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ABSTRACT 

Whit this article we show the calibration of parameters of a generalized kelvin model adapted for the simulation 

of specific data for the unconfined static creep test applied in the viscoelastic characterization of asphalt mixtures. The 

calibration is performed using the adaptation of an optimization system along with the placement method where the latter 

serves as the determination of the parameters of the Dirichlet series representative of the generalized kelvin model. The 

results obtained are very satisfactory and validate the correct formulation and easy implementation of the calibration 

system in worksheet. 
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1. INTRODUCTION 
In the characterization of asphalt mixtures, the 

creep test is used as a fundamental test for the 

determination of viscoelastic behavior. To explain the 

experimental context indirectly involved in the subject of 

the article is explained below the essay in question. 

The unconfined static creep test consists of an 

axial load test applied for a certain time and its respective 

discharge in the English school (recovery test); it is really 

a test of recovery. The dynamic machine (Figure-1]) 

addresses the creep test under the following conditions: 

 

 Vertical applied compression: 100 kPa. 

 Creep time: 3600 s. 

 Recovery time: 1800 s. 

 Temperature: 40 ° C. 

 Sample diameter: 100 mm. 

 Sample height of 65 mm. 

 Number of samples for a series: 6. 

 Preferred samples compacted by kneading in a rotary 

compressor. 

 

 The data that can be obtained from the test are: 

 

 Max. Deformation (εmax). 

 Total vertical deformation at the end of the load (for 

3600 s). 

 Permanent deformation (εperm). Remaining 

deformation recorded at discharge end (for 5400 sec). 

 Elastic deformation (εelast = εmax - εperm). 

 Creep rate. Flow rate measured at the last load of 

1200 seconds. (Vε = (ε3600 - ε2400) / 1200 s). 
 Stiffness module. Ratio of applied vertical tension and 

maximum deformation recorded to 3600 s. 

 

2. METHODS 
Below are presented, the function of formal 

model fluency Kelvin generalized, the Dirichlet series and 

method of placement. 

 
 

Figure-1. Assembly for creep test 

Source: Article (Viscoelasticity, [8]) 

 

Figure-2 shows an example of a complete test, 

however, currently the American school does the so-called 

flow time test, with the difference that the test is only 100 

seconds long and only performs the loading phase , which 

is strictly a fluency test, where the proof reports the creep 

compli-ance function. 

 

 
 

Figure-2. Curves obtained from the fluency test 

(English school). 

 

2.1 Kelvin generalized model 
The generalized Kelvin model can be 

mechanically represented as shown in Figure-3, 
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Figure-3. Mechanical model of Kelvin. 

 

The model consists of the serial association of a 

spring element and n elements of Kelvin-Voigt. The 

deformation is then a sum that is described using Equation 

(1). 

 𝑓ሺݐሻ = [ଵ𝐸 + ∑ ଵ𝐸𝑖 ቆͳ − ⅇ(𝐸𝑖𝜂𝑖𝑡)ቇ𝑛
𝑖=ଵ ]  ሻ,                    (1)ݐሺݕ

 

The discrete spectrum of characteristic time in 

creep is described using Equation (2), 

 [𝜏𝑓]𝑖 = 𝜂𝑖𝐸𝑖,                                                                         (2) 

 

Evaluating at t=0 and infinity we can obtained 

Equations (3) and (4), 

 fሺͲሻ = ଵE.                                                                           (3) 

 𝑓ሺ∞ሻ = ଵ𝐸 + ∑ ଵ𝐸𝑖
𝑖=𝑛𝑖=ଵ .                                                      (4) 

 

2.2 Dirichlet series and placement method (Schapery  

      1961, 1974) 
The pavement design is based on mobile loads of 

short duration. The fluency function, therefore, is relevant 

and can be written as shown in equation (5), 

 𝑓𝑑ሺݐሻ = [ ଵ𝐸బ + ∑ ଵ𝐸𝑖 ቆͳ − ⅇ(𝐸𝑖𝜂𝑖𝑡)ቇ𝑖=𝑛
𝑖=ଵ ]     (5) 

 

