 
Substituting equation (56) into the heat equations 

(40) and (43), the expressions for  and m  are obtained 

as 
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where ' ( 8,...11)ia s i  are constants to be 

determined by using the temperature boundary conditions 
of (45), we get 



                                VOL. 13, NO. 2, JANUARY 2018                                                                                                      ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2018 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                 435 

8 10 11 35
ˆ ˆcosh sinh ,m ma Ta a Ta a   

10 11 36
9

sinh cosh
,m m m ma a a a a a

a
a

  
 39 37

10 11

38

, ,
m

a a
a

 
  


 
 

 

  

 
 

2 2

34 12
2 2

12 2

2 3 3 22 2

2

3 22
2 2

2( )

2

2
) ( )

4
,

a
a Sinh Cosh

a

Sinh a Cosh
a

a a Sinh a a Cosh
a

a Sinh a Cosh
a

  


  


   


  



  



 


   


 


 
 

 
 

   
 

 
 

 

4 4 4 5 4

2
2 2

4

35

5 6 5 7 5

2
2 2

5

1 3

2 2
2 2 2 2

5 4 4 4

2 2

4

7 5 6 5

2 2

5

4

ˆ
4

4 4

ˆ2 ,

m

m

m

m

c a Sinhc a Coshc

c a
T

c a Sinhc a Coshc

c a

a a

a a

a Sinhc a Coshc

c a
T

a Sinhc a Coshc

c a

 

 

 
 

 
   

    
 
  
   
 
 

 
     

   

   

 
 

   

 
 

2 2 2 2

36 22 2
2 2 2 2

4
4 4 5 42 2

4

2 2

4
5 4 4 42

2 2

4

5
6 5 7 52 2

5

2 2

5
7 5 6 52

2 2

5

2( ) 2( )

2

2( )

2

2( )
,

m

m

m

m

m

m

a a
a

a a

c
a Sinhc a Coshc

c a

c a
a Sinhc a Coshc

c a

c
a Sinhc a Coshc

c a

c a
a Sinhc a Coshc

c a

 

 

      
   

 


   
  

 


   
  

 

   
2 2 2 2

5 4
37 6 42 2

2 2 2 2

5 4

2( ) 2( )
,m m

m m

c a c a
a a

c a c a

         
       

38
ˆ ,m m mTa Sinha Cosha a Cosha Sinha  

  
 

37
39

35 36 34

ˆ

,

m m m

m

Ta Sinha Sinha a Cosha Cosha
a

a Sinha Cosha


  

     
 

 
Now the thermal Marangoni number is obtained 

by the boundary condition  145 as 

 

 1 2

2

4

M
  

 


                                                            

(59)
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7. INVERTED PARABOLIC TEMPERATURE  

    PROFILE 
 For the inverted parabolic temperature profile we 

have 
 

     2 1 ( ) 2 1m m mh z z and h z z   
                          (60)    

 
Substituting equation (60) into the heat equations 

(40) and (43), the expressions for  and m  are obtained 

as 
 

 1 12 13 3( ) ( )z A a Coshaz a Sinhaz f z   
                           (61) 

 

 1 14 15 3( ) ( )m m m m m m m mz A a Cosha z a Sinha z f z   
           (62) 

 
Where 
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where ' ( 12,...15)ia s i  are constants to be 

determined by using the temperature boundary conditions 
of (45), we get 
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Now the thermal Marangoni number is obtained 

by the boundary condition  145  as 
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3

5

M
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(63) 
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8. RESULTS AND DISCUSSIONS 

The Thermal Marangoni numbers 1M , 2M and 3M  

obtained as a functions of the parameters are drawn versus 

the depth ratio d̂  and the results are represented 

graphically showing the effects of the variation of one 
physical quantity, fixing the other parameters. The fixed 
values of the parameters are

$ˆ200, 1.0, 1.0, 0.7, 0.2,Q T S a       

 1 2 10, 0.25s s pmM M      and µ 2.0  .The 

effects of the parameters ˆ, , , ,a Q   and sM  on the 

Thermal Marangoni number are obtained and portrayed in 
the figures 1 to 6 respectively. 

 
(1a) 

 

 
(1b) 

 

 
(1c) 

 

Figure-1a, 1b& 1c. The effects of a   horizontal wave 

number on the thermal Marangoni number M . 
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The effects of a  horizontal wave number on the 

Thermal Marangoni numbers for both the parabolic and 

inverted parabolic profiles 1 2 3, &M M M  are shown in 

Figure-1a, 1b and 1c respectively for 1.0, 1.1a  and 1.2 . 

From the figures it is clear that the Thermal Marangoni 
number for the parabolic profile is more than that for the 

inverted parabolic profile.  At the value of ˆ0.2 0.3d  , the 

effect of both the profiles are neutral and no effect of the 
horizontal wave number a on the thermal Marangoni 
number. The curves for the three wave numbers both the 

profiles are converging up to the value of ˆ 0.2d  , whereas 

the three curves are diverging for the values of the depth 

ratio ˆ 0.2d  . For both the profiles, when the value of a , 
the horizontal wave number is increased, the Thermal 
Marangoni numbers decrease and its effect is to 
destabilize the system. That is, its effect is to advance 
surface tension driven convection. 
 

