
 VOL. 13, NO. 8, APRIL 2018 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2018 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2753

DIJKSTRA ALGORITHM BASED INTELLIGENT PATH PLANNING WITH

TOPOLOGICAL MAP AND WIRELESS COMMUNICATION

Lyle Parungao

1
, Fabian Hein

2
 and Wansu Lim

3

1School of Electronics Engineering, Mapúa Institute of Technology, Philippines
2Department of Software Engineering, University Heilbronn, Germany

3Department of Information and Technology Convergence, Kumoh National Institute of Technology, South Korea

Email: wansu.lim@kumoh.ac.kr

ABSTRACT

In this paper, an idea of intelligent path planning was introduced. Using information received from a server that is

transmitted through a wireless communication, the data is processed to edit a provided topological map, with which a

shortest path calculation will be executed. Information about the destination and blocked road parts is sent to a mobile

robot using a wireless ad hoc network communication. The mobile robot will process this information in a topological 2D-

array map and ignore the blocked parts of the road for the shortest path calculation based on Dijkstra’s algorithm. Aside

from the intelligent path planning, an automated driving algorithm was also implemented using infra-red sensors installed

on the mobile robot to navigate the robot to its destination.

Keywords: general purpose input outputs, infra-red sensors, transmitter / receiver exchange.

1. INTRODUCTION
Automated delivering robots inside the factories,

streets, and buildings are becoming more popular because

of the convenience that it gives [1]. To increase the robots’
functionality, intelligent path planning is being

incorporated. There are components that need to be

considered in intelligent path planning.

The first component is the algorithm that

calculates the shortest path to have an efficient path

planning. There are a number of varieties of algorithm that

can be used. One of them is Dijkstra’s algorithm.

Dijkstra's algorithm is used to calculate the shortest path

between nodes in a graph and is from the class of the

Greedy-algorithms which is an algorithmic paradigm that

pursue problem solving that are making optimal choices in

finding feasible solutions. There are a lot of different

variants of the Dijkstra’s algorithm that exist. Most of

these variants use fixed nodes as their source in finding the

shortest path and produce a shortest path tree [2] [3] [4]

[5].

The second component is wireless

communication. It is the way of imparting or exchanging

information in the system and is where the wireless ad hoc

network comes in. Ad hoc network will allow the

Raspberry Pi shield to communicate wirelessly through

Wi-Fi. Wireless ad hoc networks are decentralized

networks that based its specification for a suite of high-

level communication protocols to create personal area

networks and are usually used in small scale projects

which needs wireless connection [6] [7] [8]. Bluetooth and

ZigBeecan also be used; however, wireless ad hoc

networks are less complex and uses short range low data

wireless communication system that suites well with small

scale projects.

The third component to consider is the map.

Factories, streets, and buildings usually have floor plans or

routes. Maps can be used to make a representation of areas

for small scale projects to have an overview on how

mobile delivering robots can navigate through its

destination. A topological map is a simplified type of

diagram that contains only vital information. Information

that is unnecessary is not considered since it is just a

scalable representation of a map. It is easy to modify but

the relationship between coordinate points remains

constant. Modifications have to be done because of the

ever-changing situations due to traffic [3] [4] [9] [10].

The last component to consider is navigation.

Infra-red sensors (IR sensors) are the one responsible for

that since it uses specific light sensor to detect distance of

a light that reflects because of an obstacle that depends on

the IR value. The IR sensors are used to avoid these

obstacles and helps in the maneuvering of the mobile robot

[11].

Nowadays, a lot of factories use automatic

driving robots to deliver components and tools around the

factory hall to provide the workers with the equipment

they need. Mobile robots often have to dodge into ‘parking

areas’ on the side of a route to avoid a collision with other

robots which are on the same route as them [1] [12]. Based

on [12], this paper wants to consider on how to improve

the idea of these automatic driving robots.

