
                                VOL. 13, NO. 9, MAY 2018                                                                                                                     ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2018 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                               3119 

PRESSURE AND PRESSURE DERIVATIVE INTERPRETATION IN 

RADIAL NON-NEWTONIAN/NON-NEWTONIAN COMPOSITE 

RESERVOIRS 
 

Freddy Humberto Escobar
1
, Jesús Daniel Céspedes

1
 and Alfredo Ghisays-Ruiz

2 

1Universidad Surcolombiana/CENIGAA, Avenida Pastrana - Cra 1, Neiva, Huila, Colombia 
2Universidad del Atlantico, Fac. De Ciencias Básicas. Antigua vía Puerto Colombia, Barranquilla, Atlantico, Colombia 

E-Mail: fescobar@usco.edu.co 

 
ABSTRACT 

Many deposits contain heavy oils that exhibit power-law non-Newtonian behavior and sometimes require the 

injection of another non-Newtonian fluid creating a composite system. Running pressure tests in these cases must be 

adequately interpreted for an accurate reservoir characterization. Application of conventional analysis would be long and 

tedious since it uses a Cartesian graph for each zone of the composite system and along with type-curve matching would be 

useless in determining the well drainage area. TDS technique, which can be applied separately to each region, is extended 

to allow the integrated interpretation of the two non-Newtonian zones and obtaining permeability, skin factor (introducing 

the concepts of viscoplastic and viscodilatant skin factors), distance to interface between the two zones and well drainage 

area. The proposed methodology was successfully verified by its application to a real case and a synthetic one. 
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1. INTRODUCTION 

The total crude reserves in the world are 

approximately formed by 40 % of heavy and extra heavy 

oil and other 30 % of oil sands and bitumen, (Færgestad, 

2016). Despite the current low barrel prices compared to 

more than three years ago and the high production costs of 

heavy crude, the industry has focused significantly 

towards the production of these non-conventional deposits 

that are normally subject to chemical oil recovery through 

injection wells and are then studied by pressure transient 

tests, which if carried out in the most accurate way 

possible will bring with it a greater knowledge of the 

characteristics of the reservoir, better reservoir 

management and its economic benefit. 

The literature contains numerous investigations 

concerning the behavior of non-Newtonian fluids in 

porous media. Odeh & Yang (1979) derived a partial 

differential equation for flow of power-law fluids through 

porous media. They used a power law function relating the 

viscosity to the shear rate. The power-law viscosity 

function was coupled with the variable viscosity 

diffusivity partial differential equation and shear rate 

relationship proposed by Savins (1969), generating a new 

partial differential equation and an approximate analytical 

solution. Ikoku (1979), Ikoku & Ramey (1979), Ikoku & 

Ramey (1979) and Ikoku & Ramey (1980), and Lund & 

Ikoku (1981). Okpobiri & Ikoku (1983) presented a 

standard work on well test analysis for non-Newtonian 

fluids that obey a dilatant power-law behavior, allowing 

well test interpretation for these reservoirs using the 

conventional straight-line method. However, as Gringarten 

(2008) pointed out, the conventional method is poor for 

the identification of flow regimes and has no verification; 

On the other hand, the standard curves method is limited 

to regular identifications and verifications; in contrast, 

TDS technique, using the pressure derivative, is currently 

the best method for both purposes. 

The calculation of apparent skin factor in non-

Newtonian/non-Newtonian system was recently presented 

by Li et al. (2017) using the analytical polymer injectivity 

model and proposed. This requires polymer rheological 

properties, grid size, wellbore radius, etc., and can be 

applied to any polymer rheology. The conducted 

simulation studies of polymer flooding cases to verify the 

concept of apparent skin factor. 

 Vongvuthipornchai & Raghavan (1987) used the 

pressure derivative method on non-Newtonian fluid 

pressure tests, however, the first application of the TDS 

technique, Tiab (1995) to non-Newtonian behavior was 

reported by Katime-Meindl & Tiab (2001). A recent 

application of the derivative was presented by Escobar, 

Martínez & Montealegre (2010), who applied the TDS 

methodology for a homogeneous radial composite deposit 

with a non-Newtonian / Newtonian fluid system whose 

first fluid follows the power law and is of character 

pseudoplastic. Martínez, Escobar & Cantillo (2011) 

presented a similar investigation, with the difference that 

the non-Newtonian fluid has a dilatant behavior. In 

addition, Escobar, Vega & Bonilla (2012) applied the 

same methodology for the estimation of the drainage area 

of a vertical well in a non-Newtonian power law crude oil 

field. 

