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ABSTRACT 

This article discusses the use of neural network technology in diagnosing problems of the technical state of turbo 

generators for power stations spectrograms vibration measurements. Two tasks were solved: filtering noise in the 

measurement data using a linear neural network and diagnosing (classification) the technical state of turbo generators 

based on the analysis of spectrograms of vibration measurements using a perceptron type neural network. 
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1. INTRODUCTION 

At present a large number of steam and gas 

turbine units are in operation in Russia [1, 2]. Basically 

these are turbogenerators of steam power equipment for 

various power schemes as well as turbogenerators of 

combined-cycle power units. In modern conditions turbo 

generators often operate at the limiting modes, and their 

operation requires a special attitude to control the 

operating modes and diagnose the technical condition of 

the machine. Turbine generators are of large longitudinal 

size, considerable complexity of construction, and the 

defect has been arisen in one of the structural elements 

causing the increased vibration level of a direct impact on 

the other elements of turbogenerators associated with. In 

connection with it, recently a special interest is comprised 

in the creation of monitoring and vibration diagnostics 

systems that not only provide for the detection of 

increased vibration of the machine, but also based on the 

results of the analysis of vibration measurement data 

allowing to identify the causes of such vibroactivity, as 

well as to formulate technical solutions and 

recommendations on its elimination. 

The monitoring of the technical condition of the 

turbine unit means observing the process of changing its 

operability in order to alert personnel about the 

achievement of the limit state which makes it possible to 

transfer most failures from the category of sudden 

personnel to the gradual category due to early detection 

and timely warning [3 - 6]. Monitoring of machines with 

the help of such systems is carried out in real time and is 

necessary for continuous observing the vibration state of 

the machine, in particular for the level of vibration of its 

main nodes and elements [19, 20]. Diagnostics of defects 

is fulfilled on the basis of pre-formed experimental 

databases and generalized knowledge bases that match the 

increased level of vibroactivity with the causes that drive 

it. Various defects of the active parts of the 

turbogenerators arising during operation require an 

emergency stop of the generator, which is an extremely 

undesirable event for the plant. To prevent these events, it 

is advisable to use a monitoring system for the technical 

condition of the turbogenerators, which can perform early 

diagnostics of these violations. Artificial neural networks 

can serve as an effective tool for solving the problem of 

early diagnosis (classification) of technical condition of 

turbo-generators. 

 

2. THE TASK OF NOISE FILTERING 

First, we are to consider the problem of the 

application of artificial neural networks for solving the 

low-frequency filtering problem. Simulation of the 

operation of neural networks was carried out in the 

environment of the mathematical software SciLab [7]. 

We are to investigate the applicability for this 

purpose of a single-layer dynamic neural network with 

input delay lines containing one neuron obtaining a linear 

activation function (Figure-1). It should be noted that the 

neural network and the non-recursive digital filter are 

described by the same equation [8]. The only difference is 

in the methods of finding the coefficients of the digital 

filter equation - the weights of the neural network. 

 

mailto:ostroukh@mail.ru


                                VOL. 13, NO. 7, APRIL 2018                                                                                                                   ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2018 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                               2550 

 
 

Figure-1. Low-pass filter based on an artificial neural 

network. 

 

A neural network was synthesized with a number 

of delay elements equal to 20. As a training set of input 

signals, one discrete sequence of length N = 500 was used, 

comprising a useful signal - pseudo-white noise in a 

limited frequency range from the meaning of 0 to 100 

hertz, on which a high-frequency interference was 

additively imposed. The useful signal was obtained by 

means of a Fourier series whose coefficients were chosen 

randomly in accordance with the normal distribution law. 

Figure-2 shows two curves - a useful signal and a 

useful signal distorted by high-frequency interference. 

 

 
 

Figure-2. Example of a useful signal and a useful signal 

distorted by high-frequency interference. 

 

Further, the neural network was trained, and a 

useful signal and a high-frequency noise were applied to 

the input of the network. As a reference signal, a useful 

signal was taken. The quality of the network was tested by 

feeding a polynomial signal distorted by high-frequency 

noise to the input of the network. Figure-3 shows a useful 

polynomial and noisy signals. 

 

 
 

Figure-3. Useful and noisy signals used in testing the 

digital filter. 

 

Figure-4 shows the results of a digital filter 

implemented using a neural network. This figure shows 

two curves: 

 

- distorted useful signal arriving at the input of the 

network; 

- signal at its output. 

