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ABSTRACT 

The analytic form of Fisher Information Matrix (IM) for DCC-MGARCH (1, 1) was suggested. After that, it was 

applied for simplifying the general algorithm: the statistical hypothesis about constant correlation matrix usage was put 

forward and statistical verification was made. IM was employed for Russian share market: to do investigations the five 

equilibrium portfolios was compounded from four different shares in each case. Computations made showed that there are 

three types T1–T3 of trading days on the market and day type changing from T1 to T2 and vice versa is happening over the 

time moments T3. Moreover, the clustarisation effect of multivariate volatility that was investigated by scientists from all 

around the world in the univariate case was discovered and described.  
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INTRODUCTION 

The analytic form of Fischer`s information matrix 

for econometric algorithm DCC-MGARCH (1, 1) was 

found. Also here a statistical hypothesis about constant 

correlation matrix was put forward and its statistical 

verification was made. Information matrix is using for 

econometric research of Russian stock market. Clustering 

effect of multivariate volatility which was confirmed by 

other scientists was found. 

Nowadays mathematical description and 

statistical data processing of information received as a 

result of functioning of the stochastic systems, is based on 

well-studied one-dimensional laws of probability. Because 

of substantial growth of the quantity of such systems and 

complicating their internal structure, one-dimensional 

distributions can`t be applied properly to find a solution 

with given accuracy in a short time. As the result, there is 

a huge interest in description of whole system behavior 

without the reduction into the one-dimensional subtasks. It 

facilitates understanding of internal structure processes 

inside the systems and it let us to avoid error that occurs in 

factorization process. Thanks to multivariate methods, 

scientists hope to build more accurate forecast of 

probability`s behavior and evolution of complicated 

systems. 

There are a lot of books which can help to find 

information about constructing multivariate econometric 

methods and to research a structure and properties of 

multivariate data. Let us to distinguish some of them. The 

first are works [1-5] which are a base of all researches and 

works [6, 7] which tell us about 20 years experience of 

using methods. Because of increasing quantity of 

multivariate algorithms, we should check out the quality of 

estimated coefficients and prove their unbiasedness, 

effectiveness and consistency. In addition, it is required to 

construct the confidence intervals for these estimates or 

even for functions of them. This becomes particularly 

relevant in light of examining and considering in 

researchers’ investigations of more complex econometric 

parameters like risk measures VAR, CVAR, ES, market 

price of risk, asymmetry coefficients (to detect leverage 

effect), kurtosis and others. DCC-MGARCH(1,1) is also 

very useful for data processing in computer based systems 

of student learning, training and testing, especially when 

fuzzy-logic elements in mixed diagnostic tests [19, 20] are 

used.  

Despite the fact that the theory of information 

matrices has been developed more than eighty years ago 

starting with the fundamental works of Fischer in 1922, its 

application to the study of properties of multidimensional 

economic algorithms significantly limited. The cycle of 

modern works on the subject opens work [8]: to simulate 

the behaviour of financial markets as US, Japan, Germany, 

Britain, France, Italy, was calculated two-dimensional 

information matrix coefficients method GARCH(1,1) 

using a constant correlation matrix and built the so-called 

test information matrix (IM-test) to check the stationarity 

hypothesis about correlation matrices in the financial 

market. Then in [9], to describe the likely future values of 

eight shares held US highly compute Fisher matrix. It was 

assumed that the initial model satisfies to multivariate 

methods MGARCH (1, 1) with a time-varying diagonal 

covariance matrix. Finally, in [10] DCC-MVGARCH (1, 

1) with elliptical probability distribution function of 

standardized residuals and a time-dependent correlation 

matrix the expectations of informants were calculated.  

In this paper we construct Fisher information 

matrix for one of the most common multidimensional 

economic methods in our days - the algorithm DCC-

MGARCH (1, 1) [6, 7, 11]. It is needed for finding such 

matrices, primarily, as a necessary part of computing 

estimates of unknown parameters for the multivariate 

family-GARCH algorithms in a real time, for example, 

using the process of scoring [17] and not by a classical 

method of maximum likelihood. Secondly, this matrix can 

be used to the proof of efficiency of the found estimations 

as the following marginal ratio is held: 

 

     




1,0~ˆlim JNYn
n
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where  J  - an information matrix; ̂  - 

assessment for a vector of parameters Θ; n – a number of 

data. At last, its usage allows us to reduce a number of the 

coefficients estimated by DCC-MGARCH (1, 1): the 

assumption about correlation matrices which are poorly 

changing in time allows us to simplify DCC-MGARCH to 

ССС- MGARCH. 