In our case the robots will avoid blocked parts on

their route and find another way around them right before

they depart. Blocked parts can arise because of traffic jam

or obstacles. Hence, considering upon meeting a robot on

a chosen path it is not inevitably considered as a blocked

part since other routes have even more traffic on them.

Because the robots would not need to wait in the traffic or

for other robots to pass and in conclusion to that they will

save time during their route before arriving at the

destination. By introducing wireless ad hoc networks, we

can communicate with the mobile robot and send the robot

its destination as well as information about sections of the

map which are already blocked. By improving Dijkstra’s

algorithm using wireless communication, it will be

possible to avoid highly frequented routes even though it

would be the shortest route. Furthermore, blocked parts on

the map will be considered in the shortest path calculation,

 VOL. 13, NO. 8, APRIL 2018 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2018 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2754

so that they can be avoided and in determining blocked

parts it will be send through wireless communication

coming from the server since the server has an overview

about all the robots that takes a certain path. Topological

map which is used for the calculation and navigation is

implemented in the mobile robot. In addition to that IR

sensors on the mobile robot are used to navigate. To

evaluate the efficiency of our system, time based results

will be acquired for our data. The server is not included in

the implementation of this paper.

2. INTELLIGENT PATH PLANNING

A. Overview
The wireless communication between the server

and the mobile robot uses a Wi-Fi based Wireless ad hoc

network. To calculate the shortest path, while using

intelligent path planning for avoiding blocked parts on the

road, the Dijkstra’s algorithm is used and an editable

topological map is provided in the memory of the mobile

robot. Furthermore, to provide a reliable automated

driving algorithm the mobile robot is equipped with six

IR-sensors, from which three are at the front bumper, one

at the rear bumper and one on each side of the mobile

robot.

Figure-1. Block diagram of the general sequence of events

for the mobile robot.

The last thing we have to be aware of, is

implementing the software, which combines all of these

mentioned parts and create like this the whole functional

system of our proposed idea (Figure-1).

The following sections show every single aspect

mentioned in the overview in detail and how they are

combined to provide the intelligent path planning idea.

B. Wireless communication
The first step for implementing the intelligent

path planning is to provide the wireless communication

between the mobile robot and a server. It is done using

wireless ad hoc network technology. Ad hoc network does

not rely on pre-existing infrastructures such as routers

because it serves as a node to node connection between

two interfaces. Forwarding data is done through accessing

the remote desktop connection of the ad hoc interface of

the mobile robot with the server. Therefore, it allows the

server to make some changes and commands to the robot

without the need of configuring complex infrastructures

and it just enables to build a joined network with self-

configuring.

C. Blocked parts on the topological map
To avoid highly frequented routes and find the

fastest way to the mobile robot’s destination, two

important information are sent by the server to the mobile

robot through wireless communication using wireless ad

hoc network and the information is subsequently

processed by the mobile robot. One information contains

the final destination of our mobile robot, given in

coordinates. With a topological 2D-array map provided in

the code of the mobile robot, it is capable to know exactly

where its destination is. The second important information

is the blocked road parts. The blocked parts on the road

are going to be transmitted the same way as the mobile

robot’s destination - through coordinates. With the given

coordinates of the blocked parts on the road, the

topological map gets modified, so that the blocked parts

are present in the map.

Figure-2. Proposed topological map.

Figure-2 illustrates the idea of the topological

map. Every field can be described through a-coordinates

and b-coordinates with the syntax ‘(a,b)’ as displayed on

the sides of the illustration. If a field contains a ‘0’, it

means that there is a wall or an obstacle. Otherwise if it’s a

‘1’, it is considered as free space. The start point of the

mobile robot is at the coordinate ‘(4, 2)’.The

implementation of the topological map in this example is a

2D-array and looks like this:

Example: Implementation of 2D-array

1. int map[5][5] = {{1, 1, 1, 1, 1},

2. {1, 0, 1, 0, 1},

3. {1, 0, 1, 0, 1},

4. {1, 1, 1, 1, 1},

5. {0, 0, 1, 0, 0}};

6. //The start point which is at ‘(4,2)’ can be

accessed with:

7. map[4][2];

 VOL. 13, NO. 8, APRIL 2018 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2018 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2755

Figure-3. Visualization of the coordinates.

