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ABSTRACT 

Tool failure is a major and undesirable occurrence affecting the overall operating cost and time as the machining 

needs to be done once again to fix the mistake. Therefore, this paper introduced an efficient and inexpensive way to 

overcome the problem by developing tool wear monitoring system using Macro-Fibre Composite (MFC) sensor via 

alternative statistical signal analysis method, namely Integrated Kurtosis-based Algorithm for Z-notch filter (I-kaz
TM

). A 

piece of MFC sensor amplified by a power module was mounted on a tool holder in the turning machine to capture 

vibration signal data using data-logger while cutting the workpiece. The operation ran continuously until criteria of 0.3 mm 

tool wear achieved with the help of a microscope for wear measurement. The machining was set at 250 and 300 m/min of 

cutting speeds, while the feed and depth of cut were kept constant at 0.25 mm/rev and 0.12 mm respectively. The raw data 

were then extracted and observed in time and frequency domain before statistically analysed as soon as the experiment 

finished.  The reliability of I-kaz
TM

 method was made to the test by performing correlation with the wear progression data 

using regression analysis to derive the best equation model and comparing it with one of the global statistical features, 

namely root means square (rms). The final result indicated that the measured tool wear directly proportional to I-kaz 

coefficient, where the increment of wear progression increasing the I-kaz coefficient value. It came with the best fit of 

quadratic polynomial regression models, producing acceptable correlation of determination, R
2 

of 0.83 and 0.93 while rms 

having lower values of 0.65 and 0.83. The outcome of the result also showed that the proposed study of using I-kaz
TM

 to 

analyse the vibration signal from MFC sensor was much more reliable than the rms feature. It can be used to monitor tool 

wear efficiently with 1.8 to 15.9 % of error using I-kaz
TM

 while the latter showed a higher percentage of error from 3.4 to 

30.1 which nearly as twice as higher. 

 
Keywords: tool wear monitoring, piezoelectric, macro fibre composite, MFC, vibration, statistical signal analysis, I-kaz. 

 

INTRODUCTION 

Industrial technology have grown rapidly over the 

century, thus, machine monitoring system must undergo a 

tremendous change to suit the needs. Machine monitoring 

system is a process of monitoring the condition of machine 

when operate. The system is essential especially for 

unmanned machining, as it capable of identifying 

machining system defects or failures and their location. 

That way, maintenance works can be done according to 

plan, making sure the machine instrument and system are 

in good condition and can be used regularly. This 

indirectly prevent any further loss and shorten the time and 

cost needed to accomplish certain operation. A good 

machining monitoring can be developed by a better 

understanding on the basic operation of machine being 

handled, identified parameter, workpiece and cutting 

tool’s type of material, wear of tool or insert, and method 

for monitoring (Byrne et al., 1995; Sick, 2002). 

Tool wear is the most undesirable and crucial part 

to be monitored as it impacted the overall process of 

machining operations and affecting them economically 

(Waydande et al., 2016). As the machine tool failure and 

downtime issue continues to plague the machining 

industries, it becoming one of the major problem in 

producing good products. Wear of the tool is majorly 

affecting the surface quality and dimension accuracy of 

finished workpiece, undesirably consuming a lot of 

machining operation cost and time to redo and correct the 

mistake and the defected product being made. Cutting 

tools need to be replaced periodically with a new one as 

soon as they wear out before they fail catastrophically, in 

order to improve the overall performance of the operation 

output. Among all of the wear, flank wear is the one 

having a major occurrence in tool failure, and becoming 

the critical criteria in determining the overall tool life. The 

growth of flank wear progression degrades surface quality, 

widen the contact area, and increases heat generation (Snr, 

2000). Based on that matter, there is a real need to devise a 

reliable and accurate tool wear detection system to 

monitor the flank wear progression automatically. 

This study mainly developed to investigate the 

capability and effectiveness of MFC sensor in tool wear 

monitoring by using I-kaz
TM

 statistical signal analysis for a 

high level of data interpretation. The MFC was used to 

detect the vibration signature coming from the interaction 

between workpiece and cutting tool during the turning 

process. Vibration data from MFC and wear progression 

data were recorded, observed and then analysed with 

statistical features. The results from the study including 

observation of signal data in time and frequency domain, 

correlation, relationship and also the reliability of I-kaz
TM 

toward wear progression were discussed and concluded. 