The discrete time characteristic of creep is shown 

in Equation (6), 

 

𝑓𝑑ሺݐሻ = ∑ −)𝑖ⅇܦܨ 𝑡[𝜏𝑓]𝑖)
𝑖=𝑛
𝑖=ଵ

                                      (6) 

 

By comparing equations 5 and 6, with [𝜏𝑓]𝑛 = ∞, 

we find Equations (7) and (8), 

𝑖ܦܨ  = − ଵ𝐸𝑖                                                                       (7) 

𝑛ܦܨ  = ଵ𝐸బ + ∑ ଵ𝐸𝑖
𝑖=𝑛𝑖=ଵ                                                         (8) 

 

The placement method is an approximate method 

for calculation and the updated response to a 

predetermined number of tabulated data pairs. Instead of 

determining two parameters Ei and [τf ]i, several values of 

[τf ]i are taken arbitrarily, and the corresponding Ei is 

determined by the solution of a system of simultaneous 

equations. 

The creep equation (5) is determined in practice 

based on the results of a creep test. 1000 creep tests were 

measured with at least 11 different times (0.001, 0.003, 

0.01, 0.1, 0.3, 1,3, 10, 30 and 100s) on Federal Highway 

recommendation (FHWA, 1978) to cover all possible 

range of interest. This range of 0.001 to 100 s takes into 

account loads with short and long durations and also the 

Creep Compliance with the temperature. 

Since moving loads are usually of short duration, 

typically characteristic low times are taken which an 

example can be taken as 0.01, 0.03, 0.1, 1, 10, 30 and ∞ 
seconds. If the creep function is specified for these seven 

times, the coefficients FD1 through FD7 can be 

determined from Equation (6) by the solution of a system 

of 7 simultaneous equations. If the fluency function is 

specified by 11 times then there are 11 equations and 7 

unknowns (FD1, ..., FD7), so that to reduce the 11 

equations to 7 equations multiply both sides of the system 

by the matrix transpose initial size 7 x 11, as shown in 

Equation (9), 

 

[   
  ⅇ(− 𝑡భ[𝜏𝑓]భ) ڮ ⅇ(− 𝑡భభ[𝜏𝑓]భ)ڭ ݖ𝑖ݎݐͳͳ 𝑀𝑎ݔ7 −)ⅇڭ 𝑡భ[𝜏𝑓]7) ڮ ⅇ(− 𝑡భభ[𝜏𝑓]7)]   

  
[   
  ⅇ(− 𝑡భ[𝜏𝑓]భ) ڮ ⅇ(− 𝑡భ[𝜏𝑓]7)ڭ ͳͳ7ݔ 𝑀𝑎ݎݐ𝑖ݖ −)ⅇڭ 𝑡భభ[𝜏𝑓]భ) ڮ ⅇ(− 𝑡భభ[𝜏𝑓]7)]   

{7ܦܨڭଵܦܨ}   ቆݔݔݔቇ =

[   
  ⅇ(− 𝑡భ[𝜏𝑓]భ) ڮ ⅇ(− 𝑡భభ[𝜏𝑓]భ)ڭ ݖ𝑖ݎݐͳͳ 𝑀𝑎ݔ7 −)ⅇڭ 𝑡భ[𝜏𝑓]7) ڮ ⅇ(− 𝑡భభ[𝜏𝑓]7)]   

  { 𝑓𝑙ሺݐଵሻڭ𝑓𝑙ሺݐଵଵሻ}                                                                                                                     (9) 
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The coefficients of the series (FD1, ..., FD7) and 

using equations (7) and (8) were used to determine the Ei 

and equation (2) for the determination of hi. In practice, it 

is possible that there are oscillations of the curve caused 

by negative values of Ei, which they do not have a 

physical sense and in this sense historically have been 

numerous investigations, but as a contribution to the 

article, the authors present a restricted optimization 

scheme, adapted for the study of a case in the article. 
 

 

3. RESULTS AND DISCUSSIONS 
 

3.1 Presentation of the experimental data 

Data used as a starting point correspond to a 

FLOW TIME test, these data come directly from a 

KENLAYER program file, and this is a modeling package 

that assists the design of pavements by theory of using 

elastic, viscoelastic and non-linear constitutive models for 

each of the layers. 

