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ABSTRACT 

This paper aims to present the least cost algorithm finding loop routes between a central node and a large number 
of end-nodes in the centralized network. End-nodes request service on the loop route originated from a central node. 
Demands at end-node are deterministic and distance matrix is given. We find a set of minimum cost loops to link end-
nodes to a central node satisfying the service requirements at end-nodes. In this paper, we propose a heuristic algorithm 
which first generates possible routes by applying the space relaxation, and then finds a set of loop routes through matching. 
The proposed algorithm is easy to implement and enable us to obtain the solution regardless of network configuration in 
the short computation time for the small network. The computation comparison with previous algorithms is also presented. 
Our algorithm can be applied find the broadcasting loops in centralized network. 
 
Keywords: centralized network, routing algorithm, loop route, broadcasting. 
 
1. INTRODUCTION 

Routing is one of important issues in the network 
problem. Network is classified into the centralized and 
distributed network. Centralized network is composed of a 
central node and a large number of end-nodes which 
require service from central node. 

Shortest route handling all the end-nodes 
originated from central node is affected by the capacity of 
service facility which is maintained by the central node. If 
the capacity is larger than sum of demands at end-nodes, 
an optimal loop route can be obtained by TSP (Travelling 
Salesman Problem).  

On the other hand, if the capacity of service 
facility at the central node is smaller than sum of demands 
at end--nodes, several loop routes should be obtained. This 
problem is also called vehicle routing problem [1]. In 
order to solve the problem, we should build an algorithm 
finding a set of loop routes which minimizes distance costs 
while satisfying the demands at end-nodes by the capacity 
of facility at the central node. 

As examples of this problem in the real situation, 
we can find the delivery of items between a shop and 
customers, commuter bus from a company or school to a 
large number of employees or students, and ring topology 
in the centralized communication network.  

Since the problem is NP-hard [2], most previous 
researches are based on the heuristic algorithm. Many 
heuristic techniques are presented. Clustering first route 
second, route first cluster second, saving insertion, 
improvement exchange, mathematical programming based, 
and interactive optimization methods are proposed [3]. 
Haimovich and Kan [4] found the bound for the problem, 
but there is the limitation which represents the capacity of 
facility of centre node as the number of nodes. Altinkemer 
and Gavish [5] improve this limitation.  

Network is classified into undirected, directed, 
and mixed in accordance with the configuration. Most of 
previous researches assumed that distance matrix is 
undirected. However, Integer programming (IP) [6], TSP 
segment (TSPS) [7], NNR (nearest neighbour rule), and 

Clarke and Write [8] model can find solution regardless of 
configuration. Eulerian tour [9] partition method can be 
applied to the directed network.  

In this study, we propose two-phase least cost 
algorithm. In the first phase, we enumerate the possible 
routes by applying dynamic programming with the state 
space relaxation. In the second phase, we find least cost 
loop routes by applying matching procedure.  

Since our proposed algorithm can deal with all 
types of networks regardless of configuration, we compare 
our algorithm with IP, TSPS, NNR, and Eulerian tour 
partition algorithms in terms of distance cost. Comparison 
result shows that our algorithm produces the least cost 
routes for typical examples. 

Our algorithm can be applied to finding the least 
cost loop routes in a centralized network and the 
topological network design [10,11,12] including the 
communication network. 

The rest of the paper is organized as follows. 
Section 2 presents least cost loop algorithm with the state 
space relaxation, and section 3 presents comparison with 
previous algorithms according to the network configu-
ration, followed by concluding remarks in section 4. 
 
2. LEAST COST ROUTING ALGORITHM 

In the problem formulation, a set of assumptions 
should be made: 
a) The demand at the end-node is deterministic. 
b) There is only one centre node, with unlimited capacity. 
c) The demand at the end-node is not splintered. 
d) The demand at a given end-node (Wi) cannot exceed 

the capacity of facility (max(Wi) ≤ T, i=1,..,n).  
e) The total demand exceeds the capacity of facility  

(Σi=1
n 

Wi > T). 

With these assumptions, our problem formulation 
can find a set of loop routes with minimum total distance 
cost, which satisfies that the demand capacity limit is less 
than a given value (T) in each loop. Figure-1 shows an 
example of the problem definition. A centre node is 
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indexed by 1. The sum of demands (Wi) on one loop route 
is less than T and dij represents the distance cost between 
node i and j.  
 

 
 

Figure-1. An example of the VRP. 
 

