
 VOL. 13, NO. 8, APRIL 2018 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2018 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2746

EMBEDDING THE HIDDEN INFORMATION INTO JAVA BYTE CODE

BASED ON OPERANDS’ INTERCHANGING

Andrey Vladimirovich Krasov, Aleksander Sergeevich Arshinov and Igor Aleksandrovich Ushakov

Federal State Budget-Financed Educational Institution of Higher Education The Bonch-Bruevich Saint - Petersburg State University of

Telecommunications Russia, Saint-Petersburg, Prospect Bolshevikov, Russia

 E-Mail: andrey.v.krasov@mail.ru

ABSTRACT

Software piracy becomes more and more a serious issue by the day, software companies lose money because of

that. In this article the technique called software watermarking has been considered. A digital watermark is embedded by

means of slightly changes of the executable file. Such changes must not be found and not change the program’s logic. The

system of embedding digital watermarks into executable java files by means of operands’ interchanging has been designed.

The designed system does not change the file volume and the execution time. This system can be used to protect copyright

on software or on a part of it.

Keywords: java virtual machine, information embedding, executable files, byte code, digital watermarks.

1. INTRODUCTION

Using unlicensed program software is detrimental

to companies who develop them. In order to prevent

software piracy different means are being used, one of

them is digital watermarking. The main idea of digital

watermarking could be described as the special message

that is embedded in every program copy with special

algorithms [1]. The embedded message allows to identify

a pirate copy and to find a source file from which it has

been copied [2]. The main requirements for algorithm are

do not change program’s logic and not to be detectable [3].

As of today, programming systems, which compile

programs not into executable machine code, but into

virtual machine code, became wide spread. One of such

virtual machines is Java Virtual Machine.

In this article we will discuss a method of

information hiding into files, being executed by Java

Virtual Machine. This topic has been selected because

there are no papers devoted to the description of

watermarking algorithms for java files since the most

papers on digital watermarking are devoted to embedding

into audio, video or image files, and furthermore, a small

part of papers on digital watermarking for executable files

are devoted to exe files [4] [5].

Embedding methods, which implement executable

files in the function of covering message, allow

embedding smaller amount of information in contrast to

other covering messages (i.e. video, audio files, graphical

files). However, they allow solving tasks of joint usage of

embedded information with software. Here are some

examples of such usage [6]:

 Digital signature embedding;

 Embedding of copying operation counter;

 Embedding of license #;

 Embedding of information about copyright;

 Embedding of information about programs' integrity

and its separate parts;

2. JAVA BYTE CODE

Compiler converts initial java text into byte code,

which is executed on Java virtual machine (JVM) and does

not depend on processor’s architecture. Java virtual

machine is delivered as virtual stack machine. In the

function of data structure, where operands are placed,

stack is used. Operations receive data from a stack,

process it and put the results into a stack based on the

LIFO rule (the last came, the first gone). The example of

how a*4+b expression is calculated on a virtual machine is

presented in Table-1.

Table-1. Expression calculation.

Bytecode Command Operation with stack

0x1b iload_1 Insert variable a into a stack

0x05 iconst_2 Insert number 4 into a stack

0x68 imul
Remove from stack number 4 and a renamed a,

multiply it and then put the result into a stack.

0x1c iload_2 Put a variable b into a stack

0x60 iadd
Remove variable b and the result of multiplying,

total it and then put the result into a stack

mailto:andrey.v.krasov@mail.ru

 VOL. 13, NO. 8, APRIL 2018 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2018 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2747

The structure of executable class file is described

in Table-2. Any method or procedure may have unlimited

number of attributes, some of which may have their own

attributes. In order to go directly to the method’s byte-

code, it’s necessary to look in detail at one of its attributes,

the Code attribute, which contains a sequence of byte-code

instructions, which describes the logic of the method.

Table-2. Structure of class file.

Operation code (or Opcode) field is a mandatory

field in the command format. It defines action over data

blocks, which are called operands. Operands can be set

implicitly in cases when the operation code determines

them. When operands are explicitly declared, they are

either present in the command itself, or represented by

their addresses in the so-called targeted fields. Commands

operands with targeted fields are hardly used. The

addressing part of the command, which serves to indicate

location of the operand address, contains address of OP

cells or numbers of general-purpose registers (GPR).

