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ABSTRACT 

The boundary integral equations constitute a remarkably elegant formal solution of the elastoplastic problem of 

unsaturated expansive soils. Numerical techniques (Boundary element method) must be employed to solve them. The main 

difficulty of this nonlinear analysis is that the boundary integral equations are augmented by a domain integrals involving 

initial stresses which necessitate domain discretization and the specification of interior cells in the parts of the domain that 

are likely to yield (unlike the linear case which involve only the boundary discretization). The main purpose of this paper is 

to write the discretized form of boundary integral equations of expansive soils using the shape functions. 
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INTRODUCTION 

To solve the elastoplastic problem of unsaturated 

expansive soils, we have to deal with the following 

boundary integral equations that have been found in 

previous works (J. El Brahmi et al., 2017): 
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where: 

 

 et x  : field point coordinate and source point 

coordinate respectively 

it
&et 

iU&
 

: traction increment and displacement 

increment respectively on the boundary 

S of the domain 

ijG et
ijF

 
: kernel Functions (the Kelvin 

fundamental solutions generated by unit 

loads in an infinite elastic solid) 
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: Laplacian of succion, suction 

increment and gradient of suction 

increment. 

r :   distance between the field point and the 

source point given by : 
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where:  

 , 
  

: Lamé constants 

s  
: compressibility coefficient when 

succion increments are in the elastic 

range 

e :   void ratio 

atmp
  

: atmospheric pressure 

S  and V  : boundary surface and domain integral 
0

ik ikS ds &
 

: initial stresses (plastic part of stresses) 

given by: 
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Despite the apparent mathematical complexity of 

these boundary integral equations, it constitutes a 

remarkably elegant formal solution of the governing 

elastoplastic equations of expansive soils. Unfortunately, 

this integral equations defies solution by analytical means. 

In practice, numerical techniques (Boundary element 

method) must be employed to solve it.  
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NUMERICAL IMPLEMENTATION IN TWO 

DIMENSIONS 

The integral equations (1) consist of two 

mechanical integrals:  
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where the first one (equation 2) treats the elastic 

part of the problem and needs the discretization of the 

boundary S of the problem, while the second integral 

(equation 3) deals with the plastic stresses (initial stresses). 

The equation (3) cannot be conveniently transformed into 

a boundary integral, which necessitate domain 

discretization and the specification of interior cells in the 

parts of the domain that are likely to yield (because the 

domain integrals are zero elsewhere). 

The remaining integrals of equation (1), which 

are related to the moisture flow (soil suction), are as 

follows: 
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The integrals involving succion increments and 

succion gradient increments (equations 5 and 6) 

involve only the discretization of the boundary S 

of the problem. The first integral (equation 4) 

could be determined analytically. 

The main difficulty of this nonlinear analysis is 

that the boundary integral equations are augmented by 

those domain integrals involving initial stresses which it is 

one obvious difference between the linear and nonlinear 

cases. 

 

Boundary and domain discretization 

The boundary “S” of the region of interest “V” is 

subdivided into a sufficient number (Ne) of elements 

(which should form a piecewise continuous approximation 

to the boundary).In each element, the global coordinates 

ix  are interpolated between the coordinates 
ix


of the 

nodes of that element through “one dimensional” 

interpolation functions thus: 
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For quadratic interpolation, three nodes

( 1,2,3)   must be defined for each element as depicted 

in Figure-1. and the parameters   is the local (intrinsic) 

coordinate, defined by the curvilinear axis system that is 

everywhere tangential to the element and  normally  take 

values - 1,0,1  (Figure-1.b) 

The interpolation functions ( )N  which are 

commonly referred to as “shape functions” can be 

expressed as: 
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Figure-1. Serendipity line elements (quadratic case). 

 

The discretization requires also division of the 

yield region into (Nc) iso-parametric cells. In each cell, the 

geometry and initial stresses are interpolated between the 

nodes using shape functions, that is, 
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where
p

ij

& is the ij
th

 component of the initial 

stress at node α, and ( , )M   are the two-dimensional 

shape functions. 

For quadratic interpolation, eight nodes

( 1,2,..8)   must be defined for each cell as depicted in 

Figure-2.a (four nodes at the corners of the intrinsic 

element and four nodes at the center of each side). The 

shape functions for the corner nodes ( 1,2,3,4)  are: 
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and those for the mid-side nodes ( 5,6,7,8)  are: 
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Figure-2. Serendipity cells (quadratic case). 

 

The parameters   and  ,are the local (intrinsic) 

coordinates, defined by the curvilinear axis system that is 

everywhere tangential to the element and they normally 

take values in the range 1  (Figure-2.b). 

Interpolation of tractions and displacements: 

The displacements and tractions at intrinsec 

coordinates within an element are defined in terms of the 

element nodal values of displacements and tractions using 

interpolation functions.  In “iso-parametric” formulation, 

we obtain: 
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where α denotes the αth
 node in the 3-noded element. 

 

Discretized boundary integral equations 
Once all of boundary conditions and initial 

stresses are known, we can write the equations 

(2),(3),(4),(5) and (6) using the shape functions as follows 

respectively: 
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The equation (1) becomes: 
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To produce a closed set of equations, we choose 

to write equation (7) for each node in turn; that is, we 

collocate at each of the nodes. It may be observed that the 

kernel function – shape function products are carried out 

over each of the elements or cells. The numerical Gauss 

quadrature method is employed to carry out these 

integrations when the source point p(ξ) is not one of the 
cell’s nodes.  

To apply the Gauss quadrature rules to an 

arbitrary interval, it is only necessary to map that interval 

into Gauss quadrature space, denoted by the symbol  - , 

with due consideration for the scaling factor (Jacobian) 

that this introduces. The mapping from the real interval to 

Gauss quadrature space yields:  
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or in more reduced form: 

 

 

3

8

3 3 3
( )

1 11 1 11 1 1

1 1 1 1

8

N N N Ne e e e s ee e eC U t G U F s A Bjij i ij i ij e ne e e

NN cc pc c
B E

ik ijkc
c


  

  

  
 


           

      

   
   

 
 
 

&

&

   (9) 

 

where: 

 

 
1

1
( , ) N (x)dS(x) ( , ) ( )

e

e

ij ij ij e

S

G G x G x N J d     


    

 
1

1
( , ) N (x)dS(x) ( , ) ( )

e

e

ij ij ij e

S

F F x F x N J d     


    

 

 
1

1
( . ) N (x)dS(x) ( . ) ( )

e

e

j j j j e

S

A a b n a b n N J d    


      

 
1

1
b.y .N (x)dS(x) b.y ( )

e

e

j j e

S

B N J d    


    

 
1 1

1 1
b.y .N (x)dV(x) b.y ( , ) ,

c

c

j j c

V

B N J d d       


 
     

 1 1( , ) N (x) dV(x) ( , ) ( , ) ,1 1
c

E E x E x N J d d
ijk cijk ijk

V
c

        
     

 

 

It is to highlight that when the field point P( ) is 

located in the same element as the source point (x)Q , the 

ijG  and ijF kernels become singular by the fact that they 

contain terms of order r
-1

 and r
-2

, respectively. In this case 

the direct application of Gaussian quadrature is inadequate 

and special techniques must be employed to resolve the 

singularities. 

 

MOISTURE FLOW MODEL 

To treat equation (9), we have to determine firstly 

all of boundary suctions and gradient suctions. Indeed, 

using total suction as the state variable, the governing 

diffusion equation for steady state can be written as 

(Zoukaghe, 1985), 

 

2
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where 
Q

K
   

with Q is the strength of the source (if there is 

any) expressed as rate of suction generation per unit 

volume, and K is the saturated permeability (if isotropic 

permeability is considered). 

Equation (10), poisson’s equation, is assumed to 

be sufficiently differentiable for the Laplacian 
2 to exist. 

The solution of that equation defines the distribution of 

suction throughout the soil mass as a function of location. 

This solution can be uniquely determined by proper 

prescription of the boundary conditions (soil suction s  

and/or gradient of suction
s

n




). Numerical solutions to 

these equations are quite popular in both research and 

industrial environments. In these areas, Finite Difference 

and finite Element methods are used extensively. 

However, the boundary Integral Equations Method will be 

used again to solve them. 

The boundary integral formulation to the 

diffusion equation (10) subjected to specified boundary 

conditions is: 

 

( )
S S V

s
s G dS FsdS G dV

n
  


    


                        (11) 

 

This equation (11) defines soil suction s  at any 

boundary or interior point  , where The function G 

(which represents the effect at a field point X of a unit 

source applied at a point  )is given by
1

ln( )
2

G r


 

and its associated gradient being
2

1

2
i iF y n

r
  , where 

r, yi and ni are as defined previously.  

The coefficient α is related to the geometry of the 
problem. When ξ is an internal point, then (α=1); when the 
point ξ lies on a smooth boundary, then (α=1/2). 

To compute soil suction s  at interior points of 

the domain, it is necessary to resolve the boundary 

problem first. Obviously, at a point on the boundary S, 

either s or  
s

n




 is known a priori in a well posed problem 

(boundary conditions), and by writing the equation (11) 

for each node of the boundary S in turn; we collocate at 

each of the nodes producing a closed set of equations. 

 

CONCLUSIONS 

In this paper, we have sought to demonstrate the 

principal techniques that must be employed to translate the 

formal boundary integral equation solutions of unsaturated 

expansive soils into a practical numerical method. A 

computer program that embodies these techniques will be 

implemented in future papers. 
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