 

Tool condition monitoring 

Tool condition monitoring (TCM) can be 

described as a process of observing the damages happened 

to the cutting tool during machining operation by certain 

accountable process mechanics. Real-time and online tool 
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monitoring systems have been heavily studied, developed 

and reviewed by several researchers (Bhuiyan & 

Choudhury, 2014; Sick, 2002; Snr, 2000). The condition 

of the cutting tool especially the wear progression can be 

predicted relatively well without pausing the operation and 

observing optically. Two monitoring methods introduced 

in tool wear detection system, which were direct and 

indirect monitoring. Direct monitoring closely related to 

the optical and visual approach, in which the cutting tool 

geometry parameter was measured. Indirect monitoring 

involved the use of suitable signal sensors to acquire the 

signal data caused by the wear progression. Tool wear 

could be determined numerically by analyse the machining 

signals, such as cutting force, sound, vibration, acoustic 

emission, torque and power, and temperature (Ambhore et 

al., 2015; Bhuiyan & Choudhury, 2014; Sick, 2002; Snr, 

2000; Waydande et al., 2016). Hence, it could predict the 

actual wear by empirically determined correlations 

without inspecting them optical or visually. Indirect 

monitoring was suitable and meant to be used for online 

tool condition monitoring as it did not interrupt the cutting 

operation. However, considering there are a lot of sensors 

available nowadays, choosing a suitable sensor for a 

suitable application is still a matter of discretion and 

therefore needs to be fully cautious and judicious. 

 

Piezoelectric-based sensor 

Piezoelectricity is the generation of electrical 

charge that accumulates in response to the applied 

mechanical stress or force exerted on specific solid 

materials (Vives, 2008). The piezoelectric elements have 

been used extensively in sensing and actuation 

applications and showed a promising result. For example, 

Ramli et al. (2017) underwent modal analysis experiment 

using piezoelectric polymer film sensor and showed good 

agreement with accelerometer sensor in finding modal 

parameter.  

Up until now, there are three types of 

piezoelectric based materials, commonly named as 

piezoceramic, piezo-polymer, and piezoceramic fibre or 

composite (Henry Angelo Sodano, 2003). The most 

notable commercialise example of the one described above 

is lead zerconate titanate (PZT), polyvinyldene fluoride 

film (PVDF), and micro-fibre composite (MFC) 

respectively. Among them, PZT materials was well known 

for structural actuation and sensing application. For 

example, Li et al. (2013) developed a mechanism of 

acoustic energy harvesting at low frequency by using PZT 

cantilever plates inside a quarter-wavelength straight tube 

resonator. Also, M. A. F. Ahmad et al. (2015) utilised the 

piezoceramic (PZT material) sensor in tool wear 

monitoring by correlating the wear progression with the 

statistical coefficient derived from sensor signal output. 

PZT materials showed a promising result, but practically 

impose particular limitation in a real application. For 

instance, extra attention needed during the bonding and 

handling procedure as they are extremely brittle, and 

therefore making their flexibility to curve along the 

contact surface somewhat poor. Hence, MFC was brought 

out by NASA Langley Center to tackle the described 

problems. The main benefits of using MFC actuators are 

their high performance, durability and flexibility, which 

were better than PZT (Henry A Sodano et al., 2004). It has 

been produced by sticking the interdigitated electrode 

polyamide films on the top and bottom of piezoceramic 

fibres and glued them together with structural epoxies 

between them, as shown in Figure-1 below: 

 

 
 

Figure-1. Schematic structure of the MFC. 

 

Past studies had proved that MFC could be used 

as a sensor and also actuator for individual application. It 

worked exceptionally well as a part of modal-testing and 

control system, as previously done by Gao et al. (2013). 

Besides, it was reliable and worked wonder in energy 

harvesting applications where it showed high efficiency 

and reliability towards the energy conversion and 

accumulation (Ju et al., 2015). 