3. METHODS

Let's list possible methods of embedding into

executable files [6] [7]:

A. Changing the sequence of operations.

B. Replacement of constructs for equivalent.

a) the replacement of existing branch of code

b) the replacement for equivalent mathematical

operations.

C. Inserting operations, which do not change the

program logic.

Methods comparison is shown in Table 3.

Table-3. Methods comparison.

Embedding method
Changing of

sequence

Replacement of constructs

for equivalent

Insert of

operations

Increases file volume No Yes* Yes

Increases file

execution time
No Yes* Yes

Volume of

embedding
limited limited unlimited

Source: * mathematical operations

The first method for information embedding into

executable file will be discussed since it doesn't change the

size of executable file and it doesn't change the speed of

execution. This method will be described in detail in the

next section.

The second method - replacement of constructs

for equivalent. One of the options is the replacement of

existing branch of code. Each branch, written in Java,

always can be replaced by a similar one, but with opposite

logical expression. In this case, the logic of this branch

will be changed [8]. To prevent this, along with the

replacement of a logical expression, it's necessary to

replace the branches. For illustration, consider an example

 VOL. 13, NO. 8, APRIL 2018 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2018 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2748

of pseudo-code in Figure-1, there is an example in a byte- code in Table-4.

Figure-1. Execution of commands in different variants of code.

In the figure above, block "case 1" will be

executed in case of the truth, and block "Case 2" in case of

falsity of conditions. If you set the contrary condition, for

example, "a <= b", and swap "Case

1" and "Case 2" places, the logic implementation of such a

code in the programming language will not be changed.

Table-4. Embedding of 1 bit.

Source code Byte code Commands Recoverable bit

if (a > b)

{

c = 0;

}

else

{

c = 1;

}

0ч1и

0ч1с

0чɮ4

0ч03

0ч3ɭ

0чɮ7

0ч04

0ч3ɭ

iload_1

iload_2

if_icmple 14

iconst_0

istore_3

goto 16

iconst_1

istore_3

0

if (a < b)

{

c = 1;

}

else

{

c = 0;

}

0x1b

0x1c

0xa2

0x04

0x3e

0xa7

0x03

0x3e

iload_1

iload_2

if_icmpge 14

iconst_1

istore_3

goto 16

iconst_0

istore_3

1

Thus, having N branches in one or more methods,

and taking one version as zero, and other as one, it is

possible to embed sequence of N bits. Such embedding

may be possible both at the level of source code of

programs, and at the level of the class files of virtual Java

machine.

The second option of replacement of constructs

for equivalent is replacement for equivalent mathematical

operations [9]. There is an example in Table-5; it is based

 VOL. 13, NO. 8, APRIL 2018 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2018 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2749

on the replacement of addition and subtraction. The size increases by one command by embedding 1.

Table-5. Embedding of 1 bit.

Source code Byte code Commands Recoverable bit

int c = a + b;

0x1b

0x1c

0x60

0x3e

iload_1

iload_2

iadd

istore_3

0

int c = a -(-b);

0x1b

0x1c

0x74

0x64

0x3e

iload_1

iload_2

ineg

isub

istore_3

1

The third method - inserting operations not

changing the program logic. There is an example in Table-

6, it is based on that adding zero does not change the

result. When we embed 1 the size increases by two

commands. That method changes the size of executable

file and changes the speed of execution but it allows

embedding unlimited size of information [10].

Table-6. Embedding of 1 bit.

Source code Byte code Commands Recoverable bit

int a = 2;

int b = a + 3;

0x15

0x06

0x60

0x3d

iload_1

iconst_3

iadd

istore_2

0

int a = 2;

int b = a + 3 + 0;

0x15

0x06

0x60

0x03

0x60

0x3d

iload_1

iconst_3

iadd

iconst_0

iadd

istore_2

1

4. METHODOLOGY OF FIRST METHOD

The first method - changing of sequence method

is based on the possibility of reordering of assignment

operations, which follow each other, and its results are not

dependent from each other and their sequence. Such

changes cannot affect the correctness of the computing

program. In order to make embedding, we should change

the order of assignment operations going in lexicographic

order for embedding of one bit, or in opposite order, to

embed the other.

