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ABSTRACT 

In this work, the movement of digestive juice in small intestine, food bolus through esophagus and the blood in 

arteries are addressed. Based on the characteristics of blood and digestive juices and the elements that affect them, a 

viscosity function adapted to an asymmetric channel is chosen to simulate some of the biological phenomena. A bivariate 

viscosity function reflects the natural phenomena where it is affected starting from the bottom and top walls as it occurs in 

the intestines and arteries. A peristaltic transport of Newtonian fluid is considered and the influence of the bivariate 

function in an asymmetric channel is studied. We were able to compute explicitly the pressure rise and the pressure 

gradient. Reflux, trapping, pumping and co pumping phenomena are studied. A graphical analysis of the effect of the 

viscosity variation is presented. Similar to the axisymmetric case, this work also illustrates that, the reflux limit and the free 

pumping do not depend on the viscosity parameter but the trapping limit, the pressure rise and the friction force on the 

walls, are influenced by the variation of this parameter.   

 
Keywords: peristaltic motion, Newtonian fluid, small intestine, blood, trapping, reflux. 

 

1. INTRODUCTION 

Peristalsis is a progressive movement of 

contractions and relaxations that is typical of the 

membranes of elastic canals that move their contents 

forward or backward. Many biological phenomena 

correspond to the transfer of substances by the peristaltic 

movements such as the movement of digestive juice in 

small intestine, food bolus through esophagus and the 

blood in arteries, transport of urine through the ureters to 

the bladder and many others. Several factors such as 

viscosity, membranes shape, wave speed and type of fluid, 

directly affect the pressure, flow and particle velocity. 

Proper modeling requires the best representation of the 

factors that gives results that are significantly close to the 

natural state. Modeling peristaltic phenomenon has 

attracted considerable attention due of the variety of ways 

to represent them. This subject was started by Latham 

(1966) and Shapiro et al. (1969) with simple mathematical 

assumptions, constant viscosity, Newtonian fluid, 

symmetrical membrane given by a sine function and under 

a negligible Reynolds number and an infinitely long 

wavelength approximation. Then it is followed by a series 

of modifications in these assumptions that seem closer to 

reality. The symmetrical condition channel is replaced by 

asymmetric condition in Eytan and Elad (1999) and 

Mishra and Rao (2004). Shukla et al. (1980) studied the 

effect of the peripheral-layer viscosity and specified its 

interface shape independently of the fluid viscosities. 

Brasseur et al. (1987) used the mass conservation 

properties that were not satisfied in Shukla et al. (1980) 

and restudied the same problem and discussed the reflux 

and trapping phenomena. Elshehawey et al. (2004) split 

the interior channel area into three parts with three 

different viscosities. Muthu et al. (2001, 2008) considered 

the peristaltic transport in a cylindrical flexible tube with 

elastic or viscoelastic membrane conditions and that of 

micropolar fluid and studied the effect of wall properties. 

Srivastava et al. (1983a, b) treated the case of a symmetric 

variable viscosity that is dependent on the radial variable. 

El Misary et al. (2003) and Abd El Hakim et al. (2003) 

integrated an endoscope within the axis of the tube and 

studied its effects. Abd El Hakim et al. (2004) have 

chosen an exponential function viscosity dependent on a 

parameter and used the perturbation method whose 

variable is the same parameter for solve the problem. The 

integration of a viscosity function of one radial variable in 

an asymmetric channel is investigated by Hayat and Ali 

(2008). The incorrectness of their analysis was showed by 

Lachiheb (2016). Since the effect of top and bottom walls 

to viscosity is similar, an attentive selection of the 

viscosity function symmetrically affected by the two 

membranes, similar to the axisymmetric case, has been 

discussed. The latter again contradicted the physiological 

phenomena. Dharmendra (2011) considered a viscoelastic 

fluid in an inclined cylindrical tube for studying the flow 

of chyme in a small intestine. Recently, a magnetic field 

on peristaltic movement is considered by Rathod and Asha 

(2011). Rathod and Devindrappa (2013) used Adomian 

decomposition method to study the slip effect on 

peristaltic transport. The slip effects on 

magnetohydrodynamic peristaltic transport are studied by 

Hina et al. (2014). Without hypothesis about the wave 

form and tube length, Misra and Maiti (2012) developed a 

mathematical model representing the peristaltic motion of 

a rheological fluid. Hayet et al. (2014) considered a 

peristaltic motion in an inclined asymmetric channel with 

radial variable viscosity and thermal conductivity 

conditions. Abbasi et al. (2016) analyzed the peristaltic 

transport of non-Newtonian Maxwell fluid through a small 

radius tube. Kothandapani et al. (2016) studied the some 

problem with Johnson–Segalman fluid and tapered 

asymmetric channel conditions. Sher Akbar (2015a, b, c, 

d, e, f) also addressed many issues in this topic by adding 

or changing some hypotheses in the hope of solving some 

of biological questions. He used a Casson fluid with the 

existence of a magnetic field (Sher Akbar (2015a)). With 
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some boundary conditions, the magnetohydrodynamics of 

viscous fluids is the subject of Sher Akbar (2015b). He 

studied the entropy growth in the peristaltic transport 

(Sher Akbar (2015c, d)). Also, the peristaltic movement 

inan asymmetric channel and a non-uniform tube was used 

for certain applications such as by Sher Akbar (2015e) to 

follow the MHD nano “Eyring-Powell fluid” and by Sher 

Akbar (2015f) to analyze the effect of magnetic field on 

the flow and heat transfer of carbon nanotubes. The 

viscosity function used in previously mentioned works is 

either constant or a one radial variable function. However, 

a natural phenomenon of peristaltic movements shows that 

the viscosity decreases at the nearest point of the 

membrane. For instance, the movement of digestive juice 

in the small intestine is affected by a secretion of acids and 

water injected from the membrane (see Turvill and 

Farthing (1999); Costanzo (2009) and Lucas (2008)). 

During the blood motion in the arteries, the white blood 

cells and plasma are condensed in the center while the red 

blood cells are accumulated in the wall boundaries, 

resulting in a decrease in the value of the viscosity at the 

points closer to the wall (see Grobelnik 2008; Hayenes 

1960; Bugliarello and Sevilla 1970; Gold Smith and 

Skalak 1975). This led Lachiheb (2014) to develop a 

bivariate viscosity function, and to study the effect of the 

new axial and radial function to the pumping flux, 

trapping and reflux phenomena in an axisymmetric 

conduit. Then, in each surface which admits an equation 

equal to that of the wall multiplied by a fixed number less 

than unity, the considered bivariate function remains 

invariant. Note that this selection provides a good 

modeling of the biological phenomena mentioned above. 

The goal of the current paper is to generalize the previous 

work (see Lachiheb (2014)) to asymmetric channel. We 

decided to present this work as follows. First, under some 

simplifying assumptions, a mathematical modeling of 

physical problems using Naiver Stokes is presented and an 

analytical expression for the pressure and its derivatives 

were determined after solving the Naiver Stokes 

equations. In the next section, we reported the most 

important theoretical and practical results obtained and a 

graphical discussion is presented. Finally, the concluding 

remarks are summarized in Section 4.  

 

2. FORMULATION AND ANALYSIS 

The fluid considered in our study is Newtonian 

and incompressible with bivariate viscosity that creeps 

through an asymmetric channel. The channel membrane is 

crossed by a stationary sinusoidal wave trains with a speed 

c. We assume +  the channel width, ̄  and ̄  the 

Cartesian coordinate,  

 ̂ ̄ , ̄ = + cos ̄ − ̄                           (1) 

 

the geometry of the upper wall surface is (see 

Figure-1) and  

 ̂ ̄ , ̄ = − − cos ̄ − ̄ + 𝜙 ,              (2) 

the equation of the upper wall, where  is the wavelength, 

 and  are the waves amplitudes, ̄ represents the time  

and 𝜙 𝜙  is the phase difference.  

Also, the coefficients , , ,  and 𝜙 

satisfies the condition + + 𝜙 +
.  

 

 
 

Figure-1. Asymmetric channel shape. 

 

We note that the channel will be symmetric with 

waves out of phase if 𝜙 =  and the waves are in phase if 𝜙 = .  