Further, in our work the hypothesis (equation. 

(6)) moved out and critical statistics was built (equation. 

(10)). In conclusion, information matrix is used for 

making the research of the Russian stock market, for 

which five different portfolios consist of four assets are 

created, everything with the fixed and equal shares in the 

portfolio. Shares are chosen randomly, but on condition 

that the trades with them took place on MICEX 

(www.micex.ru) during all fixed period. The first portfolio 

is constituted from shares of the company Lukoil, 

Surgutneftgaz, Rostelecom, RAO UES, with close prices 

from January 2, 2000 till October 27, 2006 (only 1701 

values) are taken. The second portfolio is built from shares 

of the companies Norilsk Nickel MMC, Aeroflot, the 

AvtoVAZ, Mosenergo, with close prices from October 31, 

2001 till March 23, 2007 (only 1361 values) are taken. 

The third portfolio consists of shares of the companies 

Baltic, Rosneft, Rosbank, Polyus Gold, with close prices 

from August 23, 2006 till March 24, 2007 are taken (all 

the 144th value). The fourth portfolio is built from shares 

priced from February, 2003 till March, 2007 (only 1025 

values). At last, the fifth portfolio is constituted from 

shares of the companies RITEK, MTS, Sibirtelekom, 

Tatneft, with close prices from February, 2004 till March, 

2007 (only 730 values) are taken. All the data were 

provided by the companies RBC (http://export.rbc.ru) and 

FINAM (http://www.finam.ru). 

 

THE MODEL 

Let us construct Fisher information matrix for 

DCC-MGARCH (1, 1) with standardized residuals, 

satisfying to a multivariate normal distribution. Let  tu  is 

a multivariate series of log returns,  T
tKttt uuuu ...,,, 21

, calculated for some set of asset prices 

 T
tKttt yyyy ...,,, 21 : 

 

   1,lnln  tiitti yyu , Tt ,...,1 , ,,...,1 Ki   

 

where K is a total number of assets in a portfolio. 

Assuming that multivariate time series {ut} has 

conditional heteroscedasticity, Tt ,...,1 , we suppose that 

its conditional expected value equal to zero: 

 

  01 tti FuE , Ki ,...,1 , 

 

and conditional variances in fixed moment of time t 

determined as 

 

  ttt HFuD 1 , 

 

where   ijtt hH  is symmetric, positive 

definite, covariance matrix KxK, consisting of variances 
2
itiith  , Ki ,...,1 and covariance’s ijtijth  , 

Kji 1 ;  
0

nnFF is a filtration, determined by 

σ-subalgebras Fn such that  N ...,,1 , if nm  . Also, 

let’s assume, that ut have conditionally Gaussian 

multivariate distribution law, i.e.  

 

ttt Hu  2/1
, 

 

where 
2/1

tH  is a Cholesky decomposition for Ht, 

column vector  Kt IN ,0~  and KI  is an identity KxK-

matrix. 

Let variances ,2
it Ki ,...,1  satisfy to 

autoregressive dependence like one-dimensional GARCH 

(1, 1) process [12] for every fixed index i: 

 
2

1,
2

1,
2

  tiitiiiit u ,                   (1) 

 

where const2
0, i , const0, iu , 

0,0,0  iii  are some parameters and 1 ii , 

Tt ...,,2,1 .  

After finding volatilities
2
it , the off-diagonal 

elements σijt of covariance matrix Ht can be determined 

from expressions as follows: 

 

jtitijtijt  , Kji 1 ,                   (2) 

 

where ρijt are the coefficients of positive definite 

correlation matrix Гi, participating in the expansion of 

Ht=DtГtDt and Dt  is a diagonal matrix with elements σit. 

