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ABSTRACT 

Richards’ equation was used to govern water infiltration into the unsaturated soil. Haverkamp’s hydraulic 

properties were used to govern the matric pressure head and hydraulic conductivity relations. Sobol’ variance-based 

method as a global sensitivity analysis tool was coded to study sensitivity and uncertainty values of input parameters. The 

same input parameters uncertainty values used in Sobol’ variance-based method could be subjected to an inverse method to 

search for a set of globally optimized input parameters. Therefore, a simple Genetic Algorithm, i.e. an inverse method, was 

coded and used to improve the current framework for the uncertainty analysis. A simple significant digit approximation 

method was developed, applied on the input parameters, and the generated uncertainty parameter values were found to 

cause 15.4 % of error, which could be reduced if the number of input parameter significant digit used in the simulation 

were increased. The simple Genetic Algorithm was able to search for a set of globally optimized input parameters at a low 

population size, i.e. 50, on three cases tested and also was found able to handle noise data. Data points at the lower and 

upper plains of the water infiltration front are necessary for the inverse method. 

 
Keywords:  Richards’ equation sobol’, variance-based method, simple genetic algorithm, significant digit approximation. 

 

1. INTRODUCTION 

Traditionally, a sensitivity analysis was carried 

out by changing a single input parameter while keeping 

other parameters at constant values. It is better known to 

the statistical community as one-at-a-time (OAT) 

procedure. A better method is to simultaneously changing 

more than one parameter at a time known as global 

sensitivity analysis (GSA). It is because the simultaneous 

variation of few input parameters at a time could result in 

sensitivity coefficient that is different from adding up the 

entire varied individual OAT from base case sensitivity 

coefficients. 

GSA tools can be ranged from qualitative 

screening method to quantitative technique (Sobol’ 1990; 

Morris 1991; Campolongo et al. 2007).Sobol’ variance-

based method is one of the GSA tools. It is useful for 

sensitivity analysis and also for uncertainty analysis. In the 

former, it is used to identify the most and the least 

sensitive parameters. While in the latter, it is used to 

determine the greatest influence parameter for parameter 

prioritization and the least influential parameter for 

parameter fixing (Saltelli et al. 2008). Some models were 

subjected to this method are SWAT (Nossent et al. 2011), 

inhalation dose model (Avagliano and Parrella 2009), 

CERES-EGC (Drouet et al. 2011) and SLAMM 5 (Chu-

Agor et al. 2011). Moreover, the variance-based method 

has been listed in the US Environmental Protection 

Agency list of attributes as preferred sensitivity analysis 

method (EPA 2009). 

The range of input parameters uncertainty used in 

Sobol’ variance-based analysis could be further processed 

by an inverse method to determine an optimized set of 

input parameters.  In order to obtain globally optimized set 

of input parameters, a simple Genetic Algorithm (SGA) 

was used for this purpose. SGA was introduced by 

Holland (1975). It is a class of evolutionary algorithms 

that is a nature inspired computational method. Varieties 

of GA methods were used in estimating hydraulic 

properties in unsaturated soils. For instance, SGA used by 

Schneider et al. (2013) and micro-GA used by Ines and 

Droogers (2002) and Shin et al. (2012). Inverse method 

other than GA, e.g. Levenberg-Marquardt (L-M) 

algorithm, was used by Kelleners et al. (2005) to predict 

hydraulic properties. Similarly, the L-M algorithm was 

also used by Mollerup et al. (2008). SGA is a global 

search method, whereas L-M is a local search method. It 

means that L-M could potentially found a local minimum 

that is not a global minimum found by SGA. Global 

minimum means the prediction is closer to experimental or 

benchmark data than local minimum prediction. 

Therefore, in the current work, it was limited to SGA.  

Numerical simulation of water infiltration is not 

only allowed prediction of water movement in the 

unsaturated zone, it has significant implication for 

contaminant movement (Šimůnek and Bradford 2008). 
Generally, Richards’ equation (Richards 1931)is used to 

governed water infiltration in variably saturated soils. It 

has been applied in various disciplines such as hydrology, 

meteorology, agronomy, and environmental protection 

(Pachepsky et al. 2003). Mollerup et al. (2008) coupled 

Philip’s semi-analytical solution of Richards’ equation 

with an inverse method, i.e. L-M algorithm. In the current 

studies, Philip’s semi-analytical solution from Haverkamp 

et al. (1977) was used as benchmark data to verify model 

simulation for SGA method. The published data from 

Haverkamp is one of the resources available for modelers 

to verify their newly developed simulation source code, 

e.g. Noborio et al. (1996), Fayer and Jones (1990), Fayer 

(2000) and Goh and Noborio (2013).Therefore, the current 

studies are built on the research for the chosen case that 

has been a common case study for modelers, and hence, 

the finding from the present work would be a useful 

mailto:sunnygoh@gmail.com
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reference for other researchers with interest in developing 

model and couple with GSA and SGA methods on 

Richards’ equation. 

