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ABSTRACT

Constructing a new surface from a given regular surface is an important task in Surface Modeling. A parallel
surface (called also an offset surface) of a polynomial or rational surface is widely used in computer-aided design. The
shape of a regular surface can be characterized by its principle curvatures, or equivalently, by its Gaussian and mean
curvatures. The parabolic cylinder is a regular polynomial surface with many applications in product design. Parabolic-
trough solar collectors and parabolic cylindrical reflector antennas are good illustrations of the integrated form and
function. In this paper, we present constructions of two cylindrical surfaces associated with an arbitrary parabolic cylinder.
The first one is the unique focal surface of the parabolic cylinder which is defined by the reciprocal of the unique nonzero
principle curvature. Its set of singular points coincides with the points of a straight line. The second one is a new regular
surface obtained by the normals and reciprocal mean curvature of the original parabolic cylinder. This surface, called a
generalized focal surface, consists of parabolic and planar points. A comparison of the properties of the parabolic cylinder,
its focal surface, and its generalized focal surface is given. The relative positions of these three surfaces are also discussed.

Keywords: parabolic cylinder, principle curvatures, focal surface, mean curvature, generalized focal surface.

1. INTRODUCTION

One important task in surface modeling is
obtaining a new surface from a given one. A parallel (or
an offset) surface of a regular surface is the most popular
case for such a construction. Any point of the parallel
surface lies on the normal through a certain point of the
original regular surface and the distance d > 0 between
these points is constant. The shape of a regular surface can
be characterized by its principle curvatures, or
equivalently, by its Gaussian and mean curvatures. There
is another construction for a given regular surface with at
least one nonzero principle curvature k. The focal surface
consists of points on the normals of the given surface such
that the oriented distance between each point of the
original surface and the corresponding point of the focal
surface is equal tox™!. The last construction can be
modified by replacing x~! with some function of the two
principle curvatures. In this case the new surface is called
a generalized focal surface. Several studies have
demonstrated that focal and generalized focal surfaces
may possess important implications for manufacturing and
computer-aided design. Radzevich [15] has investigated
the focal surfaces, Hamman et al. [8] and Georgiev [2]
examine the generalized focal surfaces.

The parabolic cylinder is a quadratic surface that
has many applications in different branches of engineering
and natural sciences. The shape of the parabolic cylinder is
widely used in reflector antennas as pointed out by
Schantzin [18], Song et al. [19], Stutzman and Thiele [20],
and Yu et al. [23]. The parabolic cylinder plays a key role
in the parabolic-trough solar collectors (see for instance
[1], [10], [16], and [22]). There are other applications of
the parabolic cylinder in physics as shown in [4] and [12].
The purpose of this paper is to investigate the properties of
two cylindrical surfaces that are associated with any
parabolic cylinder. The first surface is the unique focal

surface of the parabolic cylinder. The second one is the
generalized focal surface of the parabolic cylinder which
is obtained by the reciprocal mean curvature.

In the next section, main definitions and some
facts concerning focal and generalized focal surfaces of a
regular surface are presented. In addition, a specific
polynomial parametrization of the parabolic cylinder is
considered. After that the focal surface of the parabolic
cylinder is analyzed. The reciprocal mean curvature-based
generalized focal surface of the parabolic cylinder is also
completely described. In the sequel, the properties of these
two surfaces related to the parabolic cylinder are
compared.

2. MATERIALS AND METHODS

2.1 Basic differential geometry of regular surfaces

Assume that x, y and z denote Cartesian
coordinates of the points in the three dimensional
Euclidean space E3. Let S: D — E3 be be a regular surface
of class C? defined on a domain D € R? with a
parametrization

r(u,v) = (x(w,v),y(u,v),z(w,v))", (w,v)€D, (1)

where ()T denotes a transpose matrix. This
means that the coordinate functions x(u,v), y(u,v) and
z(u,v) have continuous partial derivatives up to order
two. Moreover, at any point on the surface, the tangent

. ]
vectors to the parametric curves Iy, = ar(u, v) and

3 . .
I, = Er(u, v) are non-collinear, or equivalently, the

vector cross product I, XTI, is a nonzero vector
everywhere. Then, it is determined the unit normal vector
field to the surface S
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1
n(u,v) = A (ry X1,), 2)

where (u,v) € D and |l. |l is a notation for a norm
of a vector. The coefficients of the first fundamental form
are expressed by three scalar (dot) products

E=r,'r, F=1r,1, G=1,"'1, 3

At any point of the regular surface S it is fulfilled
EG —F? =|r, Xr, I>> 0. From the existence of the

.. 82 82

second derivatives I, = mr(u, V), Iy, = mr(u, v)
92 ..

and r,, = ﬁr(u, v), the coefficient of the second

fundamental form
L=n'r,, M=n-r, N=n-r, )

are also well defined. A parallel surface S of S at distance
d has a parametrization

r¢(u,v) = r(u,v) + d.n(u,v).

More details for this construction can be found in [5] and
[17].

2.2 Focal surfaces of regular surfaces
Consider two 2 X 2 matrices formed from the
coefficients of the first and second fundamental forms

E F L M
FI = (F G ) and F” = (M N)

Then, the principle curvatures k; and k, of S are
the roots of the quadratic equation det(F,; — kF,) = 0, or
equivalently,

(EG — F¥)k? — (EN + GL — 2FM)k + (LN — M?) = 0.  (5)

In [14] it has been shown that the discriminant of
the above equation

(EN + GL — 2FM)? — 4(EG — F%)(LN — M?)

is greater than or equal to zero for any (u,v) € D.
Consequently, the two principle curvatures k; and k, are
determined at any point of S. Recall that the Gaussian and
mean curvature functions of the surface S can be
expressed by the coefficients of the first and second
fundamental forms or by the principle curvatures as
follows:

LN — M?