The sample tested has dimensions of 100 mm in 

diameter and 66 mm in height. 

 

Table-1. Data of creep and deformation function in time. 
 

Point t (s) s (kPa) fl (t) (1/kPa) ε (mm/mm) 

1 1 100 2.669E-05 2.67E-03 

2 3 100 3.863E-05 3.86E-03 

3 5 100 4.172E-05 4.17E-03 

4 10 100 4.450E-05 4.45E-03 

5 15 100 4.612E-05 4.61E-03 

6 20 100 4.728E-05 4.73E-03 

7 30 100 4.874E-05 4.87E-03 

8 40 100 4.983E-05 4.98E-03 

9 50 100 5.068E-05 5.07E-03 

10 60 100 5.129E-05 5.13E-03 

11 70 100 5.191E-05 5.19E-03 

12 80 100 5.238E-05 5.24E-03 

13 90 100 5.303E-05 5.30E-03 

14 100 100 5.342E-05 5.34E-03 

 

3.2 Determination of Dirichlet series parameters by the  

      placement method 
Calculations are performed in Excel using 

functions for matrix multiplication, transpose of an array 

and inverse matrix, in addition to conventional for 

different functions. 

The following step-by-step describes the 

algorithm followed (not all described in detail): 

 

a) Choosing the number of terms in the Dirichlet series: 

There was no defined criteria in the literature on how 

to choose how many terms to use (except the FHWA 

recommendation mentioned in the previous item), 

however, and taking into account that the placement 

method is an essentially least-squares method it may 

be possible that considerable numerical error 

propagations appear by increasing the size of matrices 

(in a first approach 8 terms were taken for series, 

however, oscillations appeared and Ei with negative 

values, a situation recognized in the literature), so a 

reasonable number can be 5, immediately defining the 

number of characteristic times to be used that would 

be 5, and which in turn defines that the generalized 

Kelvin model will have 4 KV elements, in short: n=4, 

Nk-v=4. 

b) Choosing of characteristic times: One can choose to 

take as reference the own times of the data, preferably 

using the lower times that is where the faster changes 

in deformation have. It was the first step taken by the 

authors in an arbitrary way, however, later, one can 

see the consequences of this decision. The times will 

be:[𝜏𝑓]ଵ = ͳ, [𝜏𝑓]ଶ= 3, [𝜏𝑓]ଷ=5, [𝜏𝑓]ସ= 20, [𝜏𝑓]ହ =ͳE+ଷ଴ଶis necessary to reproduce the asymptotic 

fluency). 

c) Evaluating the Matrix of Exponential Functions and 

its Transpose: The exponential matrix in table 2 is 

displayed and its transpose is not placed since it is a 

simple operation to change rows to columns. 
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Table-2. Matrix of exponentials using equation (9). 
 

 

t (s) 1 3 5 20 1E+302 

1 3,68E-01 7,17E-01 8,19E-01 9,51E-01 1,00 

3 4,98E-02 3,68E-01 5,49E-01 8,61E-01 1,00 

5 6,74E-03 1,89E-01 3,68E-01 7,79E-01 1,00 

10 4,54E-05 3,57E-02 1,35E-01 6,07E-01 1,00 

15 3,06E-07 6,74E-03 4,98E-02 4,72E-01 1,00 

20 2,06E-09 1,27E-03 1,83E-02 3,68E-01 1,00 

30 9,36E-14 4,54E-05 2,48E-03 2,23E-01 1,00 

40 4,25E-18 1,62E-06 3,35E-04 1,35E-01 1,00 

50 1,93E-22 5,78E-08 4,54E-05 8,21E-02 1,00 

60 8,76E-27 2,06E-09 6,14E-06 4,98E-02 1,00 

70 3,98E-31 7,35E-11 8,32E-07 3,02E-02 1,00 

80 1,80E-35 2,62E-12 1,13E-07 1,83E-02 1,00 

90 8,19E-40 9,36E-14 1,52E-08 1,11E-02 1,00 

100 3,72E-44 3,34E-15 2,06E-09 6,74E-03 1,00 

 

d) Calculation of the square matrix and vector of the 

coefficients according to equation (9): Having the 

exponential matrix of Table-2 and its transpose, 

calculate the square matrix and vector of the 

independent terms, using equation (9). 