Figure-3 points up how the coordinates are used

for the fields. The first subscript is the column on the left

side. The second subscript is the row on top of the

illustration.

Figure-4. Actual photo of the map.

Figure-4 shows an actual photo of our example

map. In this case, we added a physical implementation of a

blocked part, using four mobile robots. Furthermore, a

red/yellow dot represents the destination in this photo.

The coordinates for the mobile robot’s

destination and the blocked road parts are transmitted

through coordinates using wireless communication coming

from the server. In our proposed idea, the server is

responsible for the calculation which road parts are

already used, meaning blocked.

Figure-5. Proposed topological map include

transmitted details.

In this example (Figure-5) the blocked part and

the destination of the actual photo of Figure-4 are used.

The destination is ‘(1, 0)’, marked with ‘D’ and the

blocked road part is at ‘(3, 1)’ marked with ‘X’.
Furthermore, ‘S’ represents the mobile robots start point.

Figure-6. Changed proposed topological map because of

blocked part.

Because of the blocked road part at ‘(3, 1)’ the

‘1’ of the field is changed to a ‘0’ (Figure-6). The field is

now treated as a wall/obstacle. This change is made in the

topological map representation (2D-array) by the code.

 VOL. 13, NO. 8, APRIL 2018 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2018 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2756

Figure-7. Chosen route on the topological map.

The upcoming calculation for the shortest routeto

the mobile robot’s destination, which is executed by the

Dijkstra’s algorithm will now no longer considering the

blocked parts on the road. Figure-7 shows the example of

the calculated route via the Dijkstra’s algorithm. The green

path is the route the mobile robot will take and the black

arrows display its direction from the start point to the

destination.

D. Dijkstra's shortest path algorithm
The Dijkstra’s algorithm is an algorithm that

determines shortest distance in a given path while

considering the least effort or lowest cost of the distance

between the starting points to the destination point.

Dijkstra’s uses nodes in its calculation and saves the points

where the cost of distance is low. It will continue it

calculation to the shortest path beginning from a starting

point, and then exclude routes that has high cost of

distance when making an update.

Dijkstra’s will use “infinite” for the routes that

have never been explored and the starting point will be

marked “0”. Calculation of paths through neighbor nodes

will be considered temporary distances if it has not yet

been finalized. If calculated distance of a node is smaller

than the current one, Dijkstra’s will update its main

calculations. Nodes that have been pick as shortest

distance from another node will be marked permanent so

that it will be stored in the central idea of the algorithm.

Algorithm 1 Pseudo code for Dijkstra’s Algorithm

1. function Dijkstra(Graph, source):

2. dist[source] := 0 // Distance from source to source

3. for each vertex v in Graph: // Initializations

4. if v ≠ source

5. dist[v] := infinity // Unknown distance function

from source to v

6. previous[v] := undefined // Previous node in

optimal path

7. end if //from source

8. add v to Q // All nodes initially in Q

9. end for
10. while Q is not empty: // The main loop

11. u := vertex in Q with min dist[u] // Source node in

first case

12. remove u from Q

13. for each neighbor v of u: //where v has not yet

been removed from Q

14. alt := dist[u] + length(u, v)

15. if alt < dist[v]: // A shorter path to v has been found

16. dist[v] := alt

17. previous[v] := u

18. end if
19. end for

20. end while
21. return dist[], previous[]

22. end function

This pseudo code can be used as a reference for

coding in any higher-level programming language.

E. Automated driving algorithm
After the route calculation is done, the mobile

robot has to drive on the calculated route to its destination.