  

 Statistical signal analysis method 

Statistical methods are essential as interpretive 

aids to present and reveal data at several levels of detail 

(Chatfied & Collins, 2013). Random signals are frequently 

analysed, classified and quantified by descriptive 

statistical features of global signal statistics, where the 

most commonly used are mean, root mean square (rms), 

standard deviation, variance, kurtosis and skewness 

(Arslan et al., 2016; Bhuiyan & Choudhury, 2014). For a 

signal with n-number of data points, the mean value is 

given by equation (1) below: 

 𝜇 = ଵ௡ ∑ 𝑥𝑖௡𝑖=ଵ                                                                     (1) 

  

Where xi is the value of the data point. The 

standard deviation is defined as in equation (2): 

ݏ  = √ଵ௡ ∑ ሺ𝑥𝑖 − 𝜇ሻଶ௡𝑖=ଵ                                                       (2) 

 

Meanwhile, the variance is just the square of 

standard deviation as described below: 

 𝜎 =  ଶ                                                                              (3)ݏ

  

The 4th signal statistical moment of kurtosis, K, 

is highly sensitive to spikiness of the data. Kurtosis, K is 

defined as in equation (4): 

 

Structural 

epoxy 

Electrode 

Piezoceramic 

fibre 

Polyamide 

film 
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𝐾 = ଵ௡𝜎ర ∑ ሺ𝑥𝑖 − 𝜇ሻସ௡𝑖=ଵ                                                     (4) 

 

Skewness, S is determined based on the equation 

(5): 

 𝑆 = ଵ௡௦య ∑ ሺ𝑥𝑖 − 𝜇ሻଷ௡𝑖=ଵ                                                      (5) 

 

Among the global signal statistics, rms feature 

was frequently used in indirect tool condition monitoring 

as it was quite sensitive to the signal signature, showing a 

good correlation towards tool wear (Bhuiyan & 

Choudhury, 2014). For a signal with discrete data sets, rms 

is calculated as in equation (6) below: 

ݏ𝑚ݎ  = √ଵ௡ ∑ 𝑥𝑖ଶ௡𝑖=ଵ                                                (6) 

 

Integrated Kurtosis-based Algorithm for Z-notch 

filter (I-kaz
TM

) statistical signal analysis was pioneered by 

Nuawi et al. (2008) and have been applied and tested in a 

wide variety of fields, including whole-body vibration 

exposure prediction, musical instrument sound 

clusterisation, mechanical properties characterisation, 

sliding (Gao et al., 2013)wear evaluation and tool 

condition monitoring prediction system (Ab Aziz et al., 

2016; M. A. F. Ahmad et al., 2017; M. S. Ahmad et al., 

2016; Karim et al., 2015; Rizal et al., 2013). I-kaz
TM 

was 

developed based on the degree of scattering of data 

concerning its centroid. The signal data were decomposing 

into three frequency range by considering the 2
nd

 order of 

the Daubechies concept and the coefficient of I-kaz was 

derived to represent the signal feature numerically. I-kaz 

coefficient, Z
∞
 can be defined as in equation (7): 

 𝑍∞ = ଵ௡ √𝐾௅ݏ௅ସ + 𝐾𝐻ݏ𝐻ସ + 𝐾௏ݏ௏ସ                                 (7) 

 

Symbol of n represents the number of data, KL, 

KH, KV and sL, sH, sV are kurtosis and standard deviation 

for low, high, and very high-frequency range respectively. 

This alternative statistical method is mainly developed as a 

supplement to the existing ones to provide more accurate 

and reliable signal feature towards the measured 

parameter. 

 

METHODOLOGY 

 
 

Figure-2. Schematic illustration of the research. 

 

The schematic illustration and the flowchart of 

the research were depicted in Figures 2 and 3. The 

experiment was carried out by using Cholchester Tornado 

T8 CNC turning the machine to cut 40 HRC of hardened 

AISI 4340 round bar workpiece. The process started by 

cutting the workpiece with 100 mm of the length of tool 

travel per run in a dry condition. The cutting tool used was 

Sumitomo AC2000 with 0.4 mm nose radius. While 

machining, the work was divided into two sections, 

consisting of MFC sensor signal acquisition from vibration 

signature and flank wear measurement of the cutting tool. 