The aim of these studies is to manage uncertainty 

input parameter values. Firstly, the water infiltration 

model was subjected to Sobol’ variance-based method to 

study global sensitivity analysis. Secondly, the model was 

run through SGA. While the former manages to determine 

important parameters and also to identify influential 

parameter for prioritization, the latter extends uncertainty 

analysis to search for a globally optimum set of input 

parameters that is best described the water infiltration 

front. The first objective was achieved by three cases. 

Case A was based on significant digit approximation that 

was discussed in Goh and Noborio (2013), and Cases B 

and C were based on 10 and 20 % variation of input 

parameters, respectively. The significant digit 

approximation was to determine the effect of uncertainty 

in model output due to the uncertainty values of input 

parameters established from the published data. The model 

output in all case studies is volumetric water content 

value.In the SGA analysis, the Gaussian noise was 

imposed on the benchmark data and the inverse method 

was used to predict the volumetric water content, under 

the uncertainty values of input parameters in Cases A, B, 

and C. The extreme variation of input parameter 

uncertainty values was also examined. 

 

2. MATERIALS AND METHODS 

 

2.1 The governing equation for water flow in  

unsaturated soil 

The θL −based form used in the simulation 

model is as following: 

 ∂θL∂୲ = ∂∂୸ [ቀK ∂ψm∂θL ቁ ∂θL∂୸ − Kk⃑ ]   (1) 

 

where: θL is the volumetric water content 

(m
3
/m

3
); t is the time of simulation (s); z indicates the 

vertical distance of simulation (m); K is hydraulic 

conductivity of the medium (m/s);ψmis the matric 

pressure head (m);k⃑ is the vector unit with a value of 

positive one when it is vertically downwards. The 𝜕θL 𝜕t⁄  

term indicates partial derivative of θL with respect to time, 

while 𝜕ψm 𝜕θL⁄  term is partial derivative of ψm with 

respect to θL. The 𝜕θL 𝜕z⁄  is the partial derivative of θL 

with respect to vertical distance. The initial condition 

volumetric water content value, in Table 1, indicates the 

initial spatial distribution of water content. The value was 

used along with upper and lower boundary conditions for 

simulation. The upper boundary was fixed to a constant 

volumetric water content given in Table-1. The lower 

volumetric water content was set equal to adjacent cell. 

The Equation.1, in general, is known as Richards’ 
equation (Richards 1931). The equation was numerically 

approximated using finite-difference method, and its 

algebra was coded in FORTRAN 2008.  

  

2.2 The constitutive functions of matric pressure head  

and hydraulic conductivity 

In this study, the constitutive functions of 

Haverkamp et al. (1977) were used: 

 ψm = −ͳͲ−ଶexp [αሺθ౩−θ౨ሻθL−θ౨ − Ƚ]భβ
   (2) 

 K = Kୱ ୅୅+ሺ−ଵ଴଴ψmሻా    (3) 

 

where: Ƚ, Ⱦ, A and B are fitting parameters; θ୰ 

(m
3
/m

3
) is residual volumetric water content; θୱ (m

3
/m

3
) is 

saturated volumetric water content; and Kୱ (m/s) is 

saturated hydraulic conductivity. 

 

2.3 Numerical experiment, initial and boundary  

conditions 

Infiltration of Yolo light clay was used as our 

numerical experiment, and the coefficient values (base 

case) were listed in Table-1. Initial condition for  θLwas 

0.2376 m
3
/m

3
. The Lower boundary was set permeable to 

water. The upper boundary was set at 0.495 m
3
/m

3
. After 

considering the mass balance ratio (MBR) and the number 

of iteration, the simulation parameters such as time-step, 

simulation time, convergence value (CV), and spatial 

discretization size were set as 500 s, 10
5
 s, 10

-12
 m

3
/m

3
 and 

1 cm, respectively. 
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Table-1. Goes approximately here. 
 