To provide functional and usable automated driving

algorithm distance detection via the on-board IR-sensors is

used. The algorithm avoids walls and obstacles. While

driving forward, the algorithm always pays attention to

upcoming walls on the sides or in front. In reaction of the

walls, the mobile robot will change its lane to avoid these.

Furthermore, if the IR-sensors recognizes a diversion as

portrayed in the topological map, it will turn to its right

track which will lead to the mobile robot’s destination.

Refer to “IR SENSOR & SWITCH” figure from

Raspberry Pi ALTINO Programming Manual page 20.

F. Code-architecture
Before starting to drive using the automated

driving algorithm, the mobile robot waits in standby mode

until it receives data through the wireless ad hoc network

communication. The received data is going to be read and

analyzed by the code. The submitted information is

necessary for the intelligent path planning algorithm to

avoid the blocked road parts. It contains also the mobile

robot’s destination to reach. With the combination of the

intelligent path planning algorithm and the Dijkstra’s

algorithm, it is now possible to find the shortest route to

the mobile robot’s destination while avoiding highly

frequented routes. For the Dijkstra’s calculation, we will

provide a Dijkstra’s Python script which needs the start

and destination coordination as well as the topological 2D-

array map. As a return of the executed Python script, the

main code will receive the calculated shortest path through

a char array of several coordinates.

 VOL. 13, NO. 8, APRIL 2018 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2018 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2757

Example: Execute function

1. startCo = {4,2};

2. destCo = {1,0};

3. map2D[5][5] = {{1, 1, 1, 1, 1},

4. {1, 0, 1, 0, 1},

5. {1, 0, 1, 0, 1},

6. {1, 0, 1, 1, 1},

7. {0, 0, 1, 0, 0}};

8. PyObject_CallObject(djikstra,map2D,startCo,destCo)

9. //the received return value looks like this:

10. route = "10,00,01,02,12,22,32,42";

The next step after the shortest path calculation

through the Dijkstra’s algorithm is the navigation to the

destination. With the calculated road, the mobile robot can

navigate to its destination using the on-board IR-sensors.

Like that, it is possible for the mobile robot to recognize

and avoid walls or obstacles on its way. The whole

navigation is working with an automatic-driving

algorithm. In association with the provided topological

map and the calculated path, the mobile robot will know

when and in which direction it is necessary to turn using a

navigation algorithm. After arriving its destination, the

mobile robot’s target is fulfilled and the code ends.

3. IMPLEMENTATION

A. Contribution to Dijkstra´s algorithm
The code for the Dijkstra´s algorithm that is used

in this implementation is written in Python language and is

executed separately from the main code written in C. It is

done through transmitting the needed arguments from the

C file to the Python script that the Dijkstra´s has to receive

to calculate the shortest path. The over handed parameters

are the topological map as well as the start and destination

coordinates. As a return, the Python script will transmit the

shortest path to the main C code. Because the Dijkstra´s

algorithm needs a weighted graph to be able to calculate

the shortest path, we have written an algorithm which

generates a weighted graph tree out of the topological

map. The algorithm sets every field of our topological map

as nodes and every weight of the connections between two

nodes to the same value. The algorithm is stored in the

same Python script as the Dijkstra´s algorithm.

Algorithm 2 Generate weighted graph

1. def buildGraph(arr):

2. graph = {}

3. max_row = len(arr)

4. max_column = len(arr[0])

5. for index_row, row in enumerate(arr):

6. forindex_column, column in enumerate(row):

7. cell_name = str(index_row) + str(index_column)

8. cell_value = column

9. sub_graph = get_weights(arr, index_row,

index_column,max_row, max_column, cell_value)

10. graph[cell_name] = sub_graph

11. return graph

12. def get_weights(arr, index_row, index_column,

max_row, max_column, cell_value):

13. weights = {}

14. behind_column_index = max(0, index_column - 1)