This paper is a continuation of the three most 

recently mentioned works. Then, when the industry needs 

to characterize a non-Newtonian crude reservoir from 

pressure tests when it is, for example, being tertiary 

recovered by injecting such non-Newtonian fluids as 

polymers, alkaline solutions, microemulsions or foams, 

this research allows giving very reliable results of 

permeability, skin factor, radius of injection and, if the test 

is long enough, drainage area. To achieve this, pressure 

and pressure derivative data were numerically obtained; 

then, characteristic features are determined to develop 

analytical expressions for reservoir characterization. The 
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new formulas are successfully verified by their application 

to synthetic and actual examples. 

 

2. MATHEMATICAL MODEL 

A linear partial differential equation for radial 

flow of non-Newtonian power-law fluids through porous 

media was proposed by Ikoku & Ramey (1979): 
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This equation was applied to both reservoir zones 

rw ≤ r ≤ ra and ra ≤ r ≤ re, respectively. G and ȝeff, written 

in a general way, and adjusted to be applied with field 

units, are: 
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Between the first zone (injection fluid) (1) and 

the in-situ fluid (2) there exists a transition zone or 

interface. Based on the criterion that they must flow at the 

same velocity, and since the velocity of each fluid is 

governed by Darcy's law for non-Newtonian fluids 

developed by Ikoku & Ramey (1979), this paper used the 

continuity condition at the interface as proposed by Lund 

& Ikoku (1981), obtaining: 
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where Ȝeff1 and Ȝeff2 are: 
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ȝeff1 and ȝeff2 are the effective viscosities of each fluid 

following the definition of Equation (3). 

 

Since different exponents are presented on each 

side of the expression, the condition of the interface 

(Equation 4) cannot be converted into an adequate finite 

difference equation, so it could not be introduced into the 

simulator as if it were possible with the Equation (1). 

Then, the internal boundary condition shown by Ikoku & 

Ramey (1979) was rewritten in terms of apparent viscosity 

for each non-Newtonian fluid, ȝapp1 and ȝapp2, as follows: 
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Equations (7) and (8) were substituted in 

Equation (4), which allowed to remove the exponents, thus 

obtaining a new more complete equation for the interface 

than that proposed by Escobar, Martínez & Bonilla (2012), 

with the possibility of being expressed in finite 

differences, compared to Equation (4): 
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where Ȝ corresponds to: 
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Finally, the expressions used by Katime & Tiab (2001) 

written in general terms and applied by the TDS 

methodology to find the dimensionless pressures, PD, and 

dimensionless times, tD, for the two non-Newtonian fluids 

are: 
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 The mathematical model considered a radial flow 

of two slightly compressible non-Newtonian fluids 

through homogeneous, isotropic and constant thickness 

porous media. The shape of the reservoir is cylindrical 

with finite external radius and non-flow boundary. A fluid 

flows at a constant rate through a well in the center of the 

reservoir and the other fluid corresponds to the in-situ 

fluid. Figure-1 is a schematic representation of the 

reservoir under consideration. 
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Figure-1. Non-Newtonian/non-Newtonian radial 

composite reservoir diagram. 

 

3. PRESSURE DERIVATIVE BEHAVIOR 

The pressure derivative curves of a non-

Newtonian fluid differ from the shape of the curves of a 

Newtonian fluid. While a Newtonian fluid (flow behavior 

index, n = 1) has a slope equal to zero, a fluid that follows 

the power law of pseudoplastic behavior  (0 <n <1) has a 

positive slope straight line which increases as its flow 

behavior index declines, as shown by Katime-Meindl & 

Tiab (2001). On the other hand, a dilatant fluid (1 <n <2) 

has an increasingly negative slope as its index increases, 

according to Martínez et al. (2011). This behavior is also 

kept for the two fluids under study as shown in Figure-2. 

A transition zone occurred between the radial 

flows of the two non-Newtonian fluids. This was 

influenced by the consistency indexes H1 and H2 of each 

fluid. With H1 < H2, the slope tended to have a positive 

value, however with H1 > H2, the slope of the transition 

tended to be negative. With the condition H1 = H2, in most 

cases a defined slope of transition between the two flows 

was not observed. (See Figure-3). 