Parameter Base Case Case A Case B Case C Ƚ 739 738.5 – 739.499 739 – 812.9 739 – 886.8 θ୰ (m
3
/m

3
) 0.124 0.1235 – 0.124499 0.124 – 0.1364 0.124 – 0.1488 θୱ (m

3
/m

3
) 0.495 0.495 – 0.495499 0.495 – 0.5445 0.495 – 0.594 Ⱦ 4 3.5 – 4.499 4 – 4.4 4.0 – 4.8 A 124.6 124.55 – 124.6499 124.6 – 137.06 124.6 – 149.52 B 1.77 1.765 – 1.77499 1.77 – 1.947 1.77 – 2.124 Kୱ (cm/hr) 4.428x10

-2
 

4.4275x10
-2

 – 

4.428499x10
-2

 

4.428x10
-2

 – 

4.8708x10
-2

 

4.428x10
-2

 – 

5.3136x10
-2

 θLሺinitial cond. ሻ 

(m
3
/m

3
) 

0.2376 
0.23755 – 

0.2376499 
0.2376 – 0.26136 0.2376 – 0.28512 θLሺupper bound. ሻ 

(m
3
/m

3
) 

0.495 0.495 0.495 0.495 ∆t  (s) 500 500 500 500 ∆z  (cm) 1 1 1 1 

 

2.4 Sobol’ variance-based method as global sensitivity  

analysis 

Model output (Y) is a function of input 

parameters (Xଵ , Xଶ, … . , X୯). In a variance-based method, 

total unconditional variance, VሺYሻ, is given by Sobol’ 
(1990): 

 VሺYሻ = ∑ V୧୯୧ + ∑ ∑ V୧୨୯୨>𝑖୯୧ + ⋯+ Vଵଶ…୯  (4)    (4)  

 

where ∑ V୧୯୧  is the sum of partial variances that 

include individual effects of each input parameter,  ∑ ∑ V୧୨୯୨>୧୯୧ , all the partial variances of two input 

parameters interaction, and so on. 

Dividing equation. 4 by total unconditional 

variance, VሺYሻ, the equation becomes, 

 ∑ S୧୯୧ + ∑ ∑ S୧୨୯୨>𝑖୯୧ + ⋯+ Sଵଶ…୯ = ͳ              (5) 

 

where the first term on the left side of the 

equation S୧ = V୧ VሺYሻ⁄  is first order indices, S୧୨ =V୧୨ VሺYሻ⁄  is second order indices for the second term, and 

so on. The indices are scaled between 0 and 1. If there is 

no interaction between input parameters, ∑ S୧୯୧  would be 

equal to unity, and if ∑ S୧୯୧  is less than unity, it indicates 

the presence of interaction effects, which could be any 

combination of indices that is greater than first order.  

The quasi-Monte Carlo estimators compiled by 

Saltelli et al. (2010) allowed estimation of first order 

sensitivity index (S୧) and total effect index (STi) for input 

parameter i. As an example, three input parameters model 

has a total sensitivity index on input parameter that is 

given by: 

 STభ = Sଵ + Sଵଶ + Sଵଷ + Sଵଶଷ   (6) 

 STమ = Sଶ + Sଵଶ + Sଶଷ + Sଵଶଷ   (7) 

STయ = Sଷ + Sଵଷ + Sଶଷ + Sଵଶଷ   (8)   

 

Since the quasi-Monte Carlo estimators can 

estimates S୧ and STi, the difference between the two 

estimators, for instance (STభ − Sଵ) would remove single 

effect value and only higher than first order sensitivity 

indices are left, which is usually used to indicates 

interaction effects between input parameters.  

The first order sensitivity index and total effect 

index were estimated by the following quasi-Monte Carlo 

estimators (Saltelli et al. 2010): 

 S୧ = ͳ − ሺଵ/ଶNሻ∑ ቀ୷ሺాmሻ−୷ిiሺmሻቁమNm=భሺଵ/Nሻ∑ ቀ୷ఽሺmሻቁమNm=భ −foమ    (9) 

 STi = ሺଵ/ଶNሻ∑ ቀ୷ఽሺmሻ−୷ిiሺmሻቁమNm=భሺଵ/Nሻ∑ ቀ୷ఽሺmሻቁమNm=భ −foమ    (10) 

 

where y୅ሺmሻ
, y୆ሺmሻ

, and yେiሺmሻ
are model outputs. 