e) Calculation of the inverse matrix and its product with 

the vector of independent terms: Determination of the 

coefficients FDi by the solution of the matrix Equation 

(9). 

f) Determination of parameters of the function of the 

formal fluency using the coefficients FDi of the series 

Dirichlet: Equations (7), (8) and (2). 

 

 

 

 

 

 

 

 

Table-3. Parameters of the formal fluency function. 
 

Módulo 
[E] 

Valor 
Coeficiente 

[h] 
Valor 

E1 54321,472 h1 54321,472 

E2 34794,912 h2 104384,736 

E3 -48267,495 h3 -241337,474 

E4 61380,530 h4 1227610,604 

E0 101166,008 --- --- 

 

As we can see a negative modulus E3 and a 

negative coefficient h3 that has no physical sense, next to 

the data graph and the Dirichlet series curve show 

remarkable differences, as can be seen in Figure-4. As the 

added value the next step consists of an optimization 

scheme proposed by the authors for the calibration of the 

series, in order to obtain an ideal fit without negative 

parameters. 
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Figure-4. Generalized Kelvin model with oscillations. 

 

3.3 Optimization scheme adapted for the calibration of  

      the Dirichlet series and obtaining the parameters of  
      the generalized Kelvin model 

To obtain the ideal TAUs the optimization 

scheme appears that minimizes the distance between the 

data and the model using the Euclidean norm of the vector 

difference between the CREEP test data and the model is 

presented in the following lines of expression(10), 

 

Minimizing: √∑ (𝑓𝑙𝑖 − 𝑓𝑑ሺݐ𝑖ሻ)ଶ𝑖=𝑛𝑖=ଵ  

 

Decision variables:[𝜏𝑓]ଶ, [𝜏𝑓]ଷ, [𝜏𝑓]ସ. 

ଵ=1,[𝜏𝑓]ହ[𝜏𝑓]ݏⅇݑ𝑎𝑙ݒⅇ𝑑ݔ𝑖ܨ) = ͳܧ͵Ͳʹ) 

Subjected to: [𝜏𝑓]ଶ > [𝜏𝑓]ଵ [𝜏𝑓]ଷ > [𝜏𝑓]ଶ [𝜏𝑓]ସ > [𝜏𝑓]ଷ ͳ < [𝜏𝑓]ସ, [𝜏𝑓]ଷ, [𝜏𝑓]ଷ, [𝜏𝑓]ଷ < ,ଵܦܨ 99 ,ଶܦܨ ,ଷܦܨ ସܦܨ < Ͳ 

Where: 𝑓𝑙𝑖is the value of the laboratory creep function 

for point i. 𝑓𝑑ሺݐ𝑖ሻ is the value of Dirichlet Series for point i 

(evaluated for ti). [𝜏𝑓]𝑖 is the characteristic creep time i. 

𝑖ܦܨ  is the Dirichlet Series Coefficient i.                       (10) 

 

For implementation, additional calculations are 

performed to determine the Euclidean norm of the vector 

difference between the data and the prediction of the series 

(objective function to be minimized), as well as the 

statistical r2 to know the goodness of fit (The table 

corresponds to the calculation under initial TAUs Listed 

below). 

Figure-5 shows the optimization scheme 

implemented in solver, where the evolutionary algorithm 

module is used as a non-linear problem solver. It is taken 

as TAUs (remembering that TAUs 1 and 5 are fixed, since 

they correspond to the ends) of starting: The times will 

be:[𝜏𝑓]ଵ = ͳ, [𝜏𝑓]ଶ=3, [𝜏𝑓]ଷ=5, [𝜏𝑓]ସ= 20, [𝜏𝑓]ହ = ͳE+ଷ଴ଶ 

(infinity - this time is necessary to reproduce the 

asymptotic fluency). 