From further observations on both pseudoplastic 

and dilatant fluids, the smaller n1 value, the shorter the 

time required to reach the beginning of the transition, 

however, not necessarily faster is reached radial flow of 

the in-situ fluid. Also, as H2 decreases, the pseudosteady-

state period is reached more rapidly. 
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Figure-2. Dimensionless pressure derivative behavior of 

pseudoplastic non-Newtonian fluids, n1 = 0.8, H1 = 30 

cP*s
n-1

 and H2 = 100 cP*s
n-1
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Figure-3. Dimensionless pressure derivative behavior of a 

dilatant non-Newtonian and pseudoplastic non-Newtonian 

fluids, n1 = 1.2, n2 = 0.75 and H2 = 20 cP*s
n-1

 

 

The dimensionless time and pressure derivative 

values can be found with the flow indexes of the first or 

second fluid. When the well fluid is studied by varying 

some of its flow behavior indexes, a better and simpler 

interpretation of the behavior of the dimensionless curves 

is achieved by tD and tD*PD ' with the data of the second 

fluid n2 and H2, as shown in Figure 3. Otherwise, when the 

in-situ fluid to which any of its two indexes are varied, 

both tD and tD*PD' must be found with n1 y H1, as shown in 

Figure-2. 

 

4. APPLICATION OF TDS TECHNIQUE  

According to Katime-Meindl & Tiab (2001), the 

dimensionless equation for a radial flow regime of a 

power-law non-Newtonian fluid is: 
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The value of this same dimensionless pressure 

derivative of after being presented in a log-log plot of 

tD*PD' against (tD) is: 
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 is the slope of the pressure derivative curve on 

the non-Newtonian region and defined as: 
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Equation (14) was proposed for both non-

Newtonian fluids. Both equations were equated to 0.5, 

obtaining: 
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Where (tD*PD')1 and (tD*PD')2 follow the 

definition of Equation (14), tD1 and tD2 follow the definition 

of Equation (12), and 1 and 2 follow the definition of 

Equation (16). (t*ΔP')1 = (t*ΔP')2 and t1 = t2, and finally, 

the permeability was finally obtained: 
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Where tirNN_NN is the time of the point of 

intersection between the slopes of the two non-Newtonian 

fluids in a log-log plot of t*ΔP' vs. t, and where ȝ*
eff1, 

ȝ*
eff2, G
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1, and G
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2, are: 
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Equation (17) is not applicable for n1 = n2, 

because at the occurrence of such a condition the slopes of 

the two flows are parallel and, therefore, never converge to 

a common point. The permeability value and skin factor 

obtained from the radial flow of a non-Newtonian fluid 

can be estimated from the Equations presented by Escobar 

et al. (2010) and Escobar, Martínez & Bonilla (2012): 
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Equations (22) and (23) apply to both non-

Newtonian fluids taking care of using the properties of 

each zone.  

Escobar et al. (2010) and Martínez et al. (2011) 

proposed expressions that allow finding the distance from 

the well to the interface of the pseudoplastic and dilatant 

injection fluid, respectively, in a non-Newtonian / 

Newtonian system. The expressions adjusted for the 

present case are: 
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Equation (24) applies for pseudoplastic fluid and 

Equation (25) for dilatant fluids. t* in Equation (24) ought 

to be replaced for one of the following times: 

 

 Time of the maximum curvature point at the 

beginning of the transition tMC 

 Time of the maximum derivative point of the 

transition tM 

 Time of the point of intersection between the slopes 

of the injection fluid and the transition between the 

two radial flows tirNN1_Tr 
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The expression provided by Escobar et al. (2012) 

for the drainage area determination also applies here: 
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5. APPROPRIATE USE OF THE EXPRESSIONS 

An accuracy analysis was performed on all the 

expressions due to the great variety of situations that can 

occur in a reservoir with two non-Newtonian fluids. This 

variety of cases depends mainly on fluid type. If the fluids 

in zones 1 and 2 are either pseudoplastic or dilatant types 

or a combination of both; condition that is given by the 

flow behavior indexes n1 and n2. The value of the two 

consistency indexes H1 and H2. That is, if the index of the 

fluid in zone 1 has a value greater, less than or equal to 

that of the second zone. This classification is given in 

Table-1. 

Permeability estimated with Equations (17) and 

(22) apply with great accuracy for all cases given in Table-

1. Same situation occurs with skin factor and drainage area 

estimations. 