We consider ̄ , ̄  the components of velocity in 

the cartesian coordinate and Ψ̄ the stream function. Since 

the flow is dependent to ̄ in these coordinates then it is 

unsteady. A change of basis to another mobile which 

travel in the ̄  direction with a constant speed c, make the 

movement is independent to ̄ and the flow becomes 

steady. Let be ̄ , ̄  the new coordinate, ̄ , ̄  the 

components of velocity and ̄  is the stream function in the 

moving basis. The coordinates transformations are given 

by:  

 ̄ = ̄ − ̄     ̄ = ̄                                                         (3) 

 ̄ = ̄ −      ̄ = ̄       ̄  = Ψ̄ − ̄ + ̄ + ̄
                                                    (4) 

 ̄ ̄ = + cos ̄                                             (5) 

 ̄ ̄ = − − cos ̄ + 𝜙                                  (6) 

 

Let be ̄  the viscosity and ̄  is the pressure 

function. In the moving basis, the continuity equation is  

 𝜕 ̄𝜕 ̄ + 𝜕 ̄𝜕 ̄ = ,                                                                     (7) 

 

the Navier-Stokes equations are  

 ̄ 𝜕 ̄𝜕 ̄ + ̄ 𝜕 ̄𝜕 ̄ = − 𝜕 ̄𝜕 ̄ + 𝜕𝜕 ̄ [ ̄ ̄ , ̄ 𝜕 ̄𝜕 ̄] +𝜕𝜕 ̄ [ ̄ ̄ , ̄ 𝜕 ̄𝜕 ̄ + 𝜕 ̄𝜕 ̄ ]             (8) 
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̄ 𝜕 ̄𝜕 ̄ + ̄ 𝜕 ̄𝜕 ̄ = − 𝜕 ̄𝜕 ̄ + 𝜕𝜕 ̄ [ ̄ ̄ , ̄ 𝜕 ̄𝜕 ̄ ] +𝜕𝜕 ̄ [ ̄ ̄ , ̄ 𝜕 ̄𝜕 ̄ + 𝜕 ̄𝜕 ̄ ]             (9) 

 

and the boundary conditions equations are  

 ̄ = −          ̄ = ̄ ,       ̄ = ̄                            (10) 

 ̄ = − 𝜕 ̄ ̄𝜕 ̄         ̄ = ̄      ̄ = − 𝜕 ̄ ̄𝜕 ̄         ̄ = ̄                                (11) 

 

The Reynolds number is defined by  

 =                                                                        (12) 

 

where = ̄ ̄ , ̄ + ̄
 the viscosity at 

̄ + ̄
, 

assumed to be constant, and the wave number by  

 𝛿 =                                                                              (13) 

 

In the following we present the non-dimensional 

variables:  

 = ̄      = ̄ ,      = ̄ ,      = ̄𝛿 ,= ̄ ,      = ̄ ,      = ̄ ,       = ̄ ,= ̄ , = , = ,     = ,= �̄� ,     Ψ = �̄� .
              (14) 

 

If we replace the last quantities in the equations 

(7, 8, 9, 10) we obtain  

 𝜕𝜕 + 𝜕𝜕 =                                                                     (15) 

 𝛿 𝜕𝜕 + 𝜕𝜕 = − 𝜕𝜕 + 𝛿 𝜕𝜕 [ , 𝜕𝜕 ] +𝜕𝜕 [ 𝛿 𝜕𝜕 + 𝜕𝜕 ]       (16) 

 𝛿 𝜕𝜕 + 𝜕𝜕 = − 𝜕𝜕 + 𝛿 𝜕𝜕 [ , 𝜕𝜕 ] +𝛿 𝜕𝜕 [ , 𝜕𝜕 + 𝛿 𝜕𝜕 ]       (17) 

 = −       = = + ,   = = − − + 𝜙         (18) 

 = − 𝜕 𝜕         =   = − 𝜕 𝜕         =                                  (19) 

 

If we use the the negligible Reynolds number and 

the long wavelength approximation we obtain:  

 

𝜕𝜕 + 𝜕𝜕 =                                                                     (20) 

 𝜕𝜕 =                                                                             (21) 

 𝜕𝜕 = 𝜕𝜕 , 𝜕𝜕                                                        (22) 

 

In the fixed and moving coordinate system, the 

instantaneous volume flow rate are defined by:  

 ̂ = ∫ ̄̂̂ ̄                                                                 (23) 

 ̄ = ∫ ̄̄̄ ̄                                                                   (24) 

 

From equations (3, 4, 5, 6) and (23, 24), we 

obtain:  

 ̂ = ̄ + ̂ − ̂                                                        (25) 

 

Also, we find  

 = ̄ = ∫                                                        (26) 

 

The time-mean flow over a period =  at a 

fixed ̄ -position is defined as  

 ̄ = 𝑇 ∫ ̂𝑇 ̄ = ̄ + +                                    (27) 

 

The dimensionless time-mean flow is  

 Θ = ̄ = + +                                                      (28) 

 

Since the pressure is constant along y variable 

and from equation (22) it follows that , 𝜕𝜕 = 𝜕𝜕 +
, where  is a function dependent on .   

Then , = , 𝜕𝜕 + , +
, where , = ∫ ,  and , =∫ , . We used the second part of (18), we obtain = − , and the first part of (18), we obtain =− 𝜕𝜕 ,,   

 , = 𝜕𝜕 [ , − ,, , ] −                 (29) 

 

and  

 𝜕𝜓𝜕 = 𝜕𝜕 [ , − ,, , ] −                        (30) 

 

Replacing the velocity component  by the right 

hand side of (29) in (26) and using ∫ ∫ , =
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∫ , − ∫ ,  and ∫ ∫ , =∫ , − ∫ , , we find that  

 = − 𝜕𝜕 [ , − , , ] − −              (31) 

 

and thus  𝜕𝜕 = − + −, − , ,                                                  (32) 

 

and where   , = ∫ ,   

since = −  at = , it follows that  

 = − + −, − , , [ , − , −
,, , − , ] − − −             (33) 

 

In previously worked with axisymmetric conduit 

(Lachiheb (2014)), we considered the viscosity to be a 

bivariate function in the following form: 

 , =                                                            (34) 

 

where = − .  

 

This choice is motivated by the following 

physiological phenomena. First the chyme viscosity is 

affected by a secretion of plenty of liquids. The latter 

consists mainly of water and acids and is injected into the 

lumen of intestine from the wall (Turvill and Farthing 

1999; Costanzo 2009; Lucas 2008). Second, during the 

blood motion in the arteries, the white blood cells and 

plasma are condensed in the center while the red blood 

cells are accumulated in the wall boundaries, resulting in a 

decrease in the value of the viscosity at the points more 

closer to the wall (Grobelnik 2008; Hayenes 1960; 

Bugliarello and Sevilla 1970; Gold Smith and Skalak 

1975). The biological observations can be interpreted by 

the invariance of the viscosity function on each 

proportional membrane surfaces. Which again contradicts 

the assumptions on the viscosity given by Shapiro et al. 

(1969); Mishra and Rao (2004); Srivastava et al. (1983a, 

b) and Hayat and Ali (2008) which implies that the 

invariance of viscosity along lines parallel to the axis. Like 

in the symmetric situation (Lachiheb (2014)), the viscosity 

function is subject to the influence of two different walls 

at the top and the bottom, resulting in a constant viscosity 

at the midpoints between the two walls. Thus, the stream-

lines of viscosity in each half of the channel is influenced 

by the form of the outer wall and the shape of midpoints. 

To achieve the most important of these observations we 

define the following function 

 

, = − +−     𝑖     +
, = + −−     𝑖     +                   (35) 

 

Note that in each half part of the channel the 

viscosity rest invariable throughout the distant points at 

the midpoints by a distance equal to 
−

 product by a 

constant less than unity. Figures 2 and 3 are made to see 

the invariant viscosity lines in two cases 𝜙 = /  and 𝜙 =  (axisymmetric case).  

 

 
 

Figure-2. The invariant viscosity lines ( = . , = . , =  and 𝜙 = / ). 

 

Also, this selection provides a good modeling of 

the biological phenomena mentioned above. Moreover, 

many positive and negative real numbers are considered 

for the viscosity parameter for representing a decreasing 

and increasing viscosity.   

Replacing equation (35) in , , ,  and ,  we obtain  

 𝜕𝜕 = − + −−                                                      (36) 

 

where  

 = − + + − +   

 

and  
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= − +− −𝛼 + −− + +− − − − + +− − − + + −𝑖   +
= − +− 𝛼 + −− −+ − − − +− + − − + − −𝑖   +

     (37) 

 

 
 

Figure-3. The invariant viscosity lines ( = . , = . , =  and 𝜙 = ). 

 

In non-dimensional forms, the pressure rise Δ  

and friction force 𝐹  are defined by 

  Δ = ∫ 𝜕𝜕                                                                (38) 

 𝐹 = ∫ − 𝜕𝜕                                                      (39) 

 𝐹 = ∫ − 𝜕𝜕                                                      (40) 

 

Replacing equation (36) in (38), (39) and (40) we get  

 Δ = − Θ − ++ + + + 𝑜  𝜙+ − + + 𝑜  𝜙 5 − ++ − + + 𝑜  𝜙
                     41) 

 

and this is rewritten in the form 

Θ = − 𝛥 𝜆 ( + − + + 𝑜  𝜙 )5+ + + + 𝑜  𝜙 ++ + + 𝑜  𝜙+ + + + 𝑜  𝜙              (42) 

 𝐹 = [ (𝛩− + )+ − 5 + + − −+ − − cos 𝜙 + cos 𝜙 ++ + − + − + −+ √ + − − +( + + cos 𝜙 − − 𝑖 𝜙 )− + cos 𝜙 √ + − ++ cos 𝜙 − sin 𝜙 √ + − ]
    (43) 

 𝐹 = [ (𝛩− + )+ − 5 − + ++ + + + cos 𝜙 +( − + ) cos 𝜙 + +
+ − + + ++ + cos 𝜙 ++ cos 𝜙 − + −+ √ + − − sin 𝜙 +cos 𝜙 + sin 𝜙 + cos 𝜙 + −cos 𝜙 (√ + − + ) +cos 𝜙 √ + − + + +√ + − + + ]

       (44) 

 

where  = + cos 𝜙 + cos 𝜙 ,  = + cos 𝜙 + and = cos 𝜙 +cos 𝜙 +  . 

If  closes to zero, we have the results reported 

by Mishra and Rao (2004). 

 = ( − ) +𝑄 −( − ) −𝑄− +− + (− + +6 + )− −          (45) 

 Δ = − (Θ − + )               + +( + + 𝑜  𝜙)+ − + + 𝑜  𝜙 5 −++ − + + 𝑜  𝜙
                           (46) 

 

and if  = −   (i.e. 𝜙 = , = , = ) , we obtain 

 = +( − + ) 𝛼− −𝛼 +− − − + − + +− + + + ,         (47) 
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Δ = − Θ − 8+− 5 − −                   (48) 

 

And 

 𝐹 = 𝐹 = 𝛩−√ − −√ −                                               (49) 

 

3. DISCUSSION OF THE RESULTS 

 

3. 1. Pumping characteristics 

The value of the pressure rise when the flow rate 

is zero is called the maximum pressure rise Δ . It is the 

boundary where the peristaltic functions as a pump. Also, 

if the pressure rise is equal to zero (Δ = ), we obtain the 

maximum flow rate Θ . Then the maximum flow rate 

corresponds to the free pumping. Δ  and Θ  are 

determined by  

 Δ = 6 + + + cos 𝜙+ − + + cos 𝜙 5                       (50) 

 Θ = + + + cos 𝜙+ + + + cos 𝜙                                 (51) 

 

The flux is negative when Δ > Δ  and we 

obtain the copumping region Θ > Θ  if Δ <  when 

the pressure assists the flow.  

It has been noticed that the free pumping is 

independent to the parameter  but the maximum pressure 

rise is the product of that of constant viscosity by a factor 

 which is less than 1 if  positive and is greater than 1 

elsewhere.  

Figures 4-6 present the pressure rise and friction 

forces at the lower and upper walls versus flow rate for 

different viscosity functions and four values of 𝜙 (𝜙 = , 𝜙 = / , 𝜙 = / , 𝜙 = ) at = .  , = . , and = . For the reason that the considered viscosity 

functions by Srivastava et al. (1983a,b) ; Mishra and Rao 

(2004) and Hayet and Ali (2008) is −  the linear 

approximation of −  where =  or = . , Figure-4 

presents the variation of the pressure rise on the walls 

versus flow rate according to the different viscosities 

mentioned above. First, it is observed that the pressure rise 

curves for the bivariate viscosity ( , = − −𝜎𝜏 , 𝜎 =+
 and 𝜏 = −

) lie under that for constant viscosity 

in the pumping region for all values of phase difference 𝜙, 

and the situation is quite opposite in copumping region but Θ  is independent of . Second, the pressure rise curves 

for the bivariate viscosity lie under that for the one 

variable viscosity as reported by Hayat and Ali (2008) and 

Lachiheb (2014) in the co pumping region for all values of 

the phase difference 𝜙, while in the pumping region, the 

situation is quite opposite for 𝜙 close to  and the first 

curve lie under that the second but they are almost 

identical for 𝜙 close to . These observations are clearly 

obtained from Figure-4. Similar to the last graphics, 

Figures 5 and 6 are made to see the influence of variable 

viscosity on the frictional forces at the lower and upper 

walls respectively. We note that the norm of frictional 

force on the upper wall for the bivariate viscosity is less 

than that for constant viscosity for all values of 𝜙 and is 

greater than that for one variable viscosity function for all 

values of 𝜙 closer to . For 𝜙 closer to , the curve of 

frictional force on the upper wall for radial variability of 

viscosity lie under that for the bivariate viscosity. For 

frictional force on the lower wall, it is noted that the 

relationship between the three curves is similar to that 

achieved by the curves of Figure-7. 

 

 
 

Figure-4. The pressure rise Δ  versus the volume flow 

rate 𝜃 with = . , = .  and =  . 

 

 
 

Figure-5. The friction force on the upper wall 𝐹  versus 

the volume flow rate 𝜃 with with = . , = .  and =  . 

 



                                VOL. 13, NO. 6, MARCH 2018                                                                                                                 ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2018 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                               2044 

 
 

Figure-6. The friction force on the lower wall 𝐹  versus 

the volume flow rate θ witha = . , = .  and d =  . 

 

The change in position of the two curves of the 

friction force on the upper wall (resp. lower wall) with 

different viscosity functions is clearly seen in Figure-8 

(resp. Figure-9). The variation of Δ , 𝐹  and 𝐹  with Θ at = . , = . , =  and 𝜙 =  for different values of 

viscosity parameter  ( = − . , = − . , = . , = . , = . , = ) is shown in Figures 10-12. It is 

observed that the pressure rise and the frictional forces on 

upper and lower walls decrease with increasing . 

 

 
 

Figure-7. The volume flow rate 𝜃 versus the phase 

difference 𝜙 with = . , = .  and = . 

 

 
 

Figure-8. The friction force on the upper wall 𝐹  versus 

the phase difference 𝜙 with = . , = .  and =  . 

 
 

Figure-9. The friction force on the lower wall 𝐹  versus 

the phase difference 𝜙 witha = . , b = .  and d = . 

 

 
 

Figure-10. The pressure rise Δ  versus the volume flow 

rate 𝜃 at = . , = . , =  and 𝜙 = /  with 

increasing viscosity. 

 

 
 

Figure-11. The friction force on the upper wall 𝐹  versus 

the volume flow rate 𝜃 at = . , = . , =  and 𝜙 = /  with increasing viscosity . 
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Figure-12. 𝐹  versus the volume flow rate 𝜃 at = . , = . , =  and 𝜙 = /  with increasing viscosity . 

 

The pressure rise and frictional forces at the 

lower and upper walls versus flow rate for different 

viscosity functions, four values of  ( = . , = . , = . , = . ), four values of  ( = . , = . , = . , = . ) and four values of  ( = . , = . , = , = . ) are plotted in Figures 13-15, figures 16-

18 and Figures 19-21 respectively. For each parameter, the 

position of the three curves defined by different viscosity 

functions in each figure is similar to that of the Figures 4, 

6, 7 respectively.  

 

 
 

Figure-13. The pressure rise Δ  versus the volume flow 

rate 𝜃 with = .  and =  and 𝜙 = / . 
 

Indeed, the norm of the pressure rise and the 

friction forces for the bivariate viscosity is less than that 

for constant viscosity respectively for all values of 𝜙, ,  

and , while the curve of the frictional forces and the 

pressure rise for the bivariate viscosity lie under that for 

one variable viscosity function respectively, for most of 

values of 𝜙, ,  and .  

 

 
 

Figure-14. 𝐹  versus the volume flow rate 𝜃 with = .  

and =  and = /  . 

 

 
 

Figure-15. The friction force on the lower wall 𝐹  versus 

the volume flow rate 𝜃 with = .  and =  and= /  . 

 

 
 

Figure-16. The pressure rise Δ  versus the volume flow 

rate 𝜃 with = .  and =  and = /  . 

 

The situation is quite opposite in the pumping 

region and the region where the friction forces have a 

direction opposite to that of the wave velocity for some 

values of 𝜙, ,  and  such that 𝜙 close to  or  to .  

or  to .  or  to . In these latter cases the two curves 

for pressure rise or friction forces with different viscosity 

functions are almost identical. 
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Figure-17. 𝐹  versus the volume flow rate 𝜃 with = .  

and =  and = /  . 

 

 
 

Figure-18. The friction force on the lower wall Fλl  versus 

the volume flow rate θ with a = .  and d =  and ϕ = π/  . 

 

 
 

Figure-19. The pressure rise Δ  versus the volume flow 

rate 𝜃 with = .  and = .  and = /  . 

 

 
 

Figure-20. The friction force 𝐹  versus the volume flow 

rate 𝜃 with = .  and = .  and 𝜙 = /  . 

 

 
 

Figure-21. The friction force 𝐹  versus the volume flow 

rate 𝜃 with = .  and = .  and 𝜙 = / . 

 

3.2. Trapping limit 

A region of closed streamlines is formed for 

certain combination of Θ and 𝜙. If the mean speed of this 

region is equal to c, this phenomenon is called trapping. 

This phenomenon can appear in peristaltic motion when 

the membrane is sufficiently occluded. The trapping limit 

is defined by all values of Θ where =  at some  

different then 
+

. The power series expression of  in 

terms of = − +
, shows that there exists a center 

streamline =  at = +
 and if the following 

equation is satisfy  

 − + − + 𝛼 − +𝛩− +− − + + − + 𝛼 =                       (52) 

 

for some flow rate Θ. Then the flow-rate Θ for which 

trapping may occur lies between two extremes as given 

below 

 

Θ− = −√ + + cos 𝜙   +− + + − + 𝛼 + +√ + + cos 𝜙+ − + 𝛼      (53) 

 

and  
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Θ+ = √ + + cos 𝜙   +− + + − + 𝛼 + −√ + + cos 𝜙+ − + 𝛼      (54) 

 

If = −  then = , =  and 𝜙 = , we 

have the range for Newtonian fluid in axisymmetric given 

by 

 

Θ− = − + − + + − + 𝛼 ++ − + 𝛼                           (55) 

 

and 

 

Θ+ = + − + + − + 𝛼 −+ − + 𝛼                              (56) 

 

The limit of  to zero gives the trapping range of 

Θ reported in Mishra M and Rao AR (2004) correspond to 

constant viscosity and if = −  and  approaches 

zero, we have the results reported by Shapiro et al. (1969). 

For representing the variation of the trapping region, we 

have chosen = =  and = . For more than one 

viscosity parameter, Figure-22 shows the trapping region 

lower limit 
𝛩+𝛩𝑚𝑎  versus  for three values of 𝜙 (𝜙 = , , 𝜙 = ). It is similar to the constant viscosity case, the 

region of trapping is decreasing as the phase difference 𝜙 

and similar to the symmetric case, the trapping region for 

the bivariate viscosity function decreases as the viscosity 

parameter  and it is smaller than that for a zero viscosity 

parameter. In Figure-23, the closed streamlines of trapping 

are plotted for different values of the parameter  and it is 

clear to note that the trapping seize decreases as  

increases.  

 

 
 

Figure-22. The lower limit of trapping region with various 

values of viscosity parameter . 

 

3.3. Reflux limit 

The reflux phenomenon is appeared when a fluid 

particles move backward, on the average. Since the fixed 

coordinates are considered ideal for the study of the reflux 

phenomenon, we define the flow-rate function Ψ at  and 

, is given by  

 

Ψ = + , − +
                                              (57) 

 

Averaged over one cycle, this becomes  

 

ΘΨ = + ∫ , − +
                                     (58) 

 

In order to evaluate the reflux limit, ΘΨ is 

expanded in power series in terms of a small parameter 𝜖 

about the wall, where 𝜖 = −  and it is subjected to the 

reflux condition  

 𝛩𝛹𝛩 >      𝜖 →                                                          (59) 

 

The coefficients of the first two terms in the 

expansion of , i.e.,  

 = + 𝜖 + 𝜖 +⋅⋅⋅                                             (60) 

 

are found by using  (37), as given below  

 = − ,    = − 𝛼 + −−                               (61) 

 

Using (28), (58), (60) and (61) it follows: 

 

ΘΨ = 𝛩 − 𝛼 + 𝛩− + + cos 𝜙+ − + + cos 𝜙 +⋅⋅⋅              (62) 

 

Since 
𝛼
 is positive for all ≠ , and applying 

the reflux condition (59), the reflux occurs whenever  

 

Θ < + + cos 𝜙+                                                        (63) 

 

is independent to  and is similar to the case of Newtonian 

fluids with constant viscosity.  
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  α = − .  α =  

  α = .  α = .  

  α =  α = .  
 

Figure-23. Streamlines in the moved basis for various 

values of viscosity parameter 𝜶  and with = . , = . , 𝒅 = , 𝝓 = 𝝅/  and 𝚯 = . . 

 

4. CONCLUSIONS 

The movement of chyme in small intestine, food 

bolus through esophagus and the blood in arteries are 

addressed in this work. Several factors such as viscosity, 

membranes shape, wave speed and type of fluid, directly 

affect the pressure, flow and particle velocity. Proper 

modeling requires the best representation of the factors 

that gives results that are significantly close to the natural 

state. For this purpose, a bivariate viscosity function is 

adapted to analyze the peristaltic motion of a Newtonian 

fluid in an asymmetric channel. This function was chosen 

a generalization to that of the case of an axisymmetric 

conduit such that it is invariant on each proportional 

membrane surfaces and it is subject to the influence of two 

different walls at the top and bottom, resulting in a 

constant viscosity at the midpoints between the two walls. 

Thus, the stream-lines of viscosity in each half of the 

channel is influenced by the form of the outer wall and the 

shape of midpoints locus. We have adopted these notes 

from some biological studies, which focused on the 

circulation of the blood and digestive juices and the factors 

influencing them. It is what makes us believe that the 

results of this study achieve the reality of some biological 

phenomena and helps to handle and process multiple body 

organs in case of malfunction. The results reported by 

Mishra and Rao (2004) and that reported by Lachiheb 

(2014) are a special case for this work. The pressure 

gradient and the friction forces expressions per wavelength 

are derived. The effects of the upper and lower wave 

amplitudes, the viscosity function, the channel width and 

the phase difference on the all flow components are 

studied. A graphical analysis shows a decrease of the 

viscosity (increase of the parameter  ) reduces the 

frictional forces on the walls and the pressure rise. Similar 

to the axisymmetric case, this work also illustrates that, the 

reflux limit and the free pumping do not depend on the 

viscosity parameter but the trapping limit, the pressure rise 

and the friction force on the walls, are influenced by the 

variation of this parameter. It is observed that the norm of 

the pressure rise and the friction forces for bivariate 

viscosity function is less than that reported by Mishra and 

Rao (2004) for all values of 𝜙, ,  and , while the curve 

of the pressure rise and the frictional forces for bivariate 

viscosity function lie under that for one variable viscosity 

function, for most of values of 𝜙, ,  and . The situation 

is quite opposite in the pumping region and the region 

where the friction forces have a direction opposite to that 

of the wave velocity for some values of 𝜙, ,  and  such 

that 𝜙 close to ,  to . ,  to .  or  to . In these 

latter cases the effect of viscosity is very low. Moreover, 

the trapping region and size are smaller than to those 

reported by Mishra and Rao (2004).  
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