Methodology of embedding of information into

an executable file is based on the arguments before some

commands, which take two arguments form stack, can be

interchanged and the result of calculation will not be

changed. Such commands are as follows:

 Totaling: iadd, ladd, fadd, dadd;

 Multiplying: imul, lmul, fmul, dmul;

 Logistic OR: ior, lor;

 Logistic AND:iand, land;

 Exclusive OR:ixor, lxor;

 Congruence of numbers:lcmp, fcmpl, fcmpg, dcmpl,

dcmpg;

 If-statement for whole numbers (equals to, not

equals): if_icmpeq, if_icmpne.

In the function of arguments these commands can

take on a value:

 Variables(iload,lload,dload);

 Constants(sipush,bipush,ldc);

 Class fields(getfield,getstatic);

 Output computation of methods(invokevirtual,

invokestatic, invokeinterface);

 Output computation of operations (iadd, imul, iand,

ior,ixor).

Quantity of bites, which can be embedded into an

executable file, equals: 𝐾௕ = 𝐾ଵ − 𝐾ଶ

where𝐾ଵ – quantity of commands before

which arguments can be interchanged, 𝐾ଶ –

quantity of commands before which arguments can be

interchanged, providing that arguments are equal.

Example of embedding of 1 bit is described in Table-7

 VOL. 13, NO. 8, APRIL 2018 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2018 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2750

Table-7. Embedding of 1 bit.

Source code Bytecode Commands Recoverable bit

intc = b+a;

0x1c

0x1b

0x60

0x3e

iload_2

iload_1

iadd

istore_3

0

intc = a+b;

0x1b

0x1c

0x60

0x3e

iload_1

iload_2

iadd

istore_3

1

One bit is embedded by means of interchanging

of arguments before totaling, in the function of arguments

- two variables.

The Table-8 shows an example of embedding of two bites.

Table-8. Embedding of 2 bits.

Source code Bytecode Commands Recoverable bit

int c = a*2+b;

0x1b

0x05

0x68

0x1c

0x60

0x3e

iload_1

iconst_2

imul

iload_2

iadd

istore_3

00

int c = 2*a+b;

0x05

0x1b

0x68

0x1c

0x60

0x3e

iconst_2

iload_1

imul

iload_2

iadd

istore_3

01

int c = b+a*2;

0x1c

0x1b

0x05

0x68

0x60

0x3e

iload_2

iload_1

iconst_2

imul

iadd

istore_3

10

int c = b+2*a;

0x1c

0x05

0x1b

0x68

0x60

0x3e

iload_2

iconst_2

iload_1

imul

iadd

istore_3

11

The first byte is embedded by means of

interchanging of arguments before totaling, in the function

of arguments - of the multiplying and a variable. The

second byte is embedded by means of interchanging of

arguments before multiplying, in the function of

arguments - a constant and a variable.

5. EXPERIMENTAL VERIFICATION

The result of the experimental verification of this

method of embedding information is shown in Table-9.

 VOL. 13, NO. 8, APRIL 2018 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2018 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2751

Table-9. Experimental verification of embedding.

Retrivial
Quantaty

ofclass files
File size Embedded size Embedding speed

tools.jar 4145 14,5 МБ 4145bit 1 bit on 4.6 Kbytes

rt.jar 373 0,98 МБ 21 bit 1 bit on 47 Kbytes

jfxrt.jar 5770 14,4 МБ 93 bit 1 bit on 159 Kbytes

total 155282 630 МБ 85860 bit 1 bit on 7.5 Kbytes

For the research of this method of embedding of

information approximately 155 thousands of class-files

were selected. The medium size of class-file is 4.15

Kbytes. On the average 1 bite of information can be

embedded into 7.5 Kbytes.

This method allows making hidden embedding of

information into executable code, which allows

implementing protection of copyright rights on computer

software or some parts of it. The advantages of this

method are that with embedding the size and the execution

time of the file remains unchanged.