Each of these model outputs was given by a set of input 

parameter values by matrix of N × k. The k columns were 

referred to the number of input parameters. Sobol’ quasi-

random sequences were used to generate quasi-random 

numbers for k-dimensional input parameters, where the k 

value used in this study was eight. The quasi-random 

number generated was ranged between zero and unity, and 

it was scaled with respect to the uncertainty values in 

Table-1 for Cases A, B, and C.  For each row of the 

matrix, e.g. matrix input parameter values ofy୅ሺmሻ
, was a 

complete set of input parameter values for an execution of 

a model simulation. The number of model execution 

depended on the N rows, where the N value used in this 

study was fifteen thousands. Nossent et al. (2011) had 

shown that an N value of twelve thousands for twenty-six 

input parameters was sufficient to obtain reliable 
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estimation of sensitivity indices. Hence, the matrix input 

parameter values of y୅ሺmሻ
 and y୆ሺmሻ

would require 2N model 

executions. The matrix input parameter values of yେiሺmሻ
was 

referred to parameteri, and it has N rows for each 

parameter. Since there were k input parameters that must 

be tested, and the model executions would be kN. The 

matrix input parameter values of yେiሺmሻ
for parameter i was 

obtained by using all the columns of matrix input 

parameter values ofy୅ሺmሻ
, except the column of parameter 

iwas taken from the matrix input parameter values of y୆ሺmሻ
. 

This step was repeated based on the number of input 

parameter as indicated by the value k. Therefore, in the 

current studies, the total model executions that were 

carried out for each case (Cases A, B, and C) was given by 

N(2+k)=15,000(8+2)=150,000. All the cases combined 

would require 450,000 model executions. The foଶ was 

given by ቀሺͳ/Nሻ∑ y୅ሺmሻNm=ଵ ቁଶ
.  

 

2.5 Simple genetic algorithm (SGA) as inverse method 

The uncertainty values of input parameters were 

used to generate a random population of initial solutions. 

The solution is referring to a set of input parameter values 

for use in model simulation. The random population was 

generated using Sobol’ sequence to spread widely between 

individual solutions in order to encompass every possible 

combination of input parameter values that could best 

describe the model output. Vrugt et al. (2008) used Latin 

hypercube sampling to generate the initial population. 

Each solution of the population is known as chromosome, 

which is consisting of input parameter values that were 

encoded into binary string of 1 and 0. Two initial 

chromosomes (parent) were randomly selected to go 

through crossover process in order to generate two new 

chromosomes (offspring). In this study, a single crossover 

point was used (Figure-1). 

 

 
 

Figure-1. Goes approximately here. 

 

The offspring was decoded into a real value of 

each input parameter values, and it was then used as input 

for the simulation and evaluated with an objective 

function. The objective function values from the parent 

and offspring were compared, and if offspring objective 

function value is better than the parent, the offspring genes 

will overwrite the parent genes. Similarly, under the 

process of mutation, two parents were selected, and 

random genes in the parent were selected for the mutation 

(Figure-2). They were then decoded and used as input for 

the simulation and then evaluated with the objective 

function. Genes from offspring with better objective 

function value would replace the parent genetic values.  

 

 
 

Figure-2. Goes approximately here. 

 

The crossover and mutation processes would 

continue based upon the preset number of population size. 

A complete iteration of crossover and mutation would 

signify a complete creation of a new generation where the 

size of the initial population and the new generation are 

the same.  

 

3 RESULTS AND DISCUSSIONS 

 

3.1 Simulation outcomes of Sobol’ variance-based  

method 

There are various forms of an uncertainty of input 

parameter distribution, for instance, normal, uniform, 

triangular and lognormal. In this study, the uniform 

distribution was used; the distribution was based on the 

significant digit approximation method (Case A), 10 and 

20 % increment for Cases B and C, respectively, as in 

Table-1.The uniform distribution used in the current 

studies was similar to those used in Saltelli et al. (2004), 

Vrugt et al. (2008), Drouet et al. (2011), Yang (2011), and 

Younes et al. (2013). The significant digit approximation 

for Case A was developed from the base case in Table-1. 

For instance, the residual volumetric water content, i.e. 