 
(2a) 

 

 
(2b) 

 

 
(2c) 

 

Figure-2a, 2b & 2c.The effects of   on the thermal 

Marangoni number M . 

 

The effects of the porous parameter   on the 

thermal Marangoni numbers for the both the profiles are 
exhibited in the Figure-2a, 2b and 2c. The curves are for 

0.20, 0.25, 0.30  . The curves diverge for smaller values 

of the depth ratio, converge near  ˆ 0.24d   and again 

diverge and converge at  ˆ 0.32d   and, as the depth ratio is 

further increased the curves diverge.  For smaller values of 
depth ratio, increase in the value in the value of the porous 
parameter increases the thermal Marangoni number, 

whereas for values of the depth ratio ˆ0.24 0.34d   , the 

increase in the value of the porous parameter is to decrease 
the thermal Marangoni number and again for values of 
ˆ 0.34d  the behaviour again reverses. So, the onset of 

surface tension driven convection can either be made 
faster or delayed by choosing an appropriate value of the 
porous parameter depending on the depth ratio. In other 
words increasing the permeability of the porous matrix 
one can destabilize and also stabilize the fluid layer 
system, this may be due to the presence of magnetic field. 
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(3a) 

 

 
(3b) 

 

 
(3c) 

 

Figure-3a, 3b & 3c. The effects of Q  on the thermal 

Marangoni number M . 
 

Figure-3 exhibits the effects of the magnetic field 
on the onset of convection by the Chandrasekhar number

Q . From the figures it is clear that the Thermal Marangoni 

number for the parabolic profile is more than that for the 
inverted parabolic profile for a fixed value of depth ratio.  

At the values of ˆ 0.2 0.24d to , the effects of both the 

profiles are neutral and there is no effect of the Q  on the 

thermal Marangoni number. The curves for the three 
Chandrasekhar numbers for  both the  profiles are 

converging up to the value of ˆ 0.24d  ,whereas the  three 

curves diverge for  the values of the depth ratio ˆ 0.2.d     

For both the profiles, when the value of the Chandrasekhar 
number is increased, the Thermal Marangoni numbers 
increase and hence stabilize the system. That is the 
Marangoni convection is delayed for the smaller values of 

d̂   that is for values of ˆ 0.2d  and ˆ 0.24.d   
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(4c) 

 

Figure-4a, 4b& 4c.  The effects of ̂  on the thermal 

Marangoni number M . 

 

The effects of the viscosity ratio µ , which is the 

ratio of the effective viscosity of the porous matrix to the 
fluid viscosity are displayed in Figures 4a, 4b and 4c. The 
curves diverge and again converge between the values of 

depth ratio ˆ0 0.24.d  The curves are diverging for the 

values of the depth ratio ˆ 0.24d   for both the profiles and 

the behaviour of the change in the viscosity ratio reverses.   
Increase in the value of the viscosity ratio increases the 
thermal Marangoni number for the values of depth ratio

ˆ0 0.24d  . Whereas the same decreases the thermal 

Marangoni number for ˆ 0.24d  . The effect of the 

viscosity ratio   is to stabilize the system for smaller values 
of the depth ratio, while the effect of the same is to 
destabilize the system for later values of the depth ratio. 
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(5c) 

 

Figure-5a, 5b & 5c. The effects of   on the thermal 

Marangoni number M . 

 
Figures 5a, 5b and 5c depict the effects of 

porosity  , on the Thermal Marangoni numbers 

1 2 3, &M M M  for the Linear, parabolic and inverted 

parabolic profiles respectively. For the both the profiles, 

upto the value of depth ratio ˆ 0.2d  there is no effect of 

porosity on the thermal Marangoni number.  For the 

values of the depth ratio ˆ 0.2d     the curves are diverging 

and for a fixed value of depth ratio, increase in the value 
of porosity decreases the thermal Marangoni number that 
is to destabilize the system.   In other words the increase in 
the void volume of the porous layer decreases the thermal 
Marangoni number and hence destabilizes the system. 
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(6a) 
 

 

(6b) 
 

 
(6c) 

 

Figure-6a, 6b & 6c. The effects of sM  on the thermal 

Marangoni number M . 

Figures 6a, 6b and 6c displays the effects of the 
solute Marangoni number sM  on the thermal Marangoni 

number M . The graph has three converging curves.  This 
number has dual effect on the thermal Marangoni number.  
For values of  0.2sM   the curves are converging and 

here  for a fixed depth ratio the increase in value of sM  

increases the thermal Marangoni number where as, for the 
values of depth ratio 0.2sM   the  curves are diverging, 

and here  for a fixed depth ratio the increase in value of 

sM  decreases the thermal Marangoni number. 

 
9. CONCLUSIONS 

The  increase in the values of  Horizontal wave 

number a , the Chandrasekhar number Q , and the porosity 

  increases the thermal Marangoni number for both the 

parabolic and inverted parabolic temperature profiles, 
hence their effect is to delay the surface tension driven 
convection i.e., to stabilize the system. Whereas the 
increase in the values of the Porous parameter  , the 

viscosity ratio ̂  and solute Marangoni number sM ,
the 

thermal Marangoni number decreases so the effect of these 
parameters is to destabilize the system for both the 
parabolic and inverted parabolic temperature profiles. 
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