15. front_column_index = min(max_column - 1,

index_column + 1)

16. above_row_index = max(0, index_row - 1)

17. below_row_index = min(max_row - 1, index_row + 1)

18. if(behind_column_index != index_column):

19. weights[str(index_row) + str(behind_column_index)]

=NAND(cell_value,

arr[index_row][behind_column_index])

20. if(front_column_index != index_column):

21. weights[str(index_row) + str(front_column_index)] =

NAND(cell_value,

arr[index_row][front_column_index])

22. if(above_row_index != index_row):

23. weights[str(above_row_index) + str(index_column)] =

NAND(cell_value,

arr[above_row_index][index_column])

24. if(below_row_index != index_row):

25. weights[str(below_row_index) + str(index_column)] =

NAND(cell_value,

arr[below_row_index][index_column])

26. return weights

27. def NAND(a, b):

28. if int(not (a and b)) == 1:

29. return float("inf")

30. else:

31. return 1

The algorithm is executed calling the build

Graph-function. It has to receive the topological map and

will return the weighted graph.

 VOL. 13, NO. 8, APRIL 2018 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2018 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2758

B. Navigation algorithm
After receiving the calculated path the mobile

robot should take, a navigation algorithm will calculate the

needed driving directions in the right order to reach the

mobile robots destination. For the algorithm to work it

needs two information. The path displayed in a topological

map and the simulated current position of the mobile

robot.

Figure-8. Path displayed in a topological map.

Figure-8 shows an example of how the path

displayed in a topological map will look like. Every field

of the map will be ‘0’ at the beginning. After receiving the

shortest path in coordinates from the Dijkstra’s algorithm,

every field with the coordinates contained in the shortest

path will change to ‘1’. Like this, the path got visualized.

Algorithm 3.1 getDirection-function

1. char getDirection(int path[5][5], char position[2]){

2. path[position[0]-'0'][position[1]-'0'] = 0;

3. if(position[0]!='0'){

4. if(path[(position[0]-'0')-1][position[1]-'0']==1){

5. position[0] = position[0]-1;

6. return 'U';

7. }

8. }

9. if(position[0]!='4'){

10. if(path[(position[0]-'0')+1][position[1]-'0']==1){

11. position[0] = position[0]+1;

12. return 'D';

13. }

14. }

15. if(position[1]!='0'){

16. if(path[position[0]-'0'][(position[1]-'0')-1]==1){

17. position[1] = position[1]-1;

18. return 'L';

19. }

20. }

21. if(position[1]!='4'){

22. if(path[position[0]-'0'][(position[1]-'0')+1]==1){

23. position[1] = position[1]+1;

24. return 'R';

25. }

26. }

27. return 'F';

28. }

The next step is to call the get Direction-function.

The function search for a current position the next adjacent

‘1’ in the topological 2D-array map. Depending on where

the adjacent ‘1’ is, the information if it is up, down, left or

right will be saved. For the information up a ‘U’ will be

saved, for down a ‘D’ and so on. When there is no next

adjacent ‘1’ is left, there will be saved an ‘F’ for finished.

 VOL. 13, NO. 8, APRIL 2018 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2018 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2759

In the example shown in Figure-9, the following saved

information will look like this: ‘UUUULLDF’.

Algorithm 3.2 getSteering-function

1. void getSteering(int steering[20], char

pathDir[20]){

2. int i = 0;

3. steering[i] = 2;

4. i++;

5. while(pathDir[i] != 'F'){

6. if(pathDir[i-1] == 'U'){

7. if(pathDir[i] == 'U'){

8. steering[i] = 2;

9. }

10. else if(pathDir[i] == 'L'){

11. steering[i] = 1;

12. }

13. else if(pathDir[i] == 'R'){

14. steering[i] = 3;

15. }

16. }

17. else if(pathDir[i-1] == 'D'){

18. if(pathDir[i] == 'D'){

19. steering[i] = 2;