0.124 m
3
/m

3
 as the base case, could be approximated by 

lower and upper bounds of 0.1235 and 0.124499 m
3
/m

3
, 

respectively. Vice versa, the lower and upper bounds 

could be reduced to three significant digits; it would return 

to the original value as before. Hence, the lower and upper 

bounds were the minimum and maximum uncertainty 

limits resulted from the given significant digit of an input 

parameter. If the base case was to increase its significant 

digit to 0.1240 m
3
/m

3
 the uncertainty range for the 

parameter would be bounded between 0.12395 and 

0.1240499 m
3
/m

3
, respectively, which has a lower 

uncertainty range than the former example. All the 

parameters in Case A were developed from the base case 

values with the same method. Hence, the uncertainty 

values of input parameters distribution on model output 

due to the effect of the significant digit approximation was 

able to be investigated. 
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Table-2. Goes approximately here. 
 

Parameter 
Case A  Case B  Case C  ܁𝐢 ܂܁𝐢 ܁𝐢 ܂܁𝐢 ܁𝐢 ܂܁𝐢 Ƚ 0 0.00001 0.00089 0.00130 0 0.00143 θ୰ 0 0.00002 0 0.00005 0 0.00006 θୱ 0.22980 0.26600 0.37800 0.46200 0.15290 0.27914 Ⱦ 0.51770 0.58400 0.01630 0.02380 0.00904 0.02684 A 0 0.00010 0.00322 0.00768 0.00027 0.00855 B 0.18580 0.21300 0.30900 0.38900 0.20441 0.33170 Kୱ 0 0.00002 0.00978 0.01460 0.00578 0.01649 θLሺinitial cond. ሻ 0.00017 0.00019 0.19100 0.19400 0.48030 0.48563 

 

Using the quasi-Monte Carlo estimators from 

Equations. 9 and 10, the first order sensitivity index (S୧) 
and total effect index (STi) were estimated for every input 

parameter (Table-2). The model variability was calculated 

by simply multiplying the first order sensitivity index and 

total effect index with one hundred. The results for Case A 

showed that Ⱦ had the highest S୧that 51.77 % of the model 

variability was due to this factor alone.It was followed by θୱandB at 22.98 and 18.58 %, respectively. A minor 

percentage was accounted by θLሺinitialcond. ሻ at 0.017 %. 

Insignificant contributions were found from parameters Ƚ, θ୰, A and Kୱ. The combined model parameters Ⱦ, θୱandBwere found responsible for 93.33 % of all the 

model variability. By taking ͳ − ∑ S୧8୧=ଵ , only 6.67 % was 

due to the interaction between parameters for a 

combination of indices higher than first order. The specific 

contribution of each input parameter on interaction effect 

was investigated through the use of STi − S୧. The 

interaction effect calculation was found similarly and 

mainly contributed by Ⱦ and then followed by θୱandB at 

6.63, 3.62 and 2.72 %, respectively.  It is important to note 

that the combined value of the three parameters was 

greater than 6.67 %, as given by ͳ − ∑ S୧8୧=ଵ , that was 

found in the previous calculation. It can be justified by that 

some second and higher order sensitivity indices were 

repeatedly calculated and accounted for as shown in the 

example of Equations. 6-8. In addition, similar to S୧, the STi for parameters Ƚ, θ୰, A, Kୱ and  θLሺinitialcond. ሻ were 

found to be insignificant.  

While some input parameters were found to be 

more significant than the others, it should be noted that 

this was basedon the test case (base case) of the 

uncertainty values of input parameters that were given in 

Table 1. Under different uncertainty values of input 

parameters, the results of S୧ and STiwould be different. To 

demonstrate our claim, the base case input parameters in 

Table-1 were modified to have an increment of 10 % to 

form a new uniform distribution for each parameter, i.e. 

Case B. In Table-2, the parameter Ⱦ was no longer 

providing dominant influence on model 

variability.Parameters demonstrated significant influences 

wereθୱ, B and θLሺinitialcond. ሻat 37.8, 30.9 and 19.1 % of 

the model variability, respectively. Some characteristics 

were remain unchanged, for instance, STi was greater than S୧, and also parameters with greater S୧ resulted in greater STi. Since the results in Case B, as in Table-2, were based 

on 10 % increase in value for all input parameters, in 

short, it could be termed as a sensitivity analysis. 