We can obtain the following recurrence relation 
by using the principle of optimality. In Equation (1), fk(j,S) 
represents the minimum cost among the connecting costs 
of k intermediate nodes set (S) from centre node to node j. 
If the sum of demands on the S is larger than the capacity 
of facility (T), then fk(j,S) is set to ∞. Nj is the set of node 
number excluding centre node, that is Nj = {2,3,4,..,n}. S is 
the subset of Nj. 
 

if Σq∈S Wq + Wi ≤ T, 
,௞ሺ݆ܨ   ܵሻ = min𝑞∈𝑆,𝑞≠௝[ܨ௞−ଵሺ𝑞, ܵ − {𝑞}ሻ + 𝑑𝑞௝]             (1)            

else 
,௞ሺ݆ܨ   ܵሻ =  ∞ 
 

Boundary condition represents the direct 
connection cost from centre node to node j without 
intermediate nodes and defined as 
,଴ሺ݆ܨ   −ሻ = 𝑑ଵ௝                                                                  (2) 

 
When computing the recurrence relation in (1) 

and (2), we can reduce the amount of computations by the 
following state space relaxation procedure. 

We let j∪S be τ. Φt represents the ascending 
order sorted set of τ which has (k+1) elements at each 
stage k. Φt(k) represents the extendable set satisfying the 
constraints among Φƍt(t=1,2..). ΦƎt represents the 
extendable set not satisfying the constraints among 

Φtƍs(t=1,2..). π shows the set which has Φt(k) as elements. 
max(Φt(k)) is the maximum value among Φt(k).  

We compute route costs by adding the return cost 
to the center node to Fk(j,S) which is composed of the 
same node number set with the different sequence order, 
and then find minimum cost. 
଴ሺ𝑃ሻܨ   = ,଴ሺ݆ܨ −ሻ + 𝑑௝ଵ               ݇ = Ͳ                               (3)           

௞ሺ𝑃ሻܨ                                 = minሺ௝,𝑆ሻ∈𝑃[ܨ௞ሺ݆, ܵሻ + 𝑑௝ଵ]   ݇ = ͳ,ʹ … , 𝐿 − ͳ       

                              

Costs computed in (3) represent the partial route 
costs without duplication and the corresponding node set 
is represented as R.  

 
Theorem 2.1. In the finite set S = {1,2,…,N}, two finite 

sets such that Si∩Sj =φ(i≠j) are divided into S1, S2,..,Sk, 

that is, ∪i=1
k Si = S. Then, if Sp = ∪i=1,j≠i

k Si,               mini∈S,  p∈{S-Si}(Si+Sp)= minሺSiሻ + min(Sp)  

Proof: Let m = min(Si) + min(Sp) for two finite sets, Si+Sp 

= {a+b | a∈Si, b∈Sp}. In order to prove the theorem, we 
should verify m ≤ min(Si+Sp). Assume that m > min(Si+Sp). 
Since Si+Sp is equal to S, thus that is finite set. Assume 

that aƍ and bƍ exists such that aƍ+bƍ = min(Si+Sp), aƍ∈Si, bƍ
∈Sp. For two elements, a and b such that a0 + b0 = m and 
a0 ≤ aƍ, b0 ≤ bƍ, (a0 + b0) becomes m and is less than (aƍ+bƍ), 
it is contradiction. Therefore, m ≤ min(Si+Sp). Let S = Sp = ⋃ ௝ܵ௞௝=ଵ,௝≠௜ , by repeating the above procedure for all cases, 

we can prove theorem.                                                            
By theorem 2.1, N-1 nodes are included in the 

route, so, least cost routes can be found in (4). 
ܩ  = min[ܨሺܴሻ + ܴ∀      [ሺܴ̃ሻܨ ∪ ܴ̃ = 𝑁௝                       (4) 

 
Considering network configuration, we can 

describe the least cost routing algorithm with the state 
space relaxation as the follows: 
 

STEP 1: Check the network configuration 
if the network != undirected, 

by using the shortest path algorithm [13], convert the 
distance matrix to the shortest connected distance 
matrix 

else initialization (for k = 0), 

Φt(k) = j, ∀j∈Nj 

π = Φt(k); 
F0(j, -) = d1j; 

F0(P) = F0(j, -) + dj1, p∈Φt(k); 

Find R corresponding to F0(P); 
endif 

STEP 2: Compute the recurrence relation 
for k = 1,2,… 

if π == Φ Let L=k, then goto STEP 3; 
for all Φt(k) 

Φt(k) = j∪Φt(k) with j > max(Φt(k)) 

satisfying the constraint, ΣWq∈Φt ≤ T 
π = Φt(k); 

end for 

for τ such that Φt == Φt(k) ܨ௞ሺ݆, ܵሻ = min𝑞∈𝑆,𝑞≠௝[ܨ௞−ଵሺ𝑞, ܵ − {𝑞}ሻ + 𝑑𝑞௝];  ܨ௞ሺ𝑃ሻ = minሺ௝,𝑆ሻ∈𝑃[ܨ௞ሺ݆, ܵሻ + 𝑑௝ଵ];   
Find R corresponding to Fk(P); 

end for 

for τ such that Φt == ΦƎt 
Fk(j, S) = ∞; 

end for 
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STEP 3: Match and compute the least cost ܩ = min[ܨሺܴሻ + ܴ∀     [ሺܴ̃ሻܨ ∪ ܴ̃ = 𝑁௝    
STEP 4: Find the least cost routes corresponding to G 
 

Figure-2. Least cost routing algorithm with the state 
space relaxation. 

