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ABSTRACT  

The purpose of this paper is to present the development of a PID auto-tuner algorithm based on specifications, 
which is generally valid for several processes. Based on prior art results, the rationale follows the principles of 
approximating the closed loop response to a second order transfer function. However, it is shown that the derived 
algorithm is generally valid and can work well on several examples which are much more complex than second order 
systems. 
 
Keywords: auto-tuning, closed loop control, frequency response, PID. 
 
1. INTRODUCTION 

Tuning controllers for optimal closed loop 
performance depends heavily on the process to be 
controlled and identification is still a burden for the 
control engineer and remains a significant time-consuming 
task. Auto-tuning is a very desirable feature and almost 
every industrial PID controller provides it nowadays [1,2]. 
These features provide easy-to-use controller tuning and 
have proven to be well accepted among process engineers 
[3]. 

For the automatic tuning of the PID controllers, 
several methods have been proposed. Some of these 
methods are based on identification of one point of the 
process frequency response, while others are based on the 
knowledge of some characteristic parameters of the 
openloop process step response. The identification of a 
point of the process frequency response can be performed 
either using a proportional regulator, which brings the 
closedloop system to the stability boundary, or by a relay 
forcing the process output to oscillate [4-7]. Usually these 
preliminary tests are used to determine a model for the 
process, along with the tuning of controller parameters [8, 
9]. 

This paper presents the design and validation of a 
generally valid algorithm for a specifications based PID 
auto-tuner. The next section provides the underlying 
principles of the proposed algorithm. The third section is a 
validation of the auto-tuner on two complex systems: i) a 
second order plus integrator (double integrator in the 
closed loop) and ii) a first order with integrator, time delay 
and non-minimum phase dynamics. Furthermore, the 
conclusions summarize the main outcome of this work. 
 
2. MATERIALS AND METHODS 

The development of this auto-tuning algorithm is 
based on the prior art where two relay-based PID auto-
tuners have been presented: the Kaiser-Chiara auto-tuner 
and the Kaiser-Rajka auto-tuner [10]. Hence the proposed 
algorithm is an extended combination of the two: the 
Kaiser-Chiara-Rajka auto-tuner algorithm (KCR). 

The approximation of a closed loop response by a 
dominant second order transfer function ܶሺݏሻ with gain 
one: 

ܶሺݏሻ = 𝜔𝑛ଶݏଶ + ʹ𝜁𝜔𝑛ݏ + 𝜔𝑛ଶ 

 
with 𝜔𝑛 the natural frequency and 𝜁 the damping factor, 
gives the relationship between the closed loop 
percentovershoot (%ܱܵ) and the peak magnitude 𝑀𝑝 in 
frequency domain [11], schematically depicted in Figure-
1: 
 %ܱܵ = ͳͲͲ𝑒−𝜋/√ଵ−𝜁2

 
 𝑀𝑝 = ͳʹ𝜁√ͳ − 𝜁ଶ 

 

 
 

Figure-1. Schematic representation of the magnitude of a 
closed loop approximation with a second order system. 

 
By specifying the allowed overshoot in the closed 

loop, it follows that the closed loop transfer function must 
fulfill the condition: 
 |ܶሺ𝑗𝜔ሻ| = | 𝐺ሺ𝑗𝜔ሻͳ + 𝐺ሺ𝑗𝜔ሻ| = 𝑀𝑝 

 
with 𝐺ሺ𝑗𝜔ሻ the open loop transfer function of both the 
process and controller. Re-writing this equation in its 
complex form: 
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ܶሺ𝑗𝜔ሻ = ܴሺ𝜔ሻ + 𝑗𝐼ሺ𝜔ሻ[ͳ + ܴሺ𝜔ሻ] + 𝑗𝐼ሺ𝜔ሻ 

 
with ܴ the real part and 𝐼 the imaginary part, and taking |ܶሺ𝑗𝜔ሻ|ଶ results that: 
 ሺܴ + ܿሻଶ + 𝐼ଶ =  ଶݎ
 
where  ܿ = 𝑀𝑝ଶ ሺ𝑀𝑝ଶ − ͳሻ⁄  and ݎ = 𝑀௉ ሺ𝑀𝑝ଶ − ͳሻ⁄ , which 
is nothing else than the equation of a (Hall-)circle with 
radius ݎ and center in {−ܿ, Ͳ}[11]. In order to have a peak 
magnitude, only those circles with 𝑀 > ͳ are of interest. 
At this point, the reader should be reminded that in the 
Nyquist plane, specifying|ܶሺ𝑗𝜔ሻ|  means that the Nyquist 
curve of the process and controller is tangent to the M-
circle, schematically depicted in Figure-2. 
 