However, the results in Case A were based upon different 

percentage variations on each input parameter and 

therefore, it should be termed as uncertainty analysis. The 

word uncertainty signifies that each time the sensitivity 

indices are to be calculatedin different cases with different 

uncertainty values for each input parameter. Hence, in 

uncertainty analysis, the importance of parameters would 

be differed from one case to the others. The consistency of 

sensitivity analysis results was further tested in Case C 

that all input parameter values were increased by 20 %. 

The results of Case C showed that the model variability 

was dominated by θLሺinitialcond. ሻ, B, and θୱin 

decreasing order. The parameter importance ranking 

appeared to be different from those from Case B. The 

discrepancy could be explained, refer to Figures 3(b) and 

3(c), that the interception point of three S୧ input 

parameters (θୱ, θLሺinitialcond. ሻ, B) was located below 

and above the horizontal line of 0.185 m depth 

corresponding to Cases B and C. A general comparison 

between first order sensitivities of Cases A, B, and C 

(Figures 3(a)-(c)) showed that there were similarities of 

sensitivity index curvature for Cases B and C and 

irrespective of percentage increment applied, while Case 

A was distinctively different. In a general perspective, 

sensitivity analysis is a particular case of uncertainty 

analysis, and it happened only when all parameters were 

varied with an equal percentage. 
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Figure-3(a)-(c). Go approximately here. 

 

In Case A, refer to Figure-3(a), the parameter Ⱦ 

was the most important parameter where almost 100 % of 

model variability could be explained by the parameter 

alone, except at the near surface layer and the depth of 

0.185 m. In Case B, Figure-3(b), θୱwas the single most 

important parameter at near surface depth. It was gradually 

decreased and followed by a steady increase of B and also 

a slow minor increase of θLሺinitialcond. ሻat adeeper depth 

between 0.05 and 0.15 m. After 0.15 m depth, the increase 

of θLሺinitialcond. ሻwas exponential and the decrease 

ofθୱwas steep with increasing depth, while B gradually 

increase to a peak before it decreases to zero after water 

infiltration front. The upper depth volumetric water 

content was largely influenced by θୱ, and at the lower 

depth it was entirely governed by θLሺinitialcond. ሻ. A 

similar observation was found in Case C and only that the 

increased and decreased of parameters were found to take 

place earlier than Case B. 

The simulation output was also processed for 

other statistical measures, Figures 4-6. The figure that 

indicate the difference between mean and median (Figure- 

4-6(d)) was found in close trend to that skewness in 

Figures 4-6(c). The mean value in Figures 4-6(a) appeared 

to have surrounded by boundaries from 95 percentile 

confident intervals, as inner boundaries, and Minimum, 

Maximum values as outer boundaries. Case C has greater 

variability of volumetric water content than Case B, and 

also the variability of Case B was found higher than Case 

A; as shown in Figures 4-6(b). The figure for standard 

deviation has a similar trend as those observed in Max-

Min and standard error of the mean. The standard error of 

mean data was not shown here. At 0.185 m depth of Case 

A, there was sudden decreased of uncertainty as indicated 

in standard deviation, Max-Min and the 95 percentile 

confident intervals. It was rather an uncommon event as it 

was not evident in Cases B and C. At a distance before the 

end of water infiltration front, a peak of kurtosis and 

skewness was observed in all cases, except in Case A the 

peak of skewness was rather subtle.At deeper depth of 

water infiltration front, i.e. some distances somewhere in 

the middle before the end of water infiltration front and 

after the rest of 0.4 m depth, kurtosis remained subtle, i.e. 

approximate -1.2, signifying low and flat peak as shown in 

the distribution curve in Figure-4(e). For Cases B and C, 

the low and flat peak happened after the depth of 0.3 m. 

Skewness and kurtosis were found to have reached its 

peak after the peak of standard deviation, which suggest 

that the distribution curves were initially horizontally 

spread (as indicated by standard deviation) before skewed 

right (or positive), and raised high frequency (as indicated 

by kurtosis). The positive (or right) and negative (or left) 

skewness values appeared to be rather intermittent, but it 

became zero (no effect of skewness) at deeper depth after 

the water infiltration front. A normal distribution was 

rarely found, because the skewness and kurtosis, in 

Figures4-6(c), were consistently deviated from zero (or 

perfect normal distribution curve) as shown in Figures4-

6(e). In addition, an apparent relation between kurtosis and 

sensitivity index was observed. In regions, i.e. depths, 

where only single input parameter has dominant 

influenced on simulation output, kurtosis value tended to 

approximate equal or less than -1.0. Since the negative 

kurtosis value indicates the appearance of small and flat 

peak, a normal distribution with a unique peak could not 

be found in these regions. Such observation was 

predominantly observed in all depths of Case A, except at 

near surface and areas surrounding 0.185 m depth; 

whereas in Cases B and C, predominant regions were 

similarly observed at near surface and depth after water 

infiltration front. The generated low and flat peak 

distributions should be defined as uniform distribution 

where Ⱦ was found primarily responsible for Case A, 

while θୱ and θLሺinitialcond. ሻ were found responsible for 

near surface and depth after water infiltration front, 

respectively, for corresponding to Cases B and C. 

(c) 

0.185 m 

(b) 

0.185 m 

(a) 

0.185 m 
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Figure-4(a-e). Go approximately here. 

 

 
 

Figure-5. Go approximately here. 
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Figure-6. Go approximately here. 

 

A high standard deviation and Max-Min values of 

Case C than Case B were not unusual given that 20 % 

increment of input parameter values of the former case, 

than the latter case of only 10 % increment. The 

corresponding largest values of Max-Min were found to be 

0.245 and 0.202 m
3
/m

3
 that were equivalent to 51.6 and 

45.7 % of error from the base case water content. The 

significant digit approximation method in Case A resulted 

in 0.06 m
3
/m

3
 that can be translated into 15.4 % of error 

from base case water content.  

 

3.2 Simulation outcomes of simple genetic algorithm  

(SGA) 

In SGA, there are three basic input data required, 

which were population size, mutation number, and 

generation number. In the first stage of the studies, the 

generation number was set at 100 while mutation number 

was varied between 0 and 90, and population size was 

studied between 20 and 300. The input parameters of Case 

C were used at this stage because it has the largest 

uncertainty values of input parameters compared to the 

other two cases. The simulation results were compared to 

Philip’s semi-analytical solution from Haverkamp et al. 

(1977), and from now onis known as Philip (H). The 

objective function of the model was to minimize the sum 

of the absolute difference between simulated and Philip 

(H), from now onis known as OF. Each chromosome (or 

individual) in the population would be assigneda particular 

OF value based on its simulation output. The primary 

objective of the SGA is to minimize the OF value. The 

results showed that the OF value reduced to a minimum 

value after a number of generations (Figures 7(a)-(b)), i.e. 

approximately 10 generations. The OF value reached the 

minimum value at later generation as the population size 

increases from 50 to 300, as shown in Figures 7(b)-(d). In 

addition, it was found that neither extremely high nor low 

mutation number was required to obtain the lowest OF 

value at each population size. In the case of 20 population 

size, mutation number was found to be an optimum at 18. 

The mutation sites needed to obtain small OF values 

reduced as the population size increased from 50 to 300. 

At population size of 50, a mutation number of 18 (Figure-

7(b)) was found sufficient to result in the smallest OF 

value, whereas at 200 and 300 population sizes the the 

lowest OF values were achieved respectively at 9 (Figures 

7(c)) and 4 (Figure-7(d)) mutation numbers. 
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Figure-7. Goes approximately here. 

 

Moreover, the global search for lower OF values 

indicates that at higher population size the minimum OF 

value would reduce from 0.1395 to 0.1123 at each 

consecutive population size from 20 to 300, respectively. 

The water infiltration front data points from Philip(H) was 

plotted in Figure-8. They were inverse searched with input 

parameter uncertainty range of Case C, which was stated 

earlier to have the most wide uncertainty range that its 

success in inverse search should presumably be applicable 

to Cases A and B. The Philip(H) was inverse searched 

with different population sizes from 20 to 300. The results 

of the inverse search by population sizes of 50 and 300 

were showed in Figure-8. A similar trend of water content 

was observed from the two different population sizes from 

the surface of infiltration model until the depth of 0.25 m. 

However, a significant discrepancy was observed between 

the predictions of both population sizes at water 

infiltration depth after 0.25 m. Although both population 

sizes of 50 and 300 have showed approximately equal 

prediction of water content at the near surface, their values 

were also significantly deviated from the Philip (H), after 

0.25 m infiltration depth. 

 

 
 

Figure-8. Go approximately here. 
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Figure-9. Go approximately here. 