 
In the above algorithm, the number of elements 

included in the set (π) is equal to k+1. If the constraint is 
not satisfied, Φt(k-1) element is deleted from π. If all Fk(j,S) 
is equal to ∞, we cannot extend the route any more, 
feasible route sets are equal to those obtained at previous 
stage k (=1,2,.., L-1).  
 

Example 2.1. Let us consider the following 
example. The capacity of facility at the center node (T) is 
8 units. Demands at end-node (Wi) and non-symmetric 
distance matrix (dij) in undirected network are given by 
Table-1.  
 

Table-1. Demands and non-symmetric distance for 
undirected network. 

 

Demand  Non-symmetric 

Wi node 1       2      3      4      5 

- 
1 
2 
3 
4 

1 
2 
3 
4 
5 

0      3      1      5      4 
1      0      5      4      3 
5      4      0      2      1 
3      1      3      0      3 
5      2      4      1      0 

 
The computation procedure by our least cost 

algorithm in Figure-2 is shown in Figure-3. 
 

Step Description 

1 

π = {2, 3, 4, 5} 

F0(2,-) = 3, F0(3,-) = 1, F0(4,-) = 5, F0(5,-) = 4 

F0(2) = F0(2,-) +d21 = 3 + 1 = 4 (R = 2), 
F0(3) = 6 (R = 3), F0(4) = 8 (R = 4), 
F0(5) = 9 (R = 5) 

2 
 
 
 
 
 
 
 

π = {(2, 3), (2,4), (2,5), (3,4), (3,5), (4, 5)} 

F1(2,{3}) = F0(3,-) + d32 = 5, F1(2,{4}) = 6, 
F1(2,{5}) = 6, F1(3,{2}) = 8, F1(3,{4}) = 8, 
F1(3,{5}) = 8, F1(4,{2}) = 7, F1(4,{3}) = 3, 
F1(4,{5}) = 5, F1(5,{2}) = 6, F1(5,{3}) = 2, 
F1(5,{4}) = 8 

F1(2,3) = min[F1(2,{3}) + d21 , F1(3,{2})+d31] 
= min[6, 13] = 6 (R = 3,2), 
F1(2,4) = 7 (R = 4,2), F1(2,5) = 7 (R = 5,2), 
F1(3,4) = 6 (R = 4,3), F1(3,5) = 7 (R = 3,5), 
F1(4,5) = 8 (R = 5,4) 

π = {(2, 3, 4), (2, 3, 5), (2, 4, 5)} 

F2(2,{3,4}) = min[F1(3,4) + d32 , F1(4,{3})+ d42] 
= min[12, 4] = 4 
F2(2,{3,5}) = 4, F2(2,{4,5}) = 6, F2(3,{2,4}) = 10, 
F2(3,{2,5}) = 10, F2(4,{2,3}) = 9, F2(4,{2,5}) = 7, 
F2(5,{2,3}) = 8, F2(5,{2,4}) = 9 

F2(2,3,4) = min[F2(2,{3,4}) + d21 , 
F2(3,{2,4})+d31, F2(4,{2,3})+d41] = 5 (R = 3,4,2) 
F2(2,3,5) = 5 (R = 3,5,2), F2(2,4,5) = 7 (R = 5,4,2) 

3 

G = min [F(3,4,2) + F(5) = 14, 
F(3,5,2) + F(4) = 13, F(5,4,2) + F(3) = 13, 
F(3,2) + F(5,4) = 14, F(4,2) + F(3,5) = 14, 
F(5,2) + F(3,4) = 13] = 13 

4 
Least cost route: 
1→5→4→2→1, 1→3→1 

 

Figure-3. Computation procedure of least cost routing 
algorithm with the state space relaxation. 

 
3. PERFORMANCE EVALUATION 

In this section, we compare the route costs 
between our algorithm and well known benchmark 
algorithms in the accordance with the network 
configuration. 

 
3.1. Undirected network  

Table-2 shows demands at end-node and 
symmetric distance network. The capacity of facility at the 
centre node (T) is 8 units. 
 

Table-2. Demands and symmetric distance for  
undirected network. 