20. }

21. else if(pathDir[i] == 'L'){

22. steering[i] = 3;

23. }

24. else if(pathDir[i] == 'R'){

25. steering[i] = 1;

26. }

27. }

28. else if(pathDir[i-1] == 'L'){

29. if(pathDir[i] == 'L'){

30. steering[i] = 2;

31. }

32. else if(pathDir[i] == 'U'){

33. steering[i] = 3;

34. }

35. else if(pathDir[i] == 'D'){

36. steering[i] = 1;

37. }

38. }

39. else if(pathDir[i-1] == 'R'){

40. if(pathDir[i] == 'R'){

41. steering[i] = 2;

42. }

43. else if(pathDir[i] == 'U'){

44. steering[i] = 1;

45. }

46. else if(pathDir[i] == 'D'){

47. steering[i] = 3;

48. }

49. }

50. i++;

51. }

52. steering[i] = 4;

53. }

The last thing to do for the navigation after

calculating the information about the direction is to

provide an axis transformation to get the right steering

value. For the used mobile robot, the value ‘1’ means left

steering, value ‘2’ no steering, and value ‘3’ means right

steering. To calculate the right steering direction, the

previous direction must be considered. The get Steering-

function take care about this and saves the steering

information. In the example shown in Figure-9, the

following saved information will look like this:

‘22221214’. The value ‘4’ is saved to indicate the

destination.

C. Automatic driving algorithm
The implemented automatic driving algorithm

will now lead the mobile robot to its destination using the

calculated steering values in the right order as well as to

the mobile robot attached IR-sensors.

 VOL. 13, NO. 8, APRIL 2018 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2018 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2760

Algorithm 4. Pseudo code for automatic driving

1. while(autoDrivingMode){

2. getNewSensorData();

3. drive(foreward);

4. steering(steeringValue[i]);

5. depending on steeringValue:{

6. display ("<" or ">" or "^");

7. }

8. if(leftSensor==triggered &&

rightSensor==triggered){

9. if(leftSensor's distance is shorter){

10. drive(backward);

11. steering(left);

12. delay(milliseconds);

13. drive(foreward);

14. steering(right);

15. delay(milliseconds);

16. }

17. else if(rightSensor's distance is shorter){

18. drive(backward);

19. steering(right);

20. delay(milliseconds);

21. drive(foreward);

22. steering(left);

23. delay(milliseconds);

24. }

25. }

26. else if(leftSensor==triggered){

27. drive(backward);

28. steering(left);

29. delay(milliseconds);

30. drive(foreward);

31. steering(right);

32. delay(milliseconds);

33. }

34. else if(rightSensor==triggered){

35. drive(backward);

36. steering(right);

37. delay(milliseconds);

38. drive(foreward);

39. steering(left);

40. delay(milliseconds);

41. }

42. else if(straightSensor==triggered){

43. drive(backward);

44. steering(straight);

45. delay(milliseconds);

46. drive(foreward);

47. steering(steeringValue[i]);

48. delay(milliseconds);

49. }

50.

51. if(loop did run a couple of times){

52. i++; //increase index to get next steeringValue

53. }

54. if(steeringValue[i] == 4){

55. drive(stop);

56. autoDrivingMode = 0;

57. display('X');

58. }

59. }

At the beginning of the algorithm, the current

steering value is used to steer the mobile robot in the right

direction. In addition, the steering direction is displayed on

a LED display attached to the mobile robot. Then, the IR

sensors are going to be checked if they detect an obstacle

or a wall. If both, the right and the left one are triggered;

the algorithm will check which obstacle is nearer and react

to the obstacle which is closer to the IR sensor. Otherwise

the algorithm will just check the sensors each and react to

them. If this loop did run a couple of times, the next

steering value will be loaded. This continues the same way

 VOL. 13, NO. 8, APRIL 2018 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2018 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2761

until the last steering value is loaded. Because the last one

is always ‘4’, which would be an invalid steering value for

the mobile robot, the automatic driving algorithm will stop

and the LED display is going to display an ‘X’ to point out

the end of the code. The couple of loop repeats before

changing to the next steering value must be modified,

depending on the mobile robot’s speed, the surface, and

the size of the fields of the map. This can be easily done

by increasing or decreasing the repeat value of the loo

preferring to line 51 of ‘Algorithm 4’.