 
 

Figure-2. Hall circles in the Nyquist plane. 
 

The equivalent of |ܶሺ𝑗𝜔ሻ| in the Nichols chart is 
a curve in the N-grid to which the process and controller 
curve should be tangent (see Figure-3). 
 

 
 

Figure-3. N-grid in the Nichols plane. 
 

Practice has learned that a good response is 
achieved when a fluent curve is obtained, going smoothly 
around the specifications. Consequently, the ܲ ∗ 𝐶 curve 
will be tangent to the %ܱܵ curve at the intersection with 0 
dB line (magnitude of the open loop, i.e. ܲ ∗ 𝐶). The 0 dB 

line represents the unit circle in the Nyquist plot, hence the 
phase margin (ܲ𝑀) can be calculated.  

Intersection with the unit circle is achieved by 
adding the conditionܴଶ + 𝐼ଶ = ͳ. Solving for ܴ and 𝐼 
yields: 
 ܴ = Ͳ.ͷ ͳ − ʹ𝑀𝑝ଶ𝑀𝑝ଶ  

 𝐼 = − √𝑀𝑝ଶ − Ͳ.ʹͷ𝑀𝑝ଶ  

 
The phase margin ܲ𝑀is given by tanሺܲ𝑀ሻ =|𝐼| |ܴ|⁄ .Thus: 

 ܲ𝑀 = tan−ଵ ቆ√𝑀𝑝ଶ − Ͳ.ʹͷ𝑀𝑝ଶ − Ͳ.ͷ ቇ 

 
It was earlier stated that specifying ܲ𝑀 does not 

suffice to guarantee a good closed loop performance for all 
cases. Therefore, the next step is to determine the 
crossover frequency; i.e. the frequency where the process 
and controller cross the 0 dB line (open loop). 

If the settling time of the closed loop is specified, 
using the previous𝑀𝑝 definition, it can be obtained: 
 𝜔𝑝 = 𝜔𝑛√ͳ − ʹ𝜁ଶ 
 
from where the natural frequency 𝜔𝑛 can be extracted and 
used in 
 𝜔𝐵𝑊 = 𝜔𝑛√ሺͳ − 𝜁ଶሻ + √Ͷ𝜁4 − Ͷ𝜁ଶ + ʹ 

 
to calculate the bandwidth frequency (i.e. the frequency 
where ܲ ∗ 𝐶 intersect the -3 dB closed loop magnitude line 
in Figure-4). 
 

 
 

Figure-4. Illustrative example of the Nichols plot FRtool 
[12] with graphical specifications: ܱܵ–overshoot; ܲ𝑀–

phase margin; 𝑠ܶ–settling time; ܴை–robustness; 𝐺𝑀–gain 
margin; the thin blue line denotes the frequency response 

of the process and controller (ܲ ∗ 𝐶). 
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Based on the second order closed loop 
approximation, the phase is given by the integrator from 
the controller (-90°) and a first order system (-45°). For 
the phase margin of ܲ𝑀 = Ͷͷ°, it follows that 𝜔௖ must 
correspond to the time constant of the first order system. 
Following the same rationale, the magnitude of the second 
order approximation starts at -20 dB/dec and around 𝜔௖ 
varies towards -40 dB/dec. This means a decrease of about 
7-8 dB between 𝜔௖ and 𝜔𝐵𝑊 (see open loop magnitude in 
the Nichols plot from Figure-4). It follows that 𝜔𝐵𝑊 ≈ͳ.ͷ𝜔௖ and generalization to higher order systems gives 𝜔௖ ≤ 𝜔𝐵𝑊 ≤ ʹ𝜔௖. From 𝜔௖ a sinusoid with period ௖ܶ = 𝜔௖ ʹ𝜋⁄  is applied to the process and obtain the 
output: 
 𝐺ሺ𝑗𝜔௖ሻ = 𝑀𝑒௝𝜑 = 𝑀ሺcos 𝜑 + 𝑗 sin 𝜑ሻ 
 
for this 𝜔௖ can be found using the transfer function 
analyzer algorithm [11,13]. The task is now to find the 
controller parameters such that the specification for phase 
margin is ful-filled, given %ܱܵ, 𝑠ܶ, 𝑀 and 𝜑. A typical 
choice of the ܲ𝑀 lies between 40° and 70°: the larger the ܲ𝑀, the more robustness in the loop, less overshoot but 
larger settling times. Notice that the process is unknown 
apriori. The controller is derived in its textbook form: 
 ܴሺݏሻ = 𝐾𝑝 (ͳ + ͳܶ௜ݏ + ௗܶݏ) 

 
which for the critical frequency becomes: 
 ܴሺ𝑗𝜔௖ሻ = 𝐾𝑝 [ͳ + 𝑗 ቌ ௗܶ ʹ𝜋ܶ௖ − ͳ௜ܶ ଶ𝜋𝑇𝑐 ቍ] 