 

Demand  Symmetric 

Wi node 1       2       3       4        5 

- 
1 
2 
3 
4 

1 
2 
3 
4 
5 

0       1       2       2        2.5 
0      1.2     ∞       ∞ 

0        1        2 
0       2.2 

0 
 

Routing costs for Table-1 and Table-2 are given 
by Table-3 and Table-4, respectively. TSP partition 
algorithm builds routes by partitioning TSP tour. Clarke & 
Write [8] is the benchmark algorithm for this problem. 
NNR is the routing cost by nearest neighbour rule. 
 

Table-3. Routing costs for non-symmetric network. 
 

Algorithm 
Non-symmetric 

Cost 
Routes 

TSP partition 
1→3→5→1, 
1→4→2→1 

14 

IP based 
1→3→5→2→1, 

1→4→1 
13 

Least cost 
1→5→4→2→1, 

1→3→1 
13* 

 
Table-4. Routing costs for symmetric network. 

 

Algorithm 
Non-symmetric 

Cost 
Routes 

Clarke & 1→5→3→4→1, 9.5 
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Write 1→2→1 

NNR 1→2→3→4→5→1 7.9 

Least cost 1→2→3→4→5→1 7.9* 

 
3.2. Directed network 

In the directed network, distance matrix should be 
converted to the connected distance matrix by the 
algorithm [13] before applying the least cost routing 
algorithm. The capacity of facility at the centre node (T) is 
8 units. Demands at end-node, distance matrix and the 
shortest path matrix for directed network is given by 
Table-5.  
 

Table-5. Demands, distance and shortest path matrix for 
directed network. 

 

Demand  Distance Shortest path 

Wi node 1   2    3    4    5 1    2    3    4    5 
- 
1 
2 
3 
4 

1 
2 
3 
4 
5 

0   2    -     -    4 
-    0   1     -    - 
-    -    0    3    5 
5   -     -    0    - 
-    -    -     6    0 

0     2    3    6    4 
9     0    1    4    6 
8    ∞    0    3    5 
5    ∞   ∞    0   ∞ 
11  ∞   ∞    6    0 

 
Routing costs for Table-5 are given by Table-6. 

Eulerian tour partition and TSP partition algorithm build 
routes by partitioning Eulerian tour and TSP tour, 
respectively. 
 

Table-6. Routing costs for directed network. 
 

Algorithm Routes Cost 

Eulerian tour 
partition 

1→2→3→4→1, 
1→5→1 

26 

TSP partition 
1→2→3→5→1, 

1→4→1 
30 

NNR 
1→2→3→4→5, 

1→5→1 
26 

Least cost 
1→2→3→4→1, 

1→5→1 
26* 

 
3.3. Mixed network 

In the mixed network, undirected arcs and 
directed arcs are combined. Like in the directed network, 
we need the connected distance matrix in order to applying 
the least cost routing algorithm. The capacity of facility at 
the centre node (T) is 8 units. Demands at end-node, 
distance matrix and the shortest path matrix for mixed 
network are given by Table-7.  
 

Table-7. Demands, distance and shortest path matrix for 
mixed network. 

 

Demand  Distance Shortest path 

Wi node 1   2  3  4  5  6 1   2    3   4    5    6 

- 
1 
2 

1 
2 
3 

0   8  -   2   -  - 
 -   0  -   8  -   - 
8   -  0   -   -   - 

0   8  10   2   19  27 
10 0  16   8   25  33 
8   ∞   0   ∞   ∞    ∞ 

3 
4 
5 

4 
5 
6 

2   -  8   0 17  - 
-    -  -   -   0  8  
-    -  -   8  8  0 

2   ∞   8   ∞  17   25 
18 ∞  ∞  24  16    8 
10 ∞ 16    8    8   ∞ 

 
Routing costs for Table-7 is given by Table-8. 

Among three algorithms, our least cost routing algorithm 
produces the minimum cost routes. 
 

Table-8. Routing costs for mixed network. 
 

Algorithm Routes Cost 

TSP partition 
1→2→5→1, 1→6→4→1, 

1→3→1 
106 

NNR 
1→4→3→1, 1→6→1 

1→2→1, 1→5→1 
110 

Least cost 
1→2→5→3→1, 

1→6→4→1 
102* 

 
4. CONCLUSIONS 

In this study, we propose the least cost routing 
algorithm which can find the loop routes regardless of 
network configuration when demands at end-nodes are 
deterministic in a centralized network. The proposed 
algorithm is composed of enumeration phase which 
reduces the amount of computations by the state space 
relaxation and matching phase which find the exact 
solution for small network.  

Performance evaluation shows that our least cost 
routing algorithm produces better solution than previous 
benchmark algorithms. Our algorithm can be applied to 
the communication network design including vehicle 
routing problem. In the future works, more efficient 
algorithm with the improved space relaxations and optimal 
algorithm in the problem with dynamic demands is 
expected. 
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