4. PERFORMANCE EVALUATION
For the performance evaluation, we tested the

implemented Dijkstra’s algorithm, as well as our

implemented intelligent path planning algorithm. For that

we provided three tests. The first two of them tested the

reliability of our implemented Dijkstra’s algorithm. The

third one verified our intelligent path planning algorithm

that is a combination of our topological map manipulation

because of blocked road parts and the Dijkstra’s algorithm.

Figure-9. First route evaluation.

Figure-9 shows our first test. We set the mobile

robot’s destination at the coordinate ‘(0, 2)’. Then we

measured first how much time the mobile robot took to

drive all three possible routes each to the destination. After

that we let the Dijkstra’s algorithm calculate the shortest

path, and observe which path it chooses.

Table-1. Time table for first route evaluation.

Route
Start-destination

time

Dijkstra’s

choice

Blue 24.6 seconds X

Green 4.0 seconds ✔

Red 25.5 seconds X

As seen in Table-1, the time that the mobile robot

took to reach its destination from the starting point using

the three routes was measured. Also, the Dijkstra’s chose

the green route, since it was the shortest possible path

among the three. The checkmark indicates the chosen path

by the Dijkstra’s algorithm and the X-mark indicates

possible routes that are not chosen because of the longer

time it takes to go to the destination resulting of a longer

distance.

Figure-10. Second route evaluation.

Figure-10 shows our second test to validate the

Dijkstra’s algorithm. It works on the same principle as our

first test as described for Figure-9. The destination was

now set to the coordinate ‘(1,0)’.

Table-2. Time table for second route evaluation.

Route
Start-destination

time

Dijkstra’s

choice

Blue 12.6 seconds ✔

Green 18.8 seconds X

Red 34.1 seconds X

Table-2 based on the same structure as shown in

Table-1. It also shows the time that it takes for the mobile

robot to drive from its start point to its destination using

the three possible routes. In this test, the blue route was the

fastest one. As seen in Table-2, it was also the Dijkstra’s

algorithm choice.

 VOL. 13, NO. 8, APRIL 2018 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2018 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2762

Figure-11. Blocked route evaluation.

The last performance evaluation was used to

validate our implemented intelligent path planning

algorithm. As seen in Figure-11, we set our destination as

it was in our second route test, but we added a blocked

route part at ‘(3, 1)’.

Table-3. Time table for blocked route evaluation.

Route
Start-destination

time

Dijkstra’s

choice

Blue 12.6 seconds X

Green 18.8 seconds ✔

Red 34.1 seconds X

As seen in Table-3, even though the blue route

would have been the fastest, the Dijkstra’s choice was the

green route. That’s because our intelligent path planning

algorithm did successfully its job, and marked the

coordinate ‘(3, 1)’ as blocked, so that the Dijkstra’s

calculation would not consider any paths using this field.

Figure-12. Visualization of results.

Figure-12 visualizes a summary of the time

results of the three different evaluations displayed on the

ordinate. The different colored bars represent the three

different routes taken per evaluation (refer to Figures 9,

10, and 11 and their Tables 1, 2, and 3).