 
Starting from the controller frequency response, 

the loop frequency response is given by: 
 ܴሺ𝑗𝜔௖ሻ𝐺ሺ𝑗𝜔௖ሻ = ͳ𝑒௝ሺ−ଵ8଴°+௉𝑀ሻ                             = cosሺ−ͳͺͲ° + ܲ𝑀ሻ+ 𝑗 sinሺ−ͳͺͲ° + ܲ𝑀ሻ                             = −ܽ − 𝑗ܾ 
 
with ܽ = cosሺܲ𝑀ሻ and ܾ = sin ሺܲ𝑀ሻ, schematically 
shown in Figure-5. 
 
 

 
 

Figure-5. Schematic of the KCR tuning principle. 
 
Based on above equations, the controller is given by: 
 ܴሺ𝑗𝜔௖ሻ = 𝐾𝑝 [ͳ + 𝑗 ( ௗܶ𝜔௖ − ͳ௜ܶ𝜔௖)] = 𝐾𝑝ሺͳ + 𝑗𝛼ሻ 

 
where  
 𝐾𝑝𝑀[ሺcos 𝜑 − 𝛼 sin 𝜑ሻ + 𝑗ሺsin 𝜑 + 𝛼 cos 𝜑ሻ]= −[cosሺܲ𝑀ሻ + 𝑗sin ሺܲ𝑀ሻ] 
 
From the real and imaginary parts: 
 𝛼 = tanሺܲ𝑀ሻ − tan 𝜑ͳ + tanሺܲ𝑀ሻ tan 𝜑 = tanሺܲ𝑀 − 𝜑ሻ = ௗܶ𝜔௖ − ͳ௜ܶ𝜔௖ 

 
and using ௜ܶ = Ͷ ௗܶ: 
 

ௗܶ𝜔௖ − ͳͶ ௗܶ𝜔௖ = tanሺܲ𝑀 − 𝜑ሻ 

 
from where 
 

ௗܶ𝜔௖ = sin ሺܲ𝑀 − 𝜑ሻ ± ͳʹcos ሺܲ𝑀 − 𝜑ሻ  

 
and the controller parameter 
 

௜ܶ = ௖ܶ sin ሺܲ𝑀 − 𝜑ሻ ± ͳ𝜋cos ሺܲ𝑀 − 𝜑ሻ  

 
which gives only one positive result. Taking into account 
that 
 (𝐾𝑝𝑀)ଶሺͳ + 𝛼ሻ = ͳ 
 
with 
 ͳ + 𝛼ଶ = ͳ + tanଶሺܲ𝑀 − 𝜑ሻ = ͳcosଶሺܲ𝑀 − 𝜑ሻ 

 
which gives the 𝐾𝑝 controller parameter: 
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𝐾𝑝 = ± cosሺܲ𝑀 − 𝜑ሻ𝑀  

 
with only one positive result. 
 
3. RESULTS AND DISCUSSIONS 
 
3.1 Second order system with integrator 

Consider a flight control system for position control (it can 
be as well as servo-control system, antenna, disk drive, 
DVD, etc.) represented by: 
 

ଵܲሺݏሻ = ݏሺݏʹ͵ + Ͷሻሺݏ + ͳ͸ሻ 

 
Notice that the system will introduce an extra 

integrator in the loop, next to the one of the PID controller. 
In order to compare the results of the proposed PID auto-
tuner, the computer aided design FRtool has been used. A 
snapshot of the graphical user interface in FRtool and 
controller parameters are given in Figure-6.  
 

 
 

Figure-6.FRtool design for ଵܲሺݏሻ. 
 

Both PID controllers have the specifications: %ܱܵ = ͳͷ and 𝑠ܶ = ͳ second. For the KCR auto-tuner, 
the specification for settling time gives 𝜔௖ = ͸.ʹͺ rad/s it 
follows 𝑀 = Ͳ.Ͳ͵,𝜑 = −ͳ͸ͻ° and ܲ𝑀 = ͷͳ.͹°. The 
controller parameters are calculated using and given for 
both controllers in Table-1. Figure-6 shows the design of 
the PID controller using the knowledge of the transfer 
function of the process, by means of FRtool. 
 

Table-1. Controller parameters for ଵܲሺݏሻ. 
 

PID 𝑲𝒑 𝑻𝒊 𝑻𝒅 

FRtool 
KCR 

28.13 
19.07 

0.74 
0.69 

0.18 
0.17 

 
Figure-7 shows the comparison between the 

‘best’ design possible (FRtool) and the KCR auto-tuner. It 

is remarkable that the proposed PID auto-tuner can 
provide similar results to a PID controller designed based 
on the model of the process. 
 

 
 

Figure-7. Closed loop step responses for the two 
PID controllers. 

 
Figure-8 depicts the frequency response plots for 

the open loop and the closed loop of the system ଵܲሺݏሻ and 
the KCR controller. The plotted crossover frequency is 
very close to the value of the calculated crossover 
frequency: 6 rad/s, corresponding indeed to a phase 
margin of about 50°. Similarly, the bandwidth frequency is 
about 10 rad/s, close to the one calculated by the tuning 
algorithm using. In this case, the second order 
approximation is close to the actual system dynamics; 
hence it does not introduce much computational errors in 
the algorithm. 
 

 
 

Figure-8. Validation of controller in open loop 
(SYS*PID) and closed loop for the specified crossover 

frequency (phase margin) and bandwidth frequency 
(settling time) for ଵܲሺݏሻ. 

 
3.2 Non-minimum phase system with integrator and 

delay 

Consider now a very challenging process, namely 
a non-minimum phase, with time delay and integrator 
represented by: 
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ଶܲሺݏሻ = Ͳ.ʹͷሺͳ − ݏሺݏሻݏ + ʹሻ 𝑒−଴.ଶ𝑠 

 
A snapshot of the graphical user interface in 

FRtool and controller parameters are given in Figure-9. 
 

 
 

Figure-9. FRtool design for ଶܲሺݏሻ. 
 

Both PID controllers have the specifications: %ܱܵ = ͵Ͳ and 𝑠ܶ = ʹͲ second. For the KCR auto-tuner, 
the specification for settling time gives 𝜔௖ = Ͳ.͸ʹ rad/s it 
follows𝑀 = Ͳ.ʹͻ,𝜑 = ͳ͹ͻ° and ܲ𝑀 = ͵ͷ°. The 
controller parameters are given in Table-2 for both 
controllers. Figure-9 shows the design of the PID 
controller using the knowledge of the transfer function of 
the process, by means of FRtool. 
 

Table-2. Controller parameters for ଶܲሺݏሻ. 
 

PID 𝑲𝒑 𝑻𝒊 𝑻𝒅 

FRtool 
KCR 

1.98 
2.74 

7.14 
6.33 

1.78 
1.58 

 
Figure 10 shows the comparison between the 

‘best’ design possible (FRtool) and the KCR auto-tuner. 
Once again the proposed PID auto-tuner can provide 
similar results to a PID controller designed based on the 
model of the process. 

 
 

Figure-10. Closed loop step responses for the two 
PID controllers. 

 
Figure-11 depicts the Bode plot, validating the 

specification crossover frequency around 0.7 rad/s. Due to 
the fact that this is an exotic system, the bandwidth 
frequency has to be seen from the phase plot, whereas the 
definition of ܲ𝑀 is used to find the phase margin -110°, 
corresponding to +250° in the Bode plot. From here it 
follows that the bandwidth frequency is about 1.1 rad/s. 
 

 
 

Figure-11. Validation of controller in open loop 
(SYS*PID) and closed loop for the specified crossover 

frequency (phase margin) and bandwidth frequency 
(settling time) for ଶܲሺݏሻ 

 
From these examples, which are by far much 

more difficult than systems closer to a second order 
approximation, it can be concluded that the PID auto-tuner 
performs comparable with a PID controller tuned based on 
the knowledge of the transfer function. 
 
3.3 Conclusions 

The development and validation of a generally 
valid, specifications-based, PID auto-tuner have been 
presented in this paper. The PID controller has been tested 
successfully on two illustrative examples: i) a double 
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integrator in the loop and ii) a double integrator, with time 
delay and non-minimum phase dynamics. The simulation 
results were promising and ongoing research is focused to 
apply this PID auto-tuner on several real-life applications. 
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