It was observed that the two skin factors of zones 

1 and 2 presented a certain tendency of dependence 

against their respective values of flow index behavior and 

of independence against their respective values of index of 

consistency and the remaining fluid and petrophysical 

values. That is to say, as n changed, the skin factor was 

seen affected, and when H or another parameter was doing 

it, the skin factor tended to remain constant. However, the 

modification of n or H of the zone 1 fluid caused an 

additional variation in the skin factor of the second zone, 

so that when n1 or H1 increased, the second zone skin 

factor did likewise. 

Based on the described criterion, the skin factor 

of zone 1, for all twelve cases, can be calculated correctly 

since if the value of the flow behavior index n1 is kept 

fixed regardless of the value of the consistency index H1 

or another parameter, the skin factor is the same. 

Otherwise, by varying n1 and keeping H1 fixed, the skin 

factor undergoes gradual and coherent changes. In fact, 

that exclusive dependence of zone 1 as a function of the 

flow behavior index is reflected in a single value of s1 for 

each n1. Table-2 and Figure-4 show these values. The skin 

factor values shown in Table-2 would also be displayed in 

reservoirs with a single non-Newtonian fluid. As can be 

seen, negative values of s1 were produced by pseudoplastic 

fluids while positive values were present in dilating fluids. 

For both pseudoplastic and dilatant fluids, as n1 increased, 

the respective skin factor decreased. 

On the other hand, with regard to the skin factor 

of the zone 2, apart from the additional variation that 

occurred in all cases, the mentioned criterion was only 

glimpsed and for which correct results are inferred 

(besides being consistent) in cases 5, 6, 9 and 12. Also, the 

criterion was fulfilled in cases 2 and 3 only if n1 was less 

than n2. As can be seen, it is possible to conclude that the 

criterion tends to be visualized in cases where H1 < H2 and 

H1 = H2 and also especially when n1 < n2. For both 

pseudoplastic and dilatant fluids, as n2 increased, the 

respective skin factor decreased. 

The index n, being a property of the fluid that 

intervenes deeply in the flow and liquid velocity liquid, 

has allowed by means of said aforementioned dependence 

to speak of what could be classified as viscoplastic skin 

factor generated by pseudoplastic fluids, and viscodilatant 

skin factor generated by dilatant fluids, at distances distant 

from the well in both zones.  

As far as the distance to the interface is 

concerned, cases 1 to 6 were worked with Equation 24 

because the first fluid is pseudoplastic, while for cases 7 to 

12, Equation (25) was used since in these the first fluid 

corresponds to a dilatant. As mentioned above, the 

calculation of the radius with Equation (25) can be 

performed with tMC, tM or tirNN1_Tr, depending on the case.
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Table-1. Possible cases given in a reservoir with two non-Newtonian zones. 
 

Case 
Non-Newtonian fluid Consistency index, H 

Zone 1 Zone 2 Zone 1  Zone 2 

1 Pseudoplastic Pseudoplastic H1 > H2 

2 Pseudoplastic Pseudoplastic H1 < H2 

3 Pseudoplastic Pseudoplastic H1 = H2 

4 Pseudoplastic Dilatant H1 > H2 

5 Pseudoplastic Dilatant H1 < H2 

6 Pseudoplastic Dilatant H1 = H2 

7 Dilatant Pseudoplastic H1 > H2 

8 Dilatant Pseudoplastic H1 < H2 

9 Dilatant Pseudoplastic H1 = H2 

10 Dilatant Dilatant H1 > H2 

11 Dilatant Dilatant H1 < H2 

12 Dilatant Dilatant H1 = H2 

 

Table-2. Skin factor presented in Zone 1. 
 

Pseudoplastic Dilatant 

n1 s1 n1 s1 

0.1 -1.08 1.1 9.9 

0.2 -1.22 1.2 4.87 

0.3 -1.41 1.3 3.19 

0.4 -1.65 1.4 2.33 

0.5 -1.99 1.5 1.81 

0.6 -2.5 1.6 1.45 

0.7 -3.34 1.7 1.2 

0.8 -5.02 1.8 1.02 

0.9 -10.02 1.9 0.91 

 

Table-3. Fluid and reservoir properties for both examples. 
 

Parameter 
Synthetic 

example 

Field 

example 
Parameter 

Synthetic 

example 

Field 

example 

Pr, psi 2 000 2 500 t, días 120
 

8.98
 

re, ft 3 000 2 625 q, Bbl/día 125 300 

ra, ft 100 131.2 B, rb/STB 1.2 1 

rw, ft 0.4 0.33 n1 0.8 0.6 

h, ft 20 16.4 H1, cP*s
n-1

 40 20 

, % 0.25 20 n2 1.5 1 

k, md 500 100 H2, cP*s
n-1

 200 3 

ct, 1/psi 5.5x10
-6 

6.89x10
-6 
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Figure-4. Flow behavior index of zone 1, n1 vs. skin factor of zone 1, s1. 