Let's combine unknown parameters expressed in 

equations (1) and (2) into one vector with size 

  2/13  KTKKN to be determined: 

 

 KTKTKTttKKK ,12311312111 ...,,,...,,,,,,...,,,,  . 

 

By assumption that log returns tu satisfy to 

normal distribution law, the evaluation of Nii ,1,  is 

conducted by maximum likelihood method with 

conditional probability functions of Gaussian distribution  

    





 

tt
T
tt

K
t uHuHf

12/12/

2

1
expdet2 , 

 

which were calculated in T vectors of 

observations u1, u2,...,ut, . Log likelihood function is as 

follows 

 

http://www.finam.ru/
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  



T

t
t

T

t
t flll

11

ln ,                                  (3) 

where   tt
T
ttt uHuH

K
l

1

2

1
detln

2

1
2ln

2

 .  

 

Discarding constant term 





  2ln

2

K
and taking 

into account, that tttt DDH  , equation (3) takes the 

final form: 

 
tttt

T
ttttt uDDuDDl

111

2

1
ln

2

1
 

 

tttt
T
t

K

j

jtt uDDu
111

1

2

2

1
ln

2

1
ln

2

1 



  , Tt ,...,1 .  (4) 

 

In general case, when ut satisfy to any probability 

law, to obtain stable estimates of the vector of parameters 

̂  it is good to use maximum likelihood method with 

function lt too, due to execution of asymptotic ratio [13, 

14]: 

 

     




1,0~ˆlim JNYn n
n

,                  (5) 

where      



















ji

ij

ll
EJ , Nji ,1,  . 

 

Note, that even if we use small quantity of 

multivariate time series values ,tu Tt 1 , a number of 

estimated coefficients i , Ni ,1, , in DCC-GARCH(1,1) 

will be enormous. Moreover, assessments of the 

correlation and covariance matrices found by maximum 

likelihood method are not necessary positive define [1, 3]. 

So, we should modify DСС-MGARCH(1,1) . Suppose that 

for time-varying elements of the correlation matrix ijt  

the next ratio is fair: 

 

1,1,   tjtiijijijt , Kji 1 , Tt 1 ,           (6) 

 

where 
1

,,
 ittiti u  are standardized residuals (noises), 

tttt HD   2/11
 and ij  are some elements of fixed 

correlation matrix s  computed at chosen by 

researcher time t=s. 

According to equation. (6), matrices t ,

Tt 1 , changes slowly over the time t and can be 

replaced by the sum of constant correlation matrix Г and 
some white noise.  Consequently, dimension of vector Θ 
reduces significantly to KKN 22  . And it takes form 

like  

 

 KKKKKKK ,11312,11312111 ...,,,,,..,,,,,...,,,,   .       (7) 

Let get some conditions under which disturbed 

covariance matrix tttt DDH  with constant matrix t  

whose elements are defined by equation. (6), will be 

positive define. Let formulate and prove the theorem 1. 

Theorem 1: Let   ij , 0ii , 

Kji ..,,1,  , is a semi-definite matrix with equal to zero 

coefficients on the main diagonal, 

 1,1,1 ...,,   tKtdiag  is a diagonal disturbed matrix 

with the elements of one sign (minus or plus). Then tH is 

positive definite. 

 

Proof:  

Obvious, that 

   tttttttt DDDDDDH  

tttttt AHDDDD  ,   

where tH  is non-disturbed positive definite covariance 

matrix,      tt
T

t
T

tttt DDDDDDA  is a 

noise. Let us look closer at the matrix At.  

Let matrix  1,1,1 ...,,   tKtdiag  is composed 

from positive standardized residuals. Then tD  is positive 

definite, that is At, as the product of positive definite and 

semi-definite matrices, will be positive semi-definite. 

Let matrix  1,1,1 ...,,   tKtdiag  is composed 

from negatively standardized residuals. Then  tD  is 

positive definite. So, because  

        ttttt DDDDA  , 

then At is positive definite as it was proved above. So, 

under conditions of theorem 1, At is always positive 

definite. Let us prove, that ttt AHH   is positive 

definite. Actually, according to the definition, for any 

vector 0,  VRV
K

 we have: 

 

  VAVVHVVAHVVHV t
T

t
T

tt
T

t
T  . 