 

 
 

Figure-4. The output of digital filter. 

 

To evaluate the quality of the filter, an error was 

calculated in accordance with expression 
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It should be noted that if the error at the filter 

input was 17.2%, then at its output the error decreased to 

7.5%. 

Simulation of the network was also carried out in 

the environment of the "MVTU" package [9]. A sinusoidal 

signal was injected into the input of the network. The 

output signal of the network is shown in Figure-5. 
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Figure-5. Simulated signal before and after filtering. 

 

It can be seen from the figure that the filter 

reproduces the useful component of the input signal well, 

while the noise component of the output signal at the 

output of the filter has decreased. Calculations have shown 

that the error has decreased 2.65 times. 

 

3. THE TASK OF TECHNICAL CONDITION  

    DIAGNOSTICS 

The digital sequences of vibrating signals were 

obtained experimentally from a steam turbo generator in a 

fault-free and three faulty state. For each of these 

sequences a discrete Fourier transform was applied, as a 

result of which spectrograms (values of the spectral 

coefficients at certain frequencies) were obtained and 

according to which the technical state of the turbine set 

was classified [10 - 15]. 

Figures 6, 7, 8 show the spectrograms that are 

typical of the steam turbo-generator with various defects. 

 

 
 

Figure-6. Rotor beating. 

 

 
 

Figure-7. Rotor imbalance. 

 
 

Figure-8. Alignment 

 

It should be noted that for the spectral 

components of the serviceable turbogenerators amplitude 

should not exceed unity over the entire frequency range. 

Now consider the actual solution of the problem 

of diagnostics (classification) using a perceptron type 

neural network. The initial information for the synthesis of 

the neural network was the spectrograms of the vibrational 

measurements of serviceable and faulty turbogenerators. 

To simplify the problem and make it more clear the entire 

spectral range of each spectrogram was divided into three 

sections. The first section included frequencies from 

meaning of 0 to 40 Hz, the second section - from 40 to 80 

Hz, the third - over 80 Hz. At each of the sections 

examined the maximum values of the amplitudes were 

chosen. Thus, each technical state of a turbo-generator of 

the 4s available can be characterized by a 3-dimensional 

vector of spectral coefficients. 

The perceptron consists of many elements, which 

are a single network of a certain configuration [16]. The 

simplest scheme of a perceptron having one layer 

consisting of one neuron is to represent in the following 

form (Figure-9). 

 

 
 

Figure-9. The scheme of the simplest perceptron. 

 

In the figure, X is the vector of input signals, each 

element of which goes to the adder with weights, b - 

displacement. The signal of the output of the adder is: 

 

,' bxWS          (2) 

 

where W’ is the transposed vector of weights. 

 

Then: 
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Then the signal goes to the input of the element 

with the activation function shown in Figure-10. 

 

 
 

Figure-10. Perceptron neuron activation function. 

 

The signal y at the output of the perceptron can 

take only two values 0 and 1. 
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Activation function of this type makes it possible 

perceptron to classify input vectors dividing the space into 

two inputs area. 

Consider the case of two-dimensional input 

signals: 
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Assuming 21 w , 12 w  and 5.0b , we are to 

find a boundary that provide dividing the input vectors 

into two classes (Figure-11). 

 

 
 

Figure-11. Example of the space of two-dimensional 

input signals. 

 

The boundary equation has the form: 

 

02211  bxwxw       (6) 

 

Or 

 

05,02 21  xx        (7) 

 

The straight line S divides the plane of the input 

signals into two half-planes I and II, where, respectively S 

> 0 and S < 0. 

If the input vectors are arranged in the half plane 

x1, then the signals at the output of the perceptron will be 

equal to 0. 

For input vectors located in the half-II output 

signals at the output of the perceptron is equal to 1. 

If the offset b = 0, then the border passes through 

the origin. In general, the perceptron provide to classify 

the input signals belonging to the n-dimensional space 

(hyperspace) over a number of classes. 

Consider a perceptron model in which it has a 

single layer consisting of m neurons, the input of each of 

which is fed an n-dimensional vector of input signals x. 

The vector signal at the outputs of the adders is: 

 

BxWS  ,                     (8) 

 

where W is the matrix of weights, B is the displacement 

vector. 

The perceptron allows us to divide the n-

dimensional hyperspace of the input signals by 

hyperplanes into at most regions, where m is the number 

of perceptron outputs. 