 

Apparently, the result up to the current stage, as 

in Figure-8 indicates that SGA was not able to reproduce a 

good result at two end tails of water infiltration front. A 

hypothesis was established that the insufficient data at 

both ends were the result of unabling the SGA to search 

properly and subsequently result in failure to represent the 

characteristic of water infiltration adequately. Hence, the 

hypothesis was tested by increasing the data points from 

18 to 200 and re-run the SGA. The result in Figure-9 

shows that the population size of 50 was already sufficient 

to obtain a good agreement between numerical data and 

simulation. Similarly, at higher population sizes, e.g. 100-

500, were able to reproduce a good fitting result. It 

suggests that sufficient water content data at the upper and 

lower plains of water infiltration front were necessary, and 

they dictate the accuracy of SGA prediction. Without such 

information, the SGA would not be able to predict a 

leveling off of the saturation water content and the residual 

water content. 

In addition, SGA was subjected to artificial noise 

to test its ability to operate on non-smooth water content 

data. Three different Gaussian noises were imposedin each 

case of A, B, and C, which is equivalent to a total of nine 

independent investigations. An example of Gaussian noise 

application on data has been demonstrated in 

Balasubramanian and Schwartz (2002). SGA was found 

able to generate smooth curve for each type of noise for 

each case. Figure-10 shows the selected few cases of the 

water infiltration front where a reasonably good fitting 

result was achieved for each case. It was noticeable that 

noise data do not impede the function of SGA as an 

inverse method, but the noise data were rather influence 

the curvature shape of the water infiltration front. 

 

 
 

Figure-10. Goes approximately here. 

 

Additional tests on the robustness of the SGA 

were also carried out. Apart from the input parameter 

range in Cases A, B, and C, random variation of input 

parameter was tested. Again, the population size of 50 was 

found sufficient to reproduce the water infiltration front. 

At extreme case when all the lower boundaries of the input 

parameters uncertainty values were to reduce to zero, 

except the saturated water content parameter, the SGA was 

found able to reproduce a reasonably good result at the 

expense of higher population size, i.e. 300. When the 

upper limit of each input parameter was increased to few 

hundreds of percentage, on top of the previous case 

condition, a population size of 500 was needed to 

reproduce a reasonable good result.     

 

4. CONCLUSIONS 

Saltelli and Annoni (2010) suggested that all 

models should be tested by global sensitivity analysis in 

order to avoid perfunctory sensitivity analysis, i.e. local 
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input spaces. Identification of relevant parameters from 

those of least importance is necessary. The uncertainty 

values of input parameters could be subjected to the SGA 

to find a set of globally optimized input parameters values 

that was best described the water infiltration model. Those 

models with large number of input parameters may prefer 

to first screening out uninfluential parameters using 

elementary effect method (EEM) before processed by 

Sobol’ variance-based method and SGA. Hence, the 

computational time would tremendously reduce under 

reduced number of input parameters. 

In Sobol’ variance-based method, the equal 

percentage variation on input parameters was showed to 

lead to sensitivity analysis (Cases B and C), while 

different percentages variation of each input parameter 

would result in uncertainty analysis (Case A). It is simply 

because those in different case studies with 

differentpercentage variations on each input parameter 

would result in different first order and total effect indices 

values. In addition, the simulated output was significantly 

influenced by saturated volumetric water content at near 

surface depth; and at deeper depth after the water 

infiltration front, the output was solely influenced by 

initial water content used in the simulation. It thus 

suggested that the accuracy of water content prediction in 

these regions would depend on a narrower range of 

uncertainty values of the related parameters. However, in a 

situation when a particular parameter, e.g. Ⱦ in Case A, 

has a greater values of uncertainty than other parameters, 

the previous observation does not apply. A simple case 

study of Case A has demonstrated that significant digit 

approximation that was developed based on existing 

significant digit of published data was found responsible 

for 15.4 % of error. Such error could be reduced by 

providing a greater number of significant digits on the 

input parameters values. 

The SGA was found capable of searching for 

globally optimized input parameter values. A population 

size of 50 was found successful of searching and 

reproduced water infiltration front in all cases tested, 

provided that sufficient data at the upper and lower plains 

of the water infiltration front were provided. SGA was 

able to handle a random range of input parameter values 

and also noise data. At extreme cases when extremely low 

and high values were used as search space for input 

parameters, the population size needed to perform the 

inverse method of SGA would be increased.  
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