 

 
 

Figure-3. Flowchart of the research. 

 

The MFC sensor was mounted on 

DCLNR2020K12 tool holder perpendicular with cutting 

force direction and placed 47 mm from the edge of the 
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cutting tool to MFC’s centre, as asserted by Ghani et al. 

(2012). They found out that the described value was the 

optimum distance for a sensor mounted on a tool holder to 

acquire accurate signals resulted from deflection or 

vibration. Table-1 below shows the detail specification of 

MFC used in this experiment. 

 

Table-1. Specification and properties of MFC. 
 

Type P2 M2814 

Overall dimensions 0.036 m x 0.016 m 

Active area dimensions (lc, bc) 0.028 m x 0.014 m 

Capacitance (Cp) ~ 26 nF 

PZT material type Navy Type II 

Max voltage -50 to +360 V 

Max tensile strain 4500 ppm 

Thickness (tc) 0.0003 m 

Piezoelectric coefficient (d31) -3.7E-10 C/N 

Young’s Modulus (Yc) 30.336 GPa 

 

The raw vibration signals captured by MFC while 

cutting were amplified using Piezo Lab Amplifier power 

module and obtained using NI 9234 data acquisition 

module before being observed in the computer via data-

logging software. 

The sampling frequency rate was set to be 25600 

kHz. Flank wear (Vb) was measured in the end of every 

run until 0.3 mm of average flank wear according to ISO 

3685 (1993) standard criteria achieved. The experimental 

set was established with cutting speed (VC) of 250 m/min 

and 300 m/min, while feed rate (FR) and depth of cut 

(DOC) were kept constant at 0.25 mm/rev and 0.12mm 

respectively, as shown in Table-2. By doing this, the 

primary contributing factor of tool wear progression will 

be the manipulated cutting speed. 

 

Table-2. Experimental set. 
 

Set VC (m/min) DOC (mm) FR (mm/rev) 

1 250 0.12 0.25 

2 300 0.12 0.25 

 

After all the signal data extracted and observed, 

they were analysed using two signal features, which were 

I-kaz
TM

 and rms statistical method. Correlation between 

these two signal features with the obtained flank wear data 

were then conducted and observed to investigate the 

effectiveness of MFC sensor towards wear progression. It 

was done to find the most sensitive and reliable feature 

between those two with the least error derived from 

correlation model in validation stage. 

 

 

 

 

RESULT AND DISCUSSIONS 
 

Flank wear response against time 

Figure-3 shows the relationship that form curved 

lines between flank wear (Vb) data and the time made 

until 0.3 mm of wear achieved. The curve illustrations 

represented by three regions or state, which are the break-

in period, steady-state and lastly the failure region, as 

defined in the theory of tool life curve (Groover, 2007). It 

took around 51.8 seconds to entirely wear at 250 m/min of 

cutting speed while only 31.7 seconds for 300 m/min. 

Here can be concluded that the increase of cutting speed 

will shorten the lifespan of the cutting tool. Meanwhile, 

the correlation of determination, R
2
 for both of the sets is 

around 0.98 as denoted from the figure. Henceforth, it can 

be summarised that flank wear measurement and time 

captured were done exceptionally well and met the criteria 

of tool life curve. The signal acquired were then observed 

and analysed as the flank wear data were taken in good 

measure. 

 

 
(a) 

 

 
(b) 

 

Figure-4. Flank wears progression against time for (a) 250 

m/min and (b) 300 m/min of cutting speed. 
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Signal observation towards wear progression in time-

frequency domain 

The signal amplitudes in time domain at initial 

until the end of wear criteria are displayed in Figure 5 and 

6. For each set, (a) is the signal amplitude at initial wear 

formation, and (b) is the amplitude generated at the end of 

wear, achieving 0.3 mm of average flank wear As shown, 

the amplitudes produced were varied as the wear 

progressing. Roughly, vibration signal amplitudes 

increased and much spikier when tool wear expanded. 

They even showed the same rising pattern from both of the 

experimental set with different cutting speed. But still, the 

differences could not be seen clearly with our naked eye. 

Therefore, there was a need to quantify the signal 

numerically into meaningful and several levels of detail, 

and this was where the statistical signal analysis played its 

role. 

 

 
(a) 

 

 
(b) 

 

Figure-5. Time domain for 250 m/min of cutting speed at 

(a) Vb= 0.047 mm and (b) Vb=0.366 mm. 

 

 
(a) 

 

 
(b) 

 

Figure-6. Time domain for 300 m/min of cutting speed at 

(a) Vb= 0.050 mm and (b) Vb=0.414 mm. 

 

The time domains for all of the data including the 

one shown in Figures 5 and 6 were then converted into 

frequency domain using Fast Fourier Transform by 

utilising MATLAB software. Figure 6 and 7 show spectra 

graph charts that cover all the frequency domain response 

from initial time until final indicated the end of wear. As a 

result, there were 5 peaks of frequency components of 

vibration signature. The frequency components were 

found around 800 Hz, 1900 Hz, 5900 Hz, 7500 Hz and 

10000 Hz. Among all of the peaks, the range of 

approximately 5900 to 10000 Hz of frequencies showed a 

complete opposite pattern between the experimental sets. 

For 250 m/min, the magnitude on 5900-7500 Hz 

components were high while at 10000 Hz, they were low. 

Somehow, it was differed for 300 m/min as they showed 

small at first and high magnitude at latter. On the other 

hand, the same pattern between experiment sets on 800 Hz 

and 1900 Hz of frequency components was identified. 800 

Hz of magnitude frequency was constant throughout the 

wear duration, whereas it was varied for the latter one. 

The dominant frequency happened to be around 

1900 Hz where it showed the highest magnitude. It 

showed an increment of magnitude when wear increased 

for every duration until 0.3 mm of wear criteria met. Both 

of the sets showed the same increasing pattern of 

magnitude. Tables 3 and 4 presented the recorded 

magnitudes of every vibration response at a peak of 1900 

Hz frequency for both sets. 
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Table-3. Magnitudes change with wear progression for 

250 m/min in certain durations. 
 

Set 1 (250 m/min) 

Magnitude Duration (s) Wear (mm) 

279.8 5.36 0.047 

319.8 10.72 0.103 

271.2 16.08 0.131 

284.1 21.27 0.169 

329.7 26.45 0.174 

318.4 31.63 0.232 

323.5 36.81 0.249 

392.8 41.81 0.268 

523.2 46.81 0.291 

836.9 51.81 0.366 

Table-4. Magnitudes change with wear progression for 

300 m/min in certain durations. 
 

Set 2 (300 m/min) 

Magnitude Duration (s) Wear (mm) 

394.9 4.11 0.050 

388.5 8.22 0.095 

525.7 12.18 0.175 

584.1 16.14 0.189 

546.0 20.10 0.224 

681.0 24.06 0.259 

697.4 27.86 0.292 

1126.0 31.67 0.414 

 

 

 
 

Figure-7. Spectra analysis graph for 250 m/min of cutting speed from start until fully wear. 

 



                                VOL. 13, NO. 11, JUNE 2018                                                                                                                  ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2018 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                               3613 

 
 

Figure-8. Spectra analysis graph for 300 m/min of cutting speed from start until fully wear. 

 

Despite that, the magnitudes at 300 m/min were 

higher than those at 250 m/min. But surprisingly, the 

vibration response still happened in the same place, which 

was at 1900 Hz. Hence, the frequency components around 

1900 Hz were the vibration signature and response due to 

the wear progression. For that reason, the other peaks were 

assumed to be the white noises that consist of a 

background, environmental and also machine noise 

coming from the manipulated machining parameter. 

However, by ignoring the noises, it might comprised 

useful information that we could not see optically with 

naked eyes. Thus, the signal data need to be analysed 

statistically using selected statistical features and 

correlated with the wear data to provide us with 

quantitative of relevant information. 

Correlation of statistical signal coefficient with wear 

progression 

At this stage, the raw signal data were analysed 

using statistical signal analysis method to convert them to 

meaningful and descriptive numerical values. Two signal 

features have been selected for correlation process, which 

were I-kaz
TM 

and rms. I-kaz
TM

 is an alternative signal 

analysis method while rms was widely used as a statistical 

feature in tool wear monitoring. The coefficient of I-kaz, 

Z
∞
 is calculated based on Equation (7) while rms value is 

derived from Equation (6) above. The values of both I-kaz 

coefficient and rms with wear progression were tabulated 

in Table-5. 

 

Table-5. I-kaz coefficients and rms values for certain wear progression until 0.3 mm of wear achieved. 
 

Set 1 (250 m/min) Set 2 (300 m/min) 

Measured 

wear (mm) 
I-kaz 

coefficient, Z
∞
 

rms 
Measured 

wear (mm) 
I-kaz 

coefficient, Z
∞
 

rms 

0.047 7.08E-07 0.110796 0.050 9.68E-07 0.127124 

0.103 6.94E-07 0.111438 0.095 1.05E-06 0.132041 

0.131 7.84E-07 0.116696 0.175 1.37E-06 0.151583 

0.169 8.3E-07 0.118762 0.189 1.35E-06 0.148517 

0.174 7.22E-07 0.108819 0.224 1.52E-06 0.157582 

0.232 8.51E-07 0.113338 0.259 1.73E-06 0.16769 

0.249 9.67E-07 0.122111 0.292 1.49E-06 0.149528 

0.268 8.45E-07 0.117834 0.414 2.37E-06 0.219600 

0.291 9.62E-07 0.125372 - - - 

0.366 1.34E-06 0.143915 - - - 
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Both of these signal features were then correlated 

with the wear progression data to obtain the relationship 

and extract the relevant information numerically. The 

correlation was done using regression analysis where the 

polynomial of quadratic function was chosen as the best fit 

for the output variables for both of the sets. The regression 

models for both features are illustrated as in Figures 9 and 

10. 

 

 
(a) 

 

 
(b) 

 

Figure-9. Correlation between flank wear with (a) I-kaz 

coefficients and (b) rms values for 250 m/min of 

cutting speed. 

 

As shown, a quadratic polynomial was 

implemented on all the regression lines because it 

indicated the highest R
2
 compared with other models. For 

a set of 250 m/min, it showed R
2
 with a value of 0.8334 

from I-kaz
TM

, while it was only 0.6583 for rms. 

Meanwhile, it was higher at 300 m/min with 0.9383 and 

0.8799 of R
2
 for I-kaz

TM
 and rms respectively. However 

and still, R
2
 from I-kaz

TM
 were much higher than the rms. 

The R
2
 needs to be 0.8 and above in order to get an 

acceptable result in predicting the wear progression later 

on. Therefore, the regression models from I-kaz
TM

 were 

much more relevant as it approximated the real data points 

and showed a strong statistical relationship and 

dependency towards wear progression data. 

 
(a) 

 

 
(b) 

 

Figure-10. Correlation between flank wear with (a) I-kaz 

coefficients and (b) rms values for 300 m/min of 

cutting speed. 

 

Validation for tool wear prediction 
Through the construction of the regression 

models as in Figure 8 and 9, the derived polynomial 

equations are presented as in equation (8) - (11) below. 𝑉஻ଶହ଴௓∞  and 𝑉஻ଷ଴଴௓∞  are defined as calculated wear from I-kaz 

coefficients while 𝑉஻ଶହ଴௥௠௦ and 𝑉஻ଷ଴଴௥௠௦ are from rms values at 

250 m/min and 300 m/min of cutting speed respectively. 

 𝑉஻ଶହ଴௓∞ = −͹E + ͳͳxଶ  +  ʹE + Ͳ͸x −  Ͳ.ͺͺͶ͵    (8) 

 𝑉஻ଶହ଴௥௠௦ = −ͳʹ͸.͹͹xଶ  +  ͵ͻ.ͷͲ͹x −  ʹ.͸ͻͲ͵    (9) 

 𝑉஻ଷ଴଴௓∞ = −ͻE + ͳͲxଶ  +  ͷ͵͹͹ͺͷx −  Ͳ.͵ͺͳͳ  (10) 

 𝑉஻ଷ଴଴௥௠௦ = −͵ͳ.ͺͶʹxଶ +  ͳͶ.͹͹ʹx −  ͳ.ʹͻ͹ͻ   (11) 

 

The experiment was redone once again with the 

same parameter as in Table 2 to verify and test the model 

equations described above for repeatability Wear 

measurement and signal data were recorded and extracted 

at 3 different points until end of wear. Then, the signal 
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data were analysed with statistical signal features by using 

the same equation as in Equation (6) and (7). All the 

statistical features were entered into the model in 

Equations (8) until (11) to acquire the calculated wear 

values. The percentages of error were then calculated by 

comparing the measured wear with the calculated wear as 

in Equation 12 below. All the results were tabulated in 

Table 6 for set 1 (250 m/min) and Table 7 for set 2 (300 

m/min). 

 𝐸ݎݎ𝑜ݎ = |ெ௘௔௦௨௥௘ௗ ௐ௘௔௥−஼௔௟௖௨௟௔௧௘ௗ ௐ௘௔௥|ெ௘௔௦௨௥௘ௗ ௐ௘௔௥ × ͳͲͲ%  (12) 

 

Table-6. Comparison between calculated wear of I-kaz
TM

 and rms with measured wear 

values for 250 m/min cutting speed. 
 

I-kaz coefficient RMS 
Measured 

wear (mm) 

Calculated 

wear (mm) 
Error (%) 

I-kaz
TM

 rms I-kaz
TM

 rms 

6.97E-07 0.110041 0.152 0.170 0.122 11.6 19.7 

8.12E-07 0.114176 0.24 0.278 0.168 15.9 30.1 

9.50E-07 0.124757 0.337 0.384 0.265 13.9 21.3 

 

Table-7. Comparison between calculated wear of I-kaz
TM

 and rms with measured wear 

values for 300 m/min cutting speed. 
 

I-kaz coefficient RMS 
Measured 
wear (mm) 

Calculated 

wear (mm) 
Error (%) 

I-kaz
TM

 rms I-kaz
TM

 rms 

1.00E-06 0.130022 0.074 0.068 0.084 8.0 14.2 

1.44E-06 0.152493 0.198 0.207 0.214 4.4 8.2 

1.81E-06 0.175335 0.303 0.297 0.313 1.8 3.4 

 

To summarise the outcome above, the error for I-

kaz
TM

 was from 1.8 to 15.9 % while the rms was nearly 

twice higher, up to a range of 3.4 to 30.1 % for both of the 

experimental sets. Therefore henceforth, I-kaz
TM

 statistical 

feature was much more efficient in predicting the wear 

progression using MFC sensor than the rms value. 

 

CONCLUSIONS 

Through the study, tool wear monitoring system 

using a low cost, lightweight MFC sensor has been 

successfully developed by utilising the I-kaz
TM

 statistical 

signal analysis method. Flank wear measurement and time 

captured have been done exceptionally well and met the 

criteria of tool life curve theory. For the signal in time-

frequency domain has indicated an increase of amplitude 

and spikiness as the flank wear becoming larger and the 

vibration responses triggered from wear progression have 

been identified at a peak around 1900 Hz of frequency. 

Throughout the correlation and validation stage, the I-

kaz
TM 

has been recognised to be more efficient and reliable 

than rms statistical feature in monitoring tool wear 

progression using MFC sensor. 

In the future work, further study needs to be done 

where the researchers should compare the MFC which is a 

piezoceramic composite with the other variation of 

piezoelectric materials, such as piezoceramic (PZT) and 

piezo-polymer (PVDF) on tool wear monitoring system 

with the same machining parameter and condition. The 

comparison should be made to investigate the performance 

including reliability; flexibility and durability among them 

and also to reveal which one are more prominent in tool 

condition monitoring. 
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