 

Case 1: A point of maximum curvature is 

generated immediately after the radial flow slope of the 

injection fluid. The time corresponding to that point of 

maximum curvature tMC allowed finding the distance from 

the well to the interface. In most situations, the tMC 

corresponds to the time of the maximum derivative point 

in the transition tM. 

Cases 2 and 5: The time of the point of 

intersection between the first flow and the transition 

between the two radial flows tirNN1_Tr, made possible the ra 

calculation. However, for both cases, as the two flow 

behavior indexes moved away from each other and the two 

consistency indexes approached significantly, and the 

condition n1 < n2 for case 2 was presented, the transition 

presented at the beginning an additional slope. The 

intersection must be constructed by extrapolating that 

slope. 

Cases 3 and 6: To calculate ra, the time of the 

intersection point between the first flow and the transition 

between the two radial flows tirNN1_Tr must be used. As in 

cases 2 and 5, as the two flow indexes moved away from 

each other and the condition n1 < n2 for case 3 was present, 

the transition initially had an additional slope. The 

intersection must be constructed by extrapolating that 

slope. 

Case 4: The pressure derivative curve has a 

maximum located after the first radial flow, as is usually 

the case in case 1. The time corresponding to that 

maximum pressure derivative value tM allows estimating 

ra. 

Cases 7 to 12: Equation (25) generated reliable 

values of radius for all cases when fluid 1 has dilatant 

behavior. 

 

6. EXAMPLES 
A constant flow injection test in a heavy oil field 

with closed boundaries was generated and interpreted. The 

input simulation data are shown in Table-3. In addition, a 

constant flow injection test performed by Lund & Ikoku 

(1981) with the information given in Table-3 was also 

worked on. The objective is to characterize both tests. 

 

Synthetic example. The example presents a 

system which injection fluid exhibits a pseudoplastic 

behavior while the in-situ fluid behaves as a dilatant fluid. 

Figure-5 corresponds to the log-log plot of the pressure 

and pressure derivative versus injection time curves. Case 

5 of Table-1 is dealt. Therefore, the injection radius must 

be found by Equation (25). The following data points were 

read from Figure-5. 

 

t1 = 0.10011 hr (t*P')1 = 34.2572 psi (P)1 = 217.2565 psi 

t2 = 500.2699 psi (t*P')2 = 56.9775 psi (P)2 =748.8741 

psi 

tirNN_NN = 220 hr tirNN1_Tr = 0.82 hr  trpiNN2 =1 400 hr 
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si

t1 = 0.10011 hr

t2 = 500.2699 hr

trpiNN2 = 1 400 hr

tirNN_NN = 220 hr

.

.

.

.1( ) 217 2565 psiP .  

2 748( ) 1psi874.P  

tirNN1_Tr = 0.82 hr

1( ) 34 2572 psit* P' .  

2( ) 56 9775 psit* P' .  

 
 

Figure-5. Log-log plot of pressure and pressure derivative 

versus time for the synthetic example. 

 

First,  values of 0.09 for the injection fluid and -

0.33 for the in-situ fluid are calculated with Equation (16), 

based on their respective flow behavior indexes n1 and n2. 

Then, using Equations (18), (19), (20) and (21) ȝ*
eff1, ȝ*

eff2, 

G
*
1, and G

*
2 are found to be 1.47, 765 365.981, 0.0277 

and 6.88878x10
-5

, respectively. Using the above calculated 

parameters and the time of intersection between the two 

radial flows tirNN_NN, the permeability is estimated by 

Equation (17). 
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Permeability is verified by applying Equation 

(22) to both radial flow regimes: 
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The resulting averaged permeability is k = 498.04 

md which will be used in the following calculations. Then, 

the effective viscosities are found with Equation (3) and G 

parameters with Equation (2) to be 2.736 cp*(s/ft)
n-1

, 162 

014.207 cp*(s/ft)
n-1

, 0.0001521 hr/ft
3-n

 and 0.02241 hr/ft
3-n

, 

respectively. 

Application of Equation (23) to both radial flow 

regimes allows finding the skin factor:  
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As confirmed here, the skin factor s1 = -5.05 

agrees with what is stated in Table-2. 