K =g

=K1K

and

EN+GL—-2FM 1

H(u,v) = T2EC—FD) E(Kl + K32). (6)

A point of a regular surface is called parabolic
(resp. planar), if K =0 and H# 0 (resp. K =0 and
H = 0). For a surface S with nonzero principle curvatures
k; and kK, there exist two surfaces S¢! and S called
evolutes or focal surfaces. They are given by

r(u,v) = r(uv)+ %n(u, v), i=12. (7

4

Properties of the focal surfaces are described in
[5]. These surfaces have been developed for engineering
applications by Radzevich [15]. Let us notice that any
Euclidean motion of the Euclidean 3-space E3 is an affine
transformation of E3 that preserves the scalar product and
the orientation of E3. In particular, any Euclidean motion
leaves invariant the coefficients of the first and second
fundamental forms and the orientation of regular surfaces.
Thus, the principle curvatures, the Gaussian and mean
curvatures are also invariant under Euclidean motions. We
can conclude that the image of a regular surface and the
image of one of its focal surface under an arbitrary
Euclidean motion form also a pair of a regular surface and
one of its focal surfaces.

2.3 Generalized focal surfaces of regular surfaces

A generalization of the focal surfaces can be
obtained by replacing in the equation (7) the reciprocal
principle curvature with another real-valued function
depending on x; and k,. More precisely, this
generalization, called a generalized focal surface S9 to a
regular surface S, is a parametric surface represented by

rf(u,v) =r(u,v) + glu,v)n(y,v), ®)

where r(u,v) is a parametrization (1) of S,
n(u, v) is the unit normal vector field (2) of S, and g(u, v)
is a real-valued function depending on the principal
curvatures k; and x, of S. Such a kind of a surface has
been introduced by Hagen and Hahmann in their paper [6].
An important type of a generalized focal surface (8) has
been considered by the first author in [2]. See also [7] and
[3]. Let S be a regular surface of class C? with a
parametrization (1). Suppose that S has a nonzero mean
curvature function H. Then, there exist a generalized focal
surface S9 given by

ri(u,v) =r(u,v) + %n(u, V). 9

Other type of a generalized focal surface to a
regular surface is introduced and studied by Moon in [13].

2.4 Direct similarities of the Euclidean 3-space

The Euclidean space E3 can be considered as an
affine space with an associate vector space R3. This means
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that the points of E3 can be identified with their position
vectors.

Let us recall that the affine transformation
®:E3 > E? is called a direct similarity, if for any point
x = (x,v,2z)T in E3, its image ®(x) in E3 is determined
by the matrix equation

®(x) =pAx+b, (10)

where p > 0 is a constant, A is a fixed 3 X 3
orthogonal —matrix with det(A)=1, and b=
(by, by, b3)T € R3 is a translation vector. The real positive
number p is called a similarity ratio. In other words, any
direct similarity is an affine transformation of E3 into
itself which preserves the orientation in E3 and the angels.
If p =1, then the direct similarity (10) is a Euclidean
motion. Consequently, the group Sim*(E?) of all direct
similarities of[E® is the minimal extension of the group
EM™(E3) of the Euclidean motions of E3.

The generalized focal surfaces (9) are closely
related to the direct similarities. Their main properties are
proved in [2]:

i. If the generalized focal surfaces S9 of S is
given by (9), then the set of all pairs (S,S9) is invariant
under an arbitrary direct similarity ®: E3 — E3. This mean
that if the surface Sq = ®(S) is given by a vector-valued
function re(u, v) and if the surface S = ®(S9) is given
by a vector-valued function rg (u, v), then

1
rd(u,v) = re(u, v) + —ng(u, v),
Hy

where Hg, is a mean curvature of Sg, and ng (u, v) is a unit
normal vector field of Sg.

ii. If the original surface S is rational, then the
generalized focal surface SY given by (9) is also rational.

2.5 A parametrization of the parabolic cylinder

The cylindrical surfaces form a subclass of the
class of all ruled surfaces. The defining elements of an
arbitrary ruled surface are its base curve and its rulings.
The properties of the ruled surfaces are completely
described in [5] and [14]. Up to a Euclidean motion, any
parabolic cylinder can be considered as a ruled surface
whose base curve is a parabola in the coordinate
xy —plane and whose rulings are parallel to the z —axis.
As in [18] and [19], we assume that the parabolic cylinder
S is the implicitly defined surface with the following
equation in Cartesian coordinates

x2 —4fy =0, (11)

where f > 0 is the focal length of the base parabola. Then,

the straight line
0

f , teR
t

is called a focal line of S. Furthermore, the considered

parabolic cylinder given by (11) possesses a
parametrization
2fu
_ | fu?
r(u,v) = ,
=17 (12)

u € (—o0,00), v € (—00, ).
Now, we will recall some computations for this
surface. The tangent vectors to the parametric curves

r,(u,v) = 2f,2fu,0)" and r,(u,v) = (0,0,1)T (13)

are linearly independent for any pair (u,v) €
R2.In other words, the vectors r,(u,v) and r,(u,v) are
non-collinear at any point of the surface parameterized by
(12). Consequently, the parabolic cylinder is a regular
surface of glass C2. Every two parabolic cylinders S; and
S, presented by (12) with focal distances f; and f,,
respectively, are similarity equivalent as point sets. In fact,

1 0 0
the direct similarity (10) with p =2, