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ABSTRACT 

In the last decade, energy consumption in Indonesia has seen an average increase of 7-8% per year as population 
and economic growth continue to improve. This condition requires the availability of good energy to support economic 
activities and social dynamics of the community. Nevertheless, there are various challenges and obstacles to meet the 
energy needs such as petroleum production, which tends to decline, while the acceleration of new renewable energy 
development is expected to become the new backbone of national energy is still not maximized. Under these conditions, all 
efforts to realize energy security must be a priority agenda for Indonesia. The importance of realizing energy security is 
due to the dynamics of the global energy sector in the coming years not only influenced by supply, demand and price, but 
also other factors such as geopolitical issues and stability of areas where world energy sources are located. In this research, 
we will develop a hybrid algorithm application to predict the non renewable energy price in Indonesia. Hybrid algorithm in 
this study is a combination of genetic algorithm with Nelder Mead and named rvGA-eNM. The development model of 
computational intelligence conducted in this research is utilizing the advantages of the Nelder Mead algorithm in 
exploiting the optimal solution through local search and Genetic algorithm capability in conducting optimal solution 
exploration in the global search area. Data on non-renewable energy prices will be used to measure the performance of 
proposed hybrid models in the form of historical data of non-renewable energy prices several months earlier. The average 
prediction error will be the reference in choosing the right model for the non-renewable energy price prediction the next 
few months. The purpose of this research is to improve the accuracy of non-renewable energy prediction pricing model 
based on computational intelligence. Non-renewable energy prices are predicted using hybrid algorithm optimization. 
Predicted non-renewable energy prices during 2005-2014 are shown in figure visualizes the comparison between the actual 
value and the non-renewable energy price prediction. The values shown shows that in most test points, the prediction value 
approximates the actual (adjacent) values. This explains that the accuracy of the rvGA-eNM model used in the prediction 
of non-renewable energy prices has high robustness properties. 
 
Keywords: non renewable energy, energy price, prediction accuracy, hybrid algorithm. 

 
1. INTRODUCTION 

In general, frequently used prediction methods 
include: Time series, statistical approach, econometric, 
End-use, Neural Network based model and Hybrid 
Algorithm based method. 

Time series forecasting methods are an important 
aspect of the field of research, which includes energy 
demand and computer science. Traditional procedures 
such as the combination of auto-regression (AR) and 
Moving Average (MA) are included in the Time series' 
method popularized by Box and Jenkins in the 1970s. 
However, predictive problems arise for nonlinear models 
because they require much data availability, complex 
patterns that often cannot be extracted linearly.  

A statistical approach was developed to simplify 
the medium-term energy price forecast model, make them 
more accurate, and to avoid the use of large amounts of 
data. A statistical model for load parameters was 
developed in a study by Feinberg et al. (2003). For energy 
price prediction, regression method is usually used to 
model the relation of energy price and the factors that 
influence it. The regression model incorporates 
deterministic, stochastic and exogenous influences. 

Econometrics is a set of quantitative tools for 
analyzing economic data. Economists need to use 
economic data, among others, to predict the impact of 
policy changes and predict what might happen in the 

future (Contos et al, 2009). The econometric approach 
incorporates economic theory and statistical techniques for 
prediction. The approach estimates the relationship 
between energy prices (dependent variable) and the factors 
that influence it. 

The End-Use method is widely used for 
estimating long-term electrical energy. The End-use model 
focuses on a wide range of electrical energy usage in 
industrial, commercial, and household sectors based on the 
principle that electricity demand comes from customer 
demand for heating, cooling, light, etc. In this method, the 
age distribution of equipment is important for certain types 
of equipment. The End-use model describes the energy 
demand as a function of the amount of equipment on the 
market (Feinberg et al., 2003). 

However, the simulation model based on the 
End-use approach requires a description of the equipment 
used by the customer, customer behavior, house size, 
population dynamics, equipment age and technological 
changes. 

Neural Network has been widely used to solve 
prediction problems. One of the most promising 
approaches is the combination of NN with other 
techniques such as genetic algorithms, evolutionary 
strategies, etc. This technique, if used correctly, can be 
very high efficiency (Reyhani & Moghadam, 2011). 
However, in terms of fitness functions, there are still some 

mailto:E-Mail:%20wmusa@ung.ac.id


                                VOL. 13, NO. 2, JANUARY 2018                                                                                                              ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2018 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                699 

shortcomings in finding better predictive results. In 
applying Neural Network for energy price prediction, it is 
necessary to choose one of a number of architectures. 

Hybrid algorithms perform optimizations that are 
divided into global search methods and local searches. 
Local search methods usually converge on local optima. 
The Genetic Algorithm (GA) has recently attracted many 
researchers' attention as a reliable stochastic search 
algorithm for solving problems. GA has been used by 
researchers in Ozturk & Ceylan (2005) and Azadeh et al. 
(2006) as an optimization tool for complex problems 
involving many variables and combinations of linear and 
nonlinear equations. However, these models have not 
found the best solution yet, still have a high predictive 
error rate, and long iterations, causing high commuting 
costs and long operating time. 
 
2. NONRENEWABLE ENERGY PRICE 

PREDICTION 

Some nonrenewable energy price prediction 
techniques have been used, among others, Linear 
Regression. Khazem, H. A (2008) has used the Artificial 
Neural Network (ANN) in his research to predict future 
nonrenewable energy prices. The variables affecting 
nonrenewable energy prices when using the ANN model 
are Federal Reserve Interest Rate, the consumer price 
index (CPI), the world crisis and events (EVENT), the 
natural gas (NG) futures contracts, the Heating Oil futures 
contracts (HO), the West Texas Intermediate (WTI) 
Cushing, Oklahoma, crude oil Spot Prices (SPOT), and the 
futures contracts of crude oil. 
 
3. RESEARCH STEPS 

The flow diagram used in the study as shown in 
Figure-1. 
 
 The first step in the proposed research step is to select 

an appropriate prediction model. Selection depends on 

the approximate time horizon, available data, available 

time, and operating costs. Preferred prediction models 

use available data for energy prices collected from 

energy agencies, model variable data from valid 

sources. 

The second step is the collection of data. In 
developing a non-renewable energy price prediction 
model, the simulation and processing of each model with 
available data is needed to obtain an estimated distribution 
of energy prices. Each prediction method is then tested in 
a special way with respect to the above non-renewable 
energy price variable. Data for non-renewable energy 
prices collected can be categorized as time series data and 
may have an integer sequence, so it needs to be 
normalized. After the prediction process, the data is 
returned to its original value by denormalization. 
 

 
 

Figure-1. Research steps. 
 

The third step is data processing. Representation 
of the objective function of each model is a fitness 
function that represents the relationship between non-
renewable energy prices in the form of dependent variable 
with the independent variable. In this method, objective 
functions are linear and nonlinear models. Models that 
have been developed can then be applied to predictions 
according to the time period. 

The fourth step is to develop an objective 
function in the form of a formula that states the 
relationship between non-renewable energy prices and the 
variables that influence them. This relationship is 
expressed by mathematical formulas and the influence of 
each variable on the magnitude of non-renewable energy 
prices, associated with the algorithm used to calculate the 
price. 

The fifth step is developing algorithms. The 
proposed approach is known as the real-valued genetic 
algorithm and the extended-Nelder-Mead (rvGA-eNM). 
Nelder Mead's improved local search algorithm is used to 
exploit solutions around individuals in the local 
environment, while genetic algorithms make exploration 
in the global population. Individual solutions will 
experience a good evolution of rvGA and the exploitation 
of local environmental solutions from eNM in each 
iteration. This can be done, among other things, taking the 
result of a solution from rvGA as the initial solution of 
eNM. 

The sixth step is to measure the performance of 
the hybrid algorithm model. The performance of the non-
renewable energy price prediction model is measured by 
the proposed hybrid algorithm, the actual value of non-
renewable energy prices and the estimated results from 
each model are compared. Once the approximate results of 
the proposed model are obtained, it needs to be validated 
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for accuracy. The model selection for this study is based 
on several criteria. In this methodology, models with 
sufficient degree of accuracy will be the nominee chosen 
for predicting future non-renewable energy prices. An 
important consideration that the purpose of any predictive 
activity is to provide estimates with sufficient accuracy at 
the lowest possible cost. 
 
4. RESULTS AND DISCUSSIONS 

 
4.1 Model development 

This section describes the development of a non-
renewable energy price forecasting model that includes a 
description of the hybrid algorithm between rvGA and 
eNM and the formulation of the mathematical model used 
to calculate the energy price. 
 

 
 

Figure-2. rvGA-eNM flowchart. 
 
4.1.1 Description of rvGA-eNM 

The steps in the hybrid algorithm (rvGA-eNM) 
follow the flowchart in Figure-2. The Hybrid algorithm 
will calculate the fitness value of the objective function 
obtained at each iteration. This value is the minimum 
individual solution (global minima) that can be achieved 
when convergent. If the targeted search is an error value 
that states the deviation between the actual data and the 
predicted result, then under ideal conditions this value is 
zero. But this ideal condition is difficult to achieve, or in 
other words, it is difficult to achieve 100% accuracy. 

The steps in the rvGA algorithm can be divided 
into six stages: (i) initialization, (ii) encoding the 
individual, (iii) crossover and mutation, (iv) decoding the 
individual, (v) fitness evaluation, (vi) stops checking 
criteria. 

For initialization, the initial population range 
should cover the overall solution space possible. Each 
individual variable will be generated randomly within the 
specified range.  

The 'derivative' solution will be first produced by 
a crossover process in which all the variables of the 
individual solution will be grouped and converted to 

binary form. In this study, a uniform crossover was used 
for 40 bits of each individual. One-point, two-point, and 
uniform crossovers, have different rules on how derived 
solutions inherit the characteristics of the 'parent'. 

The mutation process will prevent premature 
convergence in poor solutions. The mutation operator 
involves an absolute bit (arbitrary) in a genetic sequence 
that has a probability to change from its original state. This 
is done by reversing some random sections of the genetic 
sequence '0' to '1' or from '1' to '0'. 

The solutions obtained from rvGA after crossover 
and mutation will be converted back to real form. This 
solution is used as a starting point (x0) for Nelder Mead's 
local search algorithm (eNM). 

Evaluation step. In this study, MSE, RMSE, 
MAD, and MAPE were used as a fitness evaluation 
function to measure the smallest error (f-BEST) between 
actual nonrenewable energy prices and forecasting values. 
The reproduction process will be repeated until one of the 
stop conditions is met. Typically, the final criterion will be 
one of the following conditions: (i). Solutions that meet 
the minimum criterion found (convergent). (ii). Maximum 
iteration is reached. 
 
4.1.2 Formulation of mathematical models 

The objective function for the non-renewable 
energy price model is expressed by the following 
mathematical equations: 
 
Yt = f[γ (Ytn)]                                                               (1) 
 

Where Yt is the actual value, and f [γ (Ytn)] is the 
predicted value in the nth month, γ is the parameter to be 
calculated by the hybrid algorithm. 

Mathematically the relationship between 
nonrenewable energy prices and operational variables can 
be expressed by Equations 4.2 to 4.5 as follows: 
 
HE1 = γ0 + γ1 log x1 + γ2 log x2 + γ3 log x3 + γ4 log x4  (2) 
 

Where HE1 is Energy Price model 1, x1 is the 
energy price of B-1 (month-1), x2 is the energy price of B-
2 (month-2), x3 is the energy price B-3, x4 is the energy 
price B-4; γ0, γ1, γ2, γ3, γ4 are model parameters when 
the algorithm reaches the global optimum value. This 
algorithm will determine how important this parameter is 
in influencing the non renewable energy price in Indonesia 
every month. 

Non-renewable energy prices can also be 
expressed by non-linear relationships, such as mixes 
between linear and nonlinear (HE2), exponential (HE3), 
and quadratic (HE4) (Musa & Tansa, 2016). 
Mixed (HE2): 
 
HE2 = γ1 + γ2 * exp (γ3 + γ4 x1 + γ5 x2 + γ6 x3 + γ7 x4)  (3) 
 
Exponential (HE3): 
HE3 = γ1 + γ2 x1 γ3 + γ4 x2 γ5 + γ6 x3 γ7 + γ8 x4 γ9     (4) 
 
Quadratic (HE4): 
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HE4 = γ1 + γ2 x1 γ3 + γ4 x2 γ5 + γ6 x3 γ7 + γ8 x4 γ9 + 
γ10 x1 x2 + γ11 x1 x3 + γ12 x1 x4 + γ13 x2 x3 + γ14 x2 
x4 + γ15 x3 x4                     (5) 
 

The respective parameters of the four 
mathematical models will be calculated using rvGA-eNM 
to find out which model is more precise or more accurate 
in predicting nonrenewable energy prices. 
 
 
 
 
 
 
 

4.2 Experimental data 
 
4.2.1 Input data for rvGA-eNM algorithm 

The data for the rvGA-eNM algorithm is very 
important because it is necessary to test the performance 
of the model in the calculation of parameter values. The 
parameters to be calculated consist of independent variable 
data and its effect on the dependent variable. 

Independent variable include energy price data of 
previous months, for this research takes variable data until 
5 months before the base month of calculation. Data are 
obtained from legitimate sources that provide data for use 
in research (EMR, 2017). Table 4.1 shows non-renewable 
energy price data within 120 months ie from January 2005 
to December 2014. 

 
Table-1. Indonesia crude oil price (ICP) US$/barrels. 

 

Year Jan Feb Mar Apr May Jun 

2014 105.80 106.08 106.90 106.44 106.20 108.95 

2013 111.07 114.86 107.42 100.19 99.01 99.97 

2012 115.91 122.17 128.14 124.63 113.76 99.08 

2011 97.09 103.31 113.07 123.36 115.18 113.82 

2010 77.29 74.01 78.67 85.48 76.96 75.22 

2009 41.89 43.10 46.95 50.62 57.86 68.91 

2008 92.09 94.64 103.11 109.30 124.67 132.36 

2007 52.81 57.62 61.49 67.91 68.60 69.14 

2006 62.26 61.19 61.72 68.92 70.01 67.85 

2005 42.39 44.74 53.00 54.88 48.72 52.92 

Year Jul Ags Sep Oct Nov Des 

2014 104.63 99.51 94.97 83.72 75.39 59.56 

2013 103.12 106.50 109.69 106.39 104.69 107.20 

2012 102.88 111.72 111.02 109.85 106.68 106.90 

2011 117.15 111.67 111.00 109.25 112.94 110.70 

2010 73.74 75.94 76.76 82.26 85.07 91.37 

2009 64.85 72.47 67.07 72.53 77.08 75.58 

2008 134.96 115.56 99.06 70.66 49.32 38.45 

2007 75.50 72.32 76.10 82.55 92.10 91.54 

2006 71.95 72.82 62.49 55.98 55.90 60.15 

2005 55.42 61.09 61.36 58.11 53.96 54.64 
 

http://kip.esdm.go.id/pusdatin/index.php/data-informasi/data-energi/minyak-dan-gas-bumi/harga-minyak-mentah-
icp, Accessed on 11 Jan 2017 10.19 PM 

 
4.2.2 Output data rvGA-eNM algorithm 

Experiment using the normalization data is done 
to estimate parameter value which can minimize rvGA-
eNM error, so that f_BEST value is obtained as shown in 
Table-4.2. All parameters (γ1, γ2, γ3, γ4, γ5, γ6, γ7 and 
γ8) are used to measure the prediction accuracy. 

4.2.3 Output data rvGA-eNM algorithm 
Experiment using the normalization data is done 

to estimate parameter value which can minimize rvGA-
eNM error, so that f_BEST value is obtained as shown in 
Table-4.3. All parameters (γ1, γ2, γ3, γ4, γ5, γ6, and γ7) 
are used to measure the prediction accuracy. 

 

http://kip.esdm.go.id/pusdatin/index.php/data-informasi/data-energi/minyak-dan-gas-bumi/harga-minyak-mentah-icp
http://kip.esdm.go.id/pusdatin/index.php/data-informasi/data-energi/minyak-dan-gas-bumi/harga-minyak-mentah-icp
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Table-2. HE2 parameters. 
 

Iter γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 f-BEST 

100 0.3 0.01 1.56 1.79 0.4 0.34   0.11   0.06 0.62 

101 0.3 0.01   1.56 1.79 0.4 0.34 0.11 0.06 0.23 

102 -1.07 0.01 5.03 0.82 -0.2 0.02 -0.17 0.11 0.23 

 
Table-3. Best value (f-BEST) by rvGA-eNM algorithm. 

 

Algorithm rvGA 

Iteration 80 85 90 95 100 

f-BEST 0.83 0.83 0.83 0.80 0.62 

Algorithm  eNM    

Iteration   100 101 102 

f-BEST   0.62 0.23 0.23 

 
The parameter values for obtaining f-BEST in 

Table-4.3 are as shown in Table-4.2 for computing HE2. 
HE2 (Mixed Model) is better than other models as 
indicated by a smaller 'maximum absolute percentage 
error' (MAPE=3.0131). 

The visual result of the convergence rate of the 
global optimum solution by rvGA-eNM obtained from the 
simulation is given in Figure-3. From the image, it can be 
seen that rvGA-eNM experience, strength, in terms of 
convergence. 
 

 
 

Figure-3. rvGA-eNM convergence rate. 
 
4.2.4 Performance metrics 

Predicted non-renewable energy prices during 
2005-2014 using these parameters is shown in Figure-4. 
 

 
 

Figure-4. rvGA-eNM prediction. 
 

Model performance is measured in terms of 
accuracy using MAPE, MSE, RMSE and MAD. The input 
data are normalized to the value between '0' and '1' so as to 
facilitate the prediction system to respond well, so that the 
prediction goes according to the specifications required by 
the algorithm. Observation time from month 1 to 120 or 10 
years (from January 2005 to December 2014). To test the 
prediction system, we used some non-renewable energy 
price data for 22 months from month 104 to 120. 
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Table-4. HE2 predictions. 
 

Month Actual Prediction 
Error 

 
(USD/Barrel) (USD/Barrel) 

104 106.5 103.3227 3.1773 

105 109.69 106.5312 3.1588 

106 106.39 109.5567 3.1667 

107 104.69 102.8368 1.8532 

108 107.2 101.694 5.506 

109 105.8 105.9598 0.1598 

110 106.08 103.3419 2.7381 

111 106.9 104.4493 2.4507 

112 106.44 105.0558 1.3842 

113 106.2 104.3575 1.8425 

114 108.95 104.0953 4.8547 

115 104.63 108.2108 3.5808 

116 99.51 100.6305 1.1205 

117 94.97 95.2179 0.2479 

118 83.72 90.5933 6.8733 

119 75.39 77.5894 2.1994 

120 59.56 71.4316 11.8716 

MAPE 

(%) 
3.0131 

MAD 

(%) 
3.305 

MSE (%) 1.5744 

RMSE 

(%) 
1.2547 

 
As can be seen, Figure-5 visualizes the 

comparison between the actual value and the non-
renewable energy price prediction. The values shown 
show that in most test points, the prediction value 
approximates the actual (adjacent) values. This explains 
that the accuracy of the rvGA-eNM model used in the 
prediction of non-renewable energy prices has high 
robustness properties. 
 
4.3 Projections 

The projection is to predict energy prices in the 
coming months, here taken the price of non-renewable 
energy in the 120th month to project energy prices in the 
121st month until the 122nd month. 
 

Table-5. Price projection (USD/Barrel). 
 

Projection 

120
th

 month 121
st 

month 122
nd

 month 

71.4316 69.7132 70.0202 

 
The price of non-renewable Energy projection for 

the 121st month is 69.7132 (USD / Barrel) and the 122nd 
month is 70.0202 (USD / Barrel). As a basis of projection, 

the price of non-renewable energy is predicted in the 120th 
month, which is 71.4316 (USD / Barrel). 
 

 
 

Figure-5. Prediction and projection. 
 

If desired, the long-term projections can be done 
using the last month as the base value to predict. However, 
the long-term projection accuracy is less than the actual 
price. However, this is deviated from the goal of 
predicting the most recent (urgently needed) short-term 
energy prices. 

In comparison, the following predictions of non-
renewable energy prices for the next four months use the 
base month of the 120th calculation with the actual value. 
 

Table-6. Projection based on the predicted value of the 
120th month projection (USD/Barrel). 

 

120
th

 

month 

121
st
 

month 

122
nd

 

month 

123
th

 

month 

124
th

 

month 

71.4316 69.7132 70.0202 71.5590 71.7896 

 
Table-7. Projection based on the actual value of the 120th 

month projection (USD/Barrel). 
 

120
th

 

month 

121
st
 

month 

122
nd

 

month 

123
th

 

month 

124
th

 

month 

59.5600 54.3815 55.4896 58.5111 64.3957 
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Figure-6. Projection of non-renewable energy price based 
on prediction value. 

 

 
 

Figure-7. Projection of non-renewable energy prices 
based on actual values. 

 
5. CONCLUSIONS 

One type of hybrid algorithm that proves to be 
effective for this type of non-renewable energy price 
prediction application is the real value Genetic Algorithm 
- extended Nelder Mead (rvGA-eNM). The motivation 
underlying the use of rvGA-eNM is the ability of this 
hybrid method to exploit and explore possible solutions so 
as to accurately estimate non-linear energy price data. 

The process of exploration and exploitation of 
algorithms in search of optimum global solutions is one of 
the challenges of using hybrids between Nelder Mead and 
Genetic Algorithm. The problem with using Nelder Mead 
is the determination of the initial point (IP) in exploring 
the search for solutions in the local area, whereas Genetic 
Algorithm is difficult to find the best solution in the global 
search area. 

Sometimes a search by GA is stuck in a state of 
stagnation even though the search for a solution is 
repeated. However, GA is easy to find the area where the 
best solution is located, the results of this discovery being 
the starting point of the search by NM. 

Experiments result visualizes the comparison 
between the actual value and the non-renewable energy 
price prediction.  The figure shown that in most test 
points, the prediction value approximates the actual 
values. This explains that the accuracy of the hybrid 
rvGA-eNM used in the prediction of non-renewable 
energy prices has high robustness properties. The accuracy 
of the prediction based rvGA-eNM can reach 97%. 
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