5. CONCLUSIONS
An intelligent path planning that uses a shortest

path algorithm specifically the Dijkstra´s algorithm is

proposed and with the use of wireless ad hoc network it is

able to provide a wireless communication to improve this

proposed idea. First, sited sources that covers the topic and

systems that are going to be implement in this project are

shown in order to know if it is possible to be done and

what are the limitations of this proposed idea. Second, an

algorithm like Dijkstra´s was chosen to make the study

less complicated but effective. Also, wireless ad hoc

network provide simple concept of a wireless

communication that makes this idea possible. It is

presented throughout the paper regarding the approach on

how this intelligent path planning are done while

anchoring it in all our references. Images, table, and

graphs are also presented in the paper to provide clear

understanding about the proposed idea. Lastly, the

obtained results show that our intelligent path planning

algorithm works as expected in three different approach

and it is successfully implemented the idea of this

algorithm, which is able to avoid blocked parts on a route,

and find an alternative path, which is the shortest one

while avoiding the blocked areas.

6. RECOMMENDATIONS

A. Server-side
As mentioned in the introduction, the

implementation of the server is not provided in this paper

but it’s recommended to extend this proposed idea with a

server side or with other mobile robots sharing

communication to others like a car-to-car communication.

B. Improvement of Dijkstra’s implementation
For further studies about this presented idea we

recommend writing the Dijkstra´s algorithm as well as the

algorithm for generating the weighted graph in the same

language as the main code so that it can be executed

without transmitting data from one language to another.

C. Improvement of automated driving algorithm
For an even better automatic driving algorithm

we recommend implementing more than three IR sensors.

In the presented automatic driving algorithm only the three

sensors attached to the front bumper of the mobile robot

have been used.

ACKNOWLEDGEMENTS
This work was supported by the National

Research Foundation of Korea (NRF) grant funded by the

Korea government (MSIP; Ministry of Science, ICT &

Future Planning) (No. 2017R1C1B5016837).

0

10

20

30

40

Table I Table II Table III

Blue Red Green

 VOL. 13, NO. 8, APRIL 2018 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2018 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2763

REFERENCES

[1] Y. Hada. 2004. Delivery service robot using

distributed acquisition, actuators and intelligence. In

International Conference on Intelligent Robots and

Systems, Sendai, Japan.

[2] T. Terzimehic. 2011. Path Finding Simulator for

Mobile Robot Navigation.

[3] L. Guo. 2012. Intelligent Path Planning for

Automated Guided vehicles System based on

Topological map.

[4] D. Esparza. 2013. Topological Mobile Robot

Navigation Using Artificial Landmarks. Latin

American Robotics Symposium, 2013.

[5] S. Sakib. 2014. Maze solving algorithm for line

following robot and derivation of linear path distance

from nonlinear path. In Int'l Conf. Computer and

Information Technology, Bangladesh.

[6] E. Ogawa. 2017. A Trustworthiness-Based Ad-Hoc

Routing Protocol in Wireless Networks. in Advanced

Information Networking and Applications (AINA),

2017 IEEE 31
st
 International Conference, Taipei,

Taiwan, Taiwan.

[7] W. Chen. 2016. History-based multi-node

collaborative localization in mobile wireless ad hoc

networks. In Communications (ICC), 2016 IEEE

International Conference, Kuala Lumpur, Malaysia.

[8] X. Li. 2016. Performance modeling and analysis of

distributed multi-hop wireless ad hoc networks. in

Communications (ICC), 2016 IEEE International

Conference, Kuala Lumpur, Malaysia.

[9] V. A. Shim. 2014. Direction-driven navigation using

cognitive map for mobile robots. in International

Conference on Intelligent Robots and Systems,

Chicago, USA.

[10] IEEE. 2015. IEEE Standard for Robot Map Data

Representation for Navigation.

[11] S. Lee. 2006. Rotating IR Sensor System for 2.5D

Sensing. In International Conference on Intelligent

Robots and Systems, Beijing, China.

[12] A. Lourenco. 2016. On the design of the robo-partner

Intra-factory logistics autonomous robot. In

International Conference on Systems, Man, and

Cybernetics, Budapest, Hungary.