 

Since 0VHV t
T

, 0VAV t
T

, then 

0VHV t
T

, which completes the proof of the theorem 1. 

Remark: If matrix ε is composed from the 
residuals of different signs, then At will be uncertain 

matrix. And proof of positive definiteness tH  will be 

failed. Note more, that assuming 0ij , Kji 1 , in 

equation. (6), the algorithm DCC–MGARCH(1,1) 

converts to known method CCC–MGARCH(1,1) [2]. 

The indisputable advantage of the latest algorithm 

is the use of a single, constant in time, correlation matrix 

 for modeling the values of tH : 

 

ttt DDH  ,  

 

which not only leads to a reduction in the number 

of estimated parameters in the vector  , but also greatly 
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ease the calculation procedure. Indeed, in the case of 

conditional normality of random variables 

 1,0~ ttt FHNu  maximum likelihood estimate ̂  for Γ 
is always calculated as the sample mean of standardized 

residuals: 

 





T

t
t

T
ttt DuuDT

1

111ˆ                                   (8) 

 

and ̂  is almost surely positive definite.  

Further, (8) allows us to simplify the equations. 

(3)-(4) and write equation. (3) in the form (assuming that 

the permanent members discarded) as follows: 

 









 







T

t
t

T
ttt

T

t
t DuuD

T
Dl

1

11

1

ln
2

ln . 

 

Therefore, the number of coefficients to be 

estimated by the method of maximum likelihood is 

reduced to KN 3 : 

 

 KKK  ,,...,,,, 111 . 

 

To check the validity of equalities 0ij ,

Kji 1 , put forward the statistical hypothesis 

0:0 ijH , Kji 1 , about the constancy of 

correlation matrices in the expansion of tttt DDH   

having   2/2
KKQ   independent constraints. Suppose 

there is an alternative hypothesis 0:1 ijH , 

Kji 1 .  

To construct a critical statistics γ, we use an 
analogue of the asymptotic relation (5): 

 

     Ylln
n




ˆlim ,                                   (9) 

 

where        


















N

lll
l ...,,,

21

, ̂ - estimation 

for the vector in (7), found by the maximum likelihood 

method, and        

 lJlNY

T1,0~ . Relation (9) 

is hold as a result of the validity of Slutsky’s lemma about 

the limit transition under the sign of a continuous function

 l . Further, since        lJl
T

 is the sum of 

the squares of normally distributed random variables, it 

has 2 -distribution with Q degrees of freedom. Therefore, 

γ can be selected as follows [18]: 
 

  T
SJS ˆˆˆ 1  

 ,                                 (10) 

 where   
ˆˆ lS .   

 

The hypothesis 0H  is accepted with a confidence 

level  1 , if  Q
2

2/  and rejected otherwise.  

Note that the information matrix  J  is useful 

not only for the calculation of the critical statistics (10) 

and test the null hypothesis about the constancy of 

correlation matrices in the method of DCC-MGARCH (1, 

1). It can also be used in the construction of confidence 

interval estimates of risk marginal values of VARα (more 

about calculating the VARα can be found, for example, in 

[7, 15]), as the following inequalities (marked by "  " 

refers to a total ordering on set of real vectors from 
K

R ): 

 

    





ˆˆˆˆ 2/12/1
2

2/12/1
2 VARrVARr InZARVVARInZARV (11) 

 

  where 

          

 ggradJggradI

t
VAR

1 , α - 

significance level,  g –quantile function for the 

probability law  ,xF  that defines the multidimensional 

distribution of random variable ξ with realizations  tu , 

Tt 1 , 2rZ  is a vector-quantile of the standard 

multivariate normal distribution with probability r/2 and 

(1-r) is the probability with which the confidence 

parallelepiped covers the theoretical value of VARα. 

Other possible usages of Fisher-information 

matrix, as well as its basic properties are considered in 

detail in the monograph [16]. 

Let us construct an information matrix  J , 

for which we should find a vector-gradient  l  and 

calculate the corresponding expected values. 

Differentiating variances 
2
it , determined in 

accordance with (1), on iii  ,, , it is easy to prove that 

the following recurrent relations take place: 

i

ti
i

i

it







 

2
1,

2

1 ;  

i

ti
iti

i

it







 



2
1,2

1,

2

;  

i

ti
iti

i

it u






 



2
1,2

1,

2

,      

(11) 

0;0;0

2
0,

2
0,

2
0, 















i

i

i

i

i

i
, Tt ,...,1 , Ki ,...,1 . 

Since 
11

1












t

s

t
t

s

t , the coordinates of 

the gradient vector  l , are depended on the function 

tl  from (4) and are expressed as follows [18]: 

   
i

it
T

t it

itit

i

dl










 



2

1
22

1
, 
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   
i

it
T

t it

itit

i

dl










 



2

1
22

1
, 

   
i

it
T

t it

itit

i

dl





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1,1, , Kji 1 , (12) 

where   ttt
T

Ktttt uDdddd
11

21 ,...,,  , itd is an i-th 

component of the vector td , i j

t are the elements of the 

inverse matrix 
1t  and  ttt uD

1 with 00  .  

Note that from the independence of variances 
2
1t

, 
2
2t ,..., 

2
Kt in equation. (1) follows that the derivatives 

s

l
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s

l




 and 
k

l




, if ks  , are also independent in 

equation. (12), and their corresponding information matrix 

coefficients       0//  jiij lElEJ  since the 

expectations of all informants are equal to zero. At the 

same time, ijl  / and ijl  / are dependent from each 

other and cannot be expressed by other derivatives on the 

another model parameters. So, it concludes that matrix 

 J  has a block form and consists of submatrices 

 1,1,  KsAs , located on the main diagonal. 

Submatrices As are defined as the mathematical 

expectations of the product of partial derivatives with 

respect to all possible combinations of the parameters 

from the sets    KKK  ,,,...,,, 111 , 

 KKKK ,112,112 ...,,,...,,   . 

So, submatrices As have the form as follows: 

 

 )()( // s
j

s
is llEA  , 

 sss
s
j

s
i  ,,, )()( , 3,1, ji , Ks ,1 ; 

 )1()1(
1 // 
  K

j
K

iK llEA ,  

 KKKK
K
j

K
i ,112,112

)1()1( ...,,,...,,, 
  , 

 1,1,  KKji . 

Matrices KAA ...,,1  were calculated in [9]: 
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, 

where  s
ija  are the elements of sA , 3,1, ji , Ks ,1 . 

Definition of the functional form of the 

relationships for the elements of submatrix 1KA  is made 

for the first time. Here we present only the final result, for 

calculations we use equation. (12). The auxiliary matrices 

  11  ttijt DcC ,   2/1
tijt HbB   were 

introduced; under the sign of K-dimensional integral, 

which defines mean, variable yBu t  was substituted, 

where y is a new uncorrelated random variable, and 

possible fourth-order moments of the multivariate normal 

distribution were calculated. For example, the following 

expressions were derived: 
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, Kji ,1,  , 

where       





 

uHuHuf t
T

t
K 12/12/

2

1
expdet2  and 

 T
Kuuuu ...,,, 21 .  

 

Note also that 







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32

21
1

MM

MM
A TK  is a block 

matrix with sub-matrices, which dimensions are K(K-1) 

/2K(K-1)/2.  Block    
1
,1 mM  is built from 

elements that are expectations    // llE , where 

 KK ,112 ...,,,   . Next submatrix    
2
,2 mM  

consists of the elements    // llE , where 

 KK ,112 ...,,   ,  KK ,112 ...,,   . At last, 

   
3
,3 mM  have elements    // llE  with 

parameters  KK ,112 ...,,,   . 

So, finally we have: 
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  2/1,1,  KK . 

 

ECONOMETRIC ANALYSIS OF STOCK PRICES 

We will use block information matrices  J , 

constructed above, for testing statistical hypothesis 0H  

about the constancy of the matrices of risky assets 

correlations on the Russian stock market. The hypothesis 

put forward in order to reduce the number of estimated 

parameters in the method DCC-MGARCH(1,1) and to 

simplify the structure of the calculated structure. Consider 

five different portfolios with four assets in each. The first 

portfolio (P1) forms from the common shares of Lukoil, 

Surgutneftegaz, Rostelecom, RAO UES, fixing close 

prices for the period from 02 January 2000 to 27 October 

2006 (total 1701 share values). The second portfolio (P2) 

forms from the common shares of companies Norilsk 

Nickel, Aeroflot, AvtoVAZ, Mosenergo, take close prices 

from 31 October 2001 to 23 March 2007 (total amount is 

1361 quotes). The third portfolio (P3) makes up from 

common shares of companies Baltika, Rosneft, Rosbank, 

Polyus Gold, taking close prices from 23 August 2006 to 

24 March 2007 (total of 144 values). The fourth portfolio 

(P4) forms from the common shares of the companies 

RAO UES, Aeroflot, Sberbank, Transneft, take close 

prices from 01 February 2003 to 31 March 2007 (total 

amount of 1025 values). Finally, the fifth portfolio (P5) 

forms from the common shares of companies RITEK, 

MTS, Sibirtelecom, Tatneft, fix close prices for the period 

from 01 February 2004 to 31 March 2007 (total amount is 

730 values).  

Note that number of shares K=4 in (P1)–(P5) is 

chosen to ease the presentation of the results obtained in 

the computation. 

Before we construct the information matrix 

 J  statistical hypothesis of the initial asset prices 

conditional heteroscedasticity has been checked for assets 

forming (P1)–(P5). 

 

 

Table-1. Results of ARCH-test made for P1 shares. 
 

Lukoil 

Lag p H0 
ARCH-test 

statistics 
2
  

10 decline 214.47 19.67 

15 decline 230.14 26.3 

20 decline 244.15 32.7 

Rostelecom 

Lag p H0 ARCH-test 2
  

statistics 

10 decline 103.31 19.67 

15 decline 107.44 26.3 

20 decline 108.28 32.7 

Surgutneftgaz 

Lag p H0 
ARCH-test 

statistics 
2
  

10 decline 263.47 19.67 

15 decline 266.26 26.3 

20 decline 271.45 32.7 

RAO UES 

Lag p H0 
ARCH-test 

statistics 
2
  

10 decline 189.15 19.67 

15 decline 253.19 26.3 

20 decline 259.40 32.7 

 

As it is known [17], that such research carry out 

by the ARCH-test (or Engle test) applied for residuals of 

time series with having put forward a null hypothesis H0 

about its conditional homoscedasticity. Since the one-

dimensional process GARCH (p,q) is the local 

ARCH(p+q)-process, then a critical statistic obeys the chi-

squared-distribution with (p+1) degrees of freedom. 

Calculations made for portfolios (P1)–(P5) 

demonstrated the presence of heteroscedasticity (or the 

lack of homoscedasticity) in all the time series of 

portfolios. Due to the large amount of information 

received, we present results for (P1) only. We collect it in 

Table 1 with a significance level α=0.05. In such a way, 

the original assumption about the conditional 

heteroscedasticity of the multidimensional time series in 

all portfolios is confirmed, that allows us to find the 

variance 
2
it  in accordance with equality (1). 

Since 
22

1 ...,, Ktt  are independent from each other, 

then for their finding the classic one-dimensional method 

GARCH (1, 1) [12] with lag k=20 was used. 

Further, in accordance with equality (8) in every 

fixed moment of time t, t=1,…,T, estimations of maximum 

likelihood t̂  for the conditional correlation matrices 





t

s
s

T
ssst DuuDt

1

111ˆ were calculated. They will be 

symmetric and positive definite on its construction. Then 

tttt DDH  ˆˆ  will be positive definite covariance matrices 

and for them both the Cholesky decomposition 
T
ttt BBH ˆ and the inverse matrices 

11ˆ  ttt DC are exist. 

Using tt CB ,  in blocks M1–M3, volatilities 
2
it  and 

recurrent relations (11), we get estimations of information 

matrices  
ˆJ  in each time t, t=1,…,T. Further we find 

informant  
ˆl  by using (12) and compute inverse 
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matrices  
ˆJ , if they exist. At last we calculate test 

statistics (10) and compare it with known   14,4562
975.0   

for accepting or declining general hypothesis 0H .   