Table-4 below shows the data of optimization 

scheme and Table-5 presents the adjustment obtained. 

From the results of Table-5 we can see that 

medium value of fluency function is: fl media=4,687E-05 

and its Euclidean Norm is [fl(t)-fd(t)]=1,860E-07. Also we 

can see that the model represents 99.995% of the 

variability of the data, for an excellent fit that confirms the 

benefits found in the literature on the Dirichlet or Prony 

series as a more versatile alternative for the representation 

of fluency in asphalt mixtures according to with the 

coefficient of determination. 
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Figure-5. Optimization scheme in Excel Solver (Interface in Spanish language). 

 

Table-4. Optimization scheme data. 
 

Módulo 
[E] 

Valor 
Coeficiente 

[h] 
Valor 

TAUs 

[] Valor FDi Valor 

E1 32270,742 h1 32270,742 1 1,0000000 FD1 -3,10E-05 

E2 209626,416 h2 1068191,396 2 5,09569079 FD2 -4,77E-06 

E3 220348,377 h3 2695069,634 3 12,2309484 FD3 -4,54E-06 

E4 90992,278 h4 8293885,953 4 91,1493385 FD4 -1,10E-05 

E0 173301,708 --- --- 5 101166,008 FD5 5,71E-05 

 

Table-5. Optimization scheme data. 
 

fl(t) t(s) fd(t) fl(t)-fd(t) [fl(t)-fd(t)]2 [f(t)-flmedia]
2 

2,669E-05 1 2,66845E-05 5,452E-09 2,973E-17 4,07348E-10 

3,863E-05 3 3,8681E-05 -5,095E-08 2,596E-15 6,79447E-11 

4,172E-05 5 4,16409E-05 7,905E-08 6,249E-15 2,65519E-11 

4,450E-05 10 4,45334E-05 -3,337E-08 1,113E-15 5,63045E-12 

4,612E-05 15 4,61518E-05 -3,178E-08 1,010E-15 5,66794E-13 

4,728E-05 20 4,72532E-05 2,681E-08 7,185E-16 1,65765E-13 

4,874E-05 30 4,87451E-05 -5,136E-09 2,638E-17 3,48622E-12 

4,983E-05 40 4,97963E-05 3,370E-08 1,136E-15 8,74469E-12 

5,068E-05 50 5,06305E-05 4,952E-08 2,452E-15 1,44943E-11 

5,129E-05 60 5,1333E-05 -4,301E-08 1,850E-15 1,95112E-11 

5,191E-05 70 5,1943E-05 -3,304E-08 1,092E-15 2,53728E-11 

5,238E-05 80 5,24811E-05 -1,011E-07 1,023E-14 3,03286E-11 

5,303E-05 90 5,29595E-05 7,046E-08 4,965E-15 3,79104E-11 

5,342E-05 100 5,33866E-05 3,343E-08 1,117E-15 4,28651E-11 
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Figure-6. Dirichlet Series curve calibrated by optimization. 

 

Figure-6 graphically illustrates the excellent final 

fit of the series. 

 

4. CONCLUSIONS 
The physical-mechanical tests that are currently 

made for asphalt and asphalt mixtures cover basic and 

advanced aspects of their behavior against monotonic 

loads and dynamic loads under the viscoelastic rheological 

model. It can be said that, both in theory and in 

experimentation, there are enough elements for the 

rigorous study of the behavior of asphalt and asphalt 

mixtures in different states of application and in different 

environmental conditions and age. 

In the study of the formal mathematical model 

interesting aspects such as the historical circumstances of 

the difficulties for the calibration of the parameters of the 

generalized Kelvin mathematical model and its 

homologous Dirichlet series were found. The article has a 

parameter calibration approach inspired by its 

implementation in three elements: the Shapery Placement 

Method (1961), the General Theory of Restricted 

Optimization and Evolutionary Algorithms. The 

calibration scheme is successful and convergent for the 

case study and shows to be easy to use in its 

implementation using a simple, high-availability tool such 

as the Excel spreadsheet. 
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