To solve the problem of recognition 

(classification) of the technical state of a steam turbo 

generator a single-layer neural network with two neurons 

was synthesized. To train the network at its entrance three 

vectors were assigned, all of them are belonging to one of 

the four technical conditions of the turbo-aggregate. A 

two-digit binary number has been assigned to each 

technical state. For example, the working state 

corresponded to number of 01, faults of the self-oscillation 

type in the bearing - 10, etc. With the help of such two-

digit binary numbers, the target vector was formed. 

Perceptron has been trained. The training vectors 

and dividing planes are shown in Figure-12. 
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Figure-12. Training vectors and separating plane formed. 

 

To optimize the structure of the neural network 

that used to solve the classification problem various 

combinations of network parameters were considered - the 

number of neurons in the hidden layer, the number of 

layers and the type of neuron activation functions. 

To estimate the number of neurons in a hidden 

layer one can use the empirical formula for determining 

the synaptic weights in a multilayer network [17]: 
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where 

n  - dimension of input signal; 

m  - dimension (meaning) of output signal;  

N  - a number of elements in the training sample. 

 

Having estimated the necessary number of 

weights, they calculate the number of neurons in the 

hidden layer. For a network with one hidden layer the 

number of neurons is [18]: 
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Several activation functions of neurons have been 

tested for multilayer neural network: 
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The quality of training graphs for a two-layer 

neural network with different types of activation functions 

(1-5) are shown in Figure-13. 

 

 
 

Figure-13. The average relative error whilst using 

different activation functions in the neural network. 

 

The next step was to test the accuracy of the 

classification based on the number of layers of the neural 

network using the activation the function providing the 

highest quality of training (Figure-14). 

 

 
 

Figure-14. The average relative error whilst using 

different numbers of layers in a neural network. 

 

Based on the simulation results the three-layer 

neural network of the perceptron type was the most 

suitable for solving the problem of classification of faults 

of turbogenerators. The training of networks with larger 

number of layers did not give a significant advantage in 

the accuracy of the classification. As a method of training, 

the method of back propagation of the error was used, and 

which in its standard implementation allows training of 

neural networks with two and three deep layers to solve 

the problem of spectrogram analysis, but it has a slow 

convergence. Therefore, modifications were applied: the 

random change in weights during training; the increase in 

the initial values of the weight coefficients; the values of 

the inputs and outputs of the sample were scaled to the 

interval [0...1] which also increased the accuracy of the 

classification. Preliminary training of a single-layer 

 



                                VOL. 13, NO. 7, APRIL 2018                                                                                                                   ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2018 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                               2554 

perceptron and the use of its weight coefficients as a first 

layer for a two-layer and three-layer networks were carried 

out. Such methods allowed obtaining high reliability of 

classification - more than 0.9. 

Thus, with the help of a perceptron the problem 

of classification - the determination of the technical state 

of a steam turbo generator according to spectrograms of 

vibration measurements - was solved. 

 

4. CONCLUSIONS 

The possibility of efficient solution of noise 

filtering problems in measurement data and diagnostics 

(classification) of technical condition of turbogenerators is 

shown on the basis of analysis of spectrograms of 

vibration measurements with the help of artificial neural 

networks. 

Thus artificial neural networks can be used to 

construct vibration monitoring systems for turbo-

generators of thermal power plants that solve the problems 

of classification of turbine units on the basis of analysis of 

spectrograms of vibration measurements carried out by 

sensors located on aggregates. 

The use of artificial neural networks will 

facilitate early detection of pre-emergency signs in 

comparison with standard threshold monitoring methods 

which are to allow timely notification of personnel about 

their appearance, as well as the type of possible 

malfunctions. 

The further development of the proposed 

approach is the use of two neural networks as part of the 

monitoring system: the first network determines the 

presence of defects in the measuring channel (rotor 

imbalances, weakening of the support nodes, damage to 

the babbit of the inserts, increased rotor- bearing 

clearance, and etc.), and if such defect is detected, the 

second network is launched and can issue an opinion on 

the status of the monitoring object: "Norm", "Norm with 

significant deviations", "Aggravated state", "Pre-crash 

state", "Accident". 

 

5. ACKNOWLEDGEMENTS 
The work was supported by the Ministry of 

Education and Science of the Russian Federation in the 

framework of the Agreement of October 3, 2016 No. 

14.577.21.0236, unique identifier RFMEFI57716X0236. 

 

REFERENCES 
 

[1] Modern electric power industry. In Energocon.com. 