The distance from the well to the interface is 

found with Equation (24) and the drainage area with 

Equation (26): 
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Field case example. Lund & Ikoku (1981) 

presents an example consisting of a non-Newtonian 

injection fluid of pseudoplastic character and an in-situ 

fluid of Newtonian behavior, nevertheless the expressions 

formulated here with the exception of Equation (23) (skin 

factor in the in-situ zone), accept a n2 = 1. Figure-6 

contains the log-log plot of pressure and pressure 

derivative vs. time for this example from which the 

following data were read: 

 

t1 = 0.10011 hr (t*P')1 = 86.9221 psi (P)1 = 439.292 psi 

t2 = 50.05438 hr (t*P')2 = 39.1849 psi (P)2 = 966.327 psi 

tirNN_NN = 0.00077 hr tM, tMC = 1.28138 hr 
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Figure-6. Log-log plot of pressure and pressure derivative 

versus time for the actual field example. 

 

Permeability is found with Equations (17) and 

(22) –last one twice- to be, k = 97.21, 101.92 and 98.87 

which averaged value is k = 99.3333 md. The skin factor 
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in the injection zone resulted to be, s1 = -2.52, using 

Equation (23). As for the former example, the skin factor 

values agrees with that stated in Table-2.  Equation 2.34 

by Tiab (1995) allows finding the skin factor in the 

Newtonian zone. According to Escobar et al (2010), this 

expression applied to the nomenclature of this paper is:  
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As a specific value of n1 in the non-Newtonian 

zone generates a specific skin factors which are shown in 

Table-2, further analysis by Equation (27) allowed 

observing that a Newtonian zone always presents a zero 

skin factor. That is, for n1 = 1, s1 = 0.  For this 

pseudoplastic/Newtonian system, the injection radius is 

found with Equation (24) using the time value at the 

maximum pressure derivative point, tM, which results to be 

ra = 119.28 ft. No drainage area is estimated since 

pseudosteady state is unreached. As seen in both examples 

the mechanical skin factor ought to be the same; then, this 

implies the existence of a pseudoskin factor created by the 

nature of the fluid. These can be   called viscoplastic and 

viscodilatant skin factors. 

 

7. CONCLUSIONES 

a) TDS Technique was implemented for the 

interpretation of pressure tests in non-Newtonian/non-

Newtonian composite systems. The analysis of the 

pressure derivative curve allowed identifying specific 

characteristics in this, more precisely the point of 

intersection between the slopes of the two radial non-

Newtonian flows, which led to find a new analytical 

expression for the calculation of formation 

permeability. The TDS Technique for these systems 

involves the application to 12 different scenarios 

depending on the fluid characteristics. 

b) The concepts of viscoplastic and viscodilatant skin 

factors, generated by the non-Newtonian character of 

the power-law fluids under consideration, were 

introduced. Besides, a pseudoplastic character 

produces stimulation and a dilatant behavior causes 

additional skin factor (well damage). 
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Nomenclature 
 

B Liquid formation factor, rb/STB 

ct Total compressibility, 1/psi 

h Formation thickness, ft 

H Consistency index, cP*s
n-1 

k Permeability, md 

n Power-law index or flow behavior index 

P Pressure, psi 

q Flow rate, BPD 

r Radius, ft 

ra 
Radius from well to the interface formed 

between the two fluids 

s Skin factor 

t Time, hr 

t*P' Pressure derivative, psi 

tD*PD' Dimensionless pressure derivative 

 

Greek 

 

 
Pressure derivative slope during non-

Newtonian radial flow 

∆ Change, drop 

 Apparent mobility ratio 

eff Effective movility, [cP*(s/ft)
n-1

]/md 

ȝ Viscosity, cp 

ȝapp Apparent viscosity, cp 

ȝeff Effective viscosity, cp*(s/ft)
n-1

 

 Porosity, fracción 

 

Subscripts 

 

1 Zone 1 or near-wellbore fluid 

2 Zone 2 or in-situ fluid 

a Interface location 

app Apparent 

C Curvature 

D Dimensionless 

e External 

e_r End of radial flow 

eff Effective 

e_rNN1 Ending time of zone 1 

i Intersection 

irNN_NN 
Intersection between the slopes of the two 

non-Newtonian fluids 

M Maximum 

NN No-Newtonian 

p Pseudosteady state 

r Radial flow 

rpiNN2 

Intersection between the second zone 

radial flow  and the pseudosteady-state 

period 

Tr Transition 

w Well 

 