The calculations of statistics made for stocks 

portfolios (P1)-(P5) revealed three main types of trading 

days on the Russian market. The first type (T1) includes 

days for which the hypothesis about constant matrix 

correlation is hold. And we can apply simplified 

econometric method CCC-MGACH(1,1). Next, the second 

type (T2) consists of the days for which the hypothesis 

0H  is rejected, and respectively, the more complex 

algorithm DCC-MGARCH(1,1) must be used. Finally, the 

third type (T3) is formed by days in which the determinant 

  
ˆdet J  is equal to zero, inverse matrix  


ˆ1

J  does 

not exist and statistics γ is not defined. Moments that enter 
into T3 are the most interesting for analysis because for 

them there is a linear dependence of the rows in the block 

matrix 1KA . As a result, we find a functional connection 

between the various correlations of share quotes in some 

portfolios. Hence, some companies initially connected 

with each other more closely, so, the movement of their 

quotes come about the same events, i.e., thanks to the 

movement of the financial capital or covering the news 

etc. In addition, we can talk about how to use the insider 

information, as we observe coordinated buying or selling 

shares of portfolios (in other words, there are trading days 

that come about class T3 for all the portfolios (P1)–(P5) 

simultaneously). 

The number of trading days of each type founds for the 

portfolios P1-P3 is shown in the Table-2. 

 

Table-2. Distribution of trading days for P1-P5 portfolios. 
 

 P1 P2 P3 P4 P5 

Т1 827 614 45 439 219 

Т2 813 611 67 500 454 

Т3 41 116 12 66 57 

 

As follows from the results of the calculations 

presented in the Table-2, the hypothesis about the 

constancy of the covariance matrix in decomposition 

tttt DDH   is rejected. Consequently, the usage of the 

CCC-MGARCH (1, 1) algorithm on entire time interval is 

not accepted. To obtain more accurate results we need to 

use a more sophisticated method DCC-MGARCH (1, 1). 

Meanwhile, the number of parameters to be estimated in 

the DCC-MGARCH (1, 1) can be significantly reduced if 

we take the assumption (6) about the nature of depending 

the elements of matrix t . 

Having been calculating the critical statistics (10) 

for the portfolios (P1) - (P5) we discovered a curious 

effect: trade days T1 (T2), when the hypothesis of 0H is 

accepted (rejected), seek to follow each other, i.e. forming 

clusters. By analogy with the well-studied and described in 

the literature the effect of volatility clustering [7], which is 

valid for one-dimensional time series, the observed 

behaviour of the portfolios will be called generalized 

volatility clustering or clustering of covariance matrices. 

Further, notice that a change of the type from T1 

to T2 and from T1 to T2 goes through time points T3. 

Also T1 days are characterized by a moderate change in 

the daily volatility between 0% and 2% for each of the 

assets, whereas for T2 days its behavior is more stochastic: 

one-dimensional daily volatility exceeds 2%. 

Proved no consistency of hypothesis about the 

use of an algorithm ССС-MGARCH(1,1) on the Russian 

stock market helped us to make a further econometric 

analysis of the behavior of portfolios (P1)–(P5) using 

DCC-MGARCH(1,1). Since this analysis is beyond the 

scope of this research work, let us cite just a few 

outcomes: built possible scenario of the future value of the 

portfolios (P1)–(P5) with the use of normal, α-stable [15] 

and STS-distribution [15,18], for the last of these 

distributions achieved the highest accuracy of calculations. 

For example, the volatility between the simulated and 

known values for all time series of portfolio (P1) didn't 

exceed 4.1%, for (P2) - 4.8%, for (P3) - 6.7% and for (P4) 

- 6.4%. 

 

CONCLUSIONS 

We found closed form of Fisher information 

matrix for DCC-MGARCH (1, 1) algorithm. It applies to 

Russian stock market investigation. Computations made 

allow us to discover three different time periods T1- T3. 

And changing class from T1 to T2 and from T1 to T2 goes 

through time points T3 only. At last we found ‘clustering 

effect’ of multivariate covariance matrices when 

covariance matrices with high (low) determinants tend to 

each other.  
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