Retrieved July 05, 2017, from 

http://www.energocon.com/pages/id1150.html. 

[2] Analysis of the market of boilers, turbines and 

turbogenerators in Russia. In Discovery Research 

Group. Retrieved July 05, 2017, from 

https://drgroup.ru/460-analiz-rinka-kotlov-turbin-i-

turbogeneratorov-v-rossii.html. 

[3] Klempner G., Kerszenbaum I. 2004. Operation and 

Maintenance of Large Turbo Generators, ISBN 0-

471-61447-5. 

[4] Instruction manual. The system for controlling the 

vibration of stators of electric machines "MDR". 

Https://dimrus.ru/manuals/mdr_um.pdf. 

[5] GOST 533-2000. Turbogenerators. General 

specifications. 

[6] Shirman A.R. Soloviev A.B. 2006. Practical 

vibrodiagnostics and monitoring of the state of 

mechanical equipment. Moscow. pp. 276. 

[7] Scilab Open source software for numerical 

computation. In Scilab.org. Retrieved July 05, 2017, 

from https://wiki.scilab.org/. 

[8] Kaplun D., Minenkov D. 2009. Synthesis of a new 

class of non-recursive digital filters without 

multiplications. // Components and technologies. No 

6. 

[9] The program complex "Modeling in technical 

devices" ("MVTU"). Retrieved July 05, 2017, from 

http://mvtu.power.bmstu.ru/. 

[10] Kuznetsov D.V, Shandybin M.I. 2007. Application of 

vibration monitoring methods to assess the state of the 

elastic suspension of the stator core of a 

turbogenerator // Electric Stations. No.10. 

[11] Barkov A.V., Barkova N.A. and Borisov A.A. 2006. 

Vibration diagnostics of electric machines in steady-

state operating modes: Methodological guidelines. - 

St. Petersburg: North-West Training Center. 

[12] Zenakov V.Ye., Tsyrlin A.L., Yakovlev V.A. 2001. 

Vibrodiagnostics of hidden defects of operating 

generators. Energetik. No. 5. 

[13] Benbouaza A., Elkihel B., Delaunois F. 2013. 

Analysis and diagnosis of the different defects of 

asynchronous machines by vibration analysis. 

International Journal on Computer Science and 

Engineering. 5(4). 

[14] Gałka T. 2008. Statistical Vibration-Based Symptoms 

in Rotating Machinery Diagnostics. Diagnostyka. 

2(46): 25-32, ISSN 1641-6414. 

[15] Dement'ev V.N., Kuznetsov A.V., Nazolin A.L., 

Polyakov V.I. 2005. Detection of stator defects of a 

turbogenerator according to the parameters of 



                                VOL. 13, NO. 7, APRIL 2018                                                                                                                   ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2018 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                               2555 

vibroacoustic vibrations of its steel structures. 

Electricity. No. 12. 

[16] Krug P.G., Yakovitsky S.V. 2010. Using artificial 

neural networks to assess the technical state of the 

object. Industrial Automated Control Systems and 

Controllers. (3): 20-22. 

[17] Semenchenko A.V. Application of artificial neural 

networks to create an expert system for diagnosing 

process equipment. Collected papers Energy saving, 

automation in industry, intelligent buildings and 

automated process control systems. Http://d.17-

71.com/2007/04/06/primenenieiskusstvennyih-

neyronnyih-setey-dlya-sozdaniya-ekspertnoy-

sistemyi-diagnostirovaniyatehnologicheskogo-

oborudovaniya. 

[18] Ciresan D., Meier U., Schmidhube, J. 2012. Multi-

column deep neural networks for image classification, 

2012 IEEE Conference on Computer Vision and 

Pattern Recognition (New York, NY: Institute of 

Electrical and Electronics Engineers (IEEE)). 

[19] Akimov D., Krug P., Ostroukh A., Ivchenko V., 

Morozova T., Sadykov I. 2016. The Simulation 

Model of Autonomous Truck Caravan Movement in 

Terms of an Extreme and Non-Stationary 

Environment. International Journal of Applied 

Engineering Research. 11(9): 6435-6440. 

[20] Akimov D., Krug P., Ostroukh A., Matiukhina E., 

Ivchenko V. 2017. Development Of An Automobile 

Robot System Model Based On Soft Computing In 

An Unsteady Environment. ARPN Journal of 

Engineering and Applied Sciences. 12(11): 3433-

3439. 