6. APPLICATIONS

For example, somebody has written a library as a

class file. That person wants to track who is using his

library in own program. To solve this problem there is a

digital signature. The library will be signed with a private

key and it can be checked with a public key.

The algorithm of embedding the digital signature

into the class file is shown in Figure-2:

a) Count the number of available bites (bits_available).

b) Calculate the sum of all bytes (sum_bytes).

c) Calculate the hash function end encrypt with a private

key.

d) Calculate modulo of 2࢈𝒊࢚࢙_ࢇ𝒗ࢇ𝒊𝒍࢈ࢇ𝒍𝒆.

e) Embed the bits sequence into the file.

𝑒ݎݑݐ𝑖𝑔݊𝑎ݏ =𝑒݊𝑐ݎ𝑦ݐ݌𝑖݊݋ ሺ ℎ𝑎ݏℎሺsum_bytesሻ, Kprivateሻ%2௕𝑖௧௦_௔𝑣௔𝑖𝑙௔௕𝑙𝑒 ,
We calculate the sum of all bytes because

embedding digital signature does not change.

Figure-2. Embedding the signature.

The algorithm of verification class file shown in

Figure-3:

a) Extract the sequence from the class file (seq_extr) and

sum of all bytes (sum_bytes).

b) Calculating

c) Calculation

d) If the signature is right

 VOL. 13, NO. 8, APRIL 2018 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2018 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2752

Figure-3. Verification the signature.

7. CONCLUSIONS

The application of these techniques of byte-code

embedding is belong to undocumented features of Java

machines, which may vary, depending on the version and

the experimental verification needs.

Embedding into Java byte-code does not affect

the structure and the integrity of the program. Hidden

embedding, which was introduced in the file, will be

difficult to detect due to the fact that the changes within

the file do not affect size or functionality of the executable

code. The proposed method is simple to implement and is

cost-effective. Concealed embedding, implemented by

methods of equivalent substitution of operators, allows

realization of copyright protection at the technical level by

using digital signature. This method allows embedding a

small amount of information; however the practicability of

this method is caused by the fact that the embedded

information is used jointly with the executable file.

REFERENCES

[1] V. Korzhik, K. Vebaeva, E. Gerling, I. Dogil and I.

Fedyanin. 2016. Digital steganography and digital

watermarking. SPb. SUT. p. 226.

[2] A. Krasov and S. Shterenberg. 2014. Methods for

embedding hidden data into executable scripts. Key

Issues in Modern Science - 2014, Sofia, Bulgaria. p.

9.

[3] A. Krasov, A. Vereshchagin and A. Cvetkov. 2013.

Authentication Software by using embedding digital

watermark into executable code.

Telecommunications. (S7): 27-29.

[4] A. Krasov, Y. Tregubov and S. Shterenberg. 2015.

Research of copy protection methods software based

on embed of digital watermarks into executable and

library files. Cambridge Journal of Education and

Science. 2(14): 565-573.

[5] S. I. Shterenberg, A. V. Krasov and I. A. Ushakov.

2015. Analysis of Using Equivalent Instructions At

The Hidden Embedding of Information Into The

Executable Files. Journal of Theoretical and Applied

Information Technology. 80(1): 28-34.

[6] A. Krasov, A. Vereshagin and V. Abaturov. 2012.

Methods of the Hidden Embedding of Information in

Executed Files. Saint-Petersburg state electro

technical university LETI. (8): 51-55.

[7] I.N. Homyakov and A.V. Krasov. 2014. Possibility of

hiding information into java byte. Information

technology modeling and management. 2(86): 185-

191.

[8] A. Krasov, Y. Tregubov and S. Shterenberg. 2015.

Analysis of use of equivalent instructions in the

embedding hidden information into the byte-code of

JAVA. London Review of Education and Science.

2(18): 811-819.

[9] A. Krasov and Y. Tregubov. 2015. Code Noising with

embedding information into an executable file by

using Semantic Equivalents Replacement Instructions

method. Telecommunication and computer systems.

pp. 108-111.

[10] I.N. Homyakov and A.V. Krasov. 2014. Hiding

Information into java byte code structure. Control

Systems and Information Technology. 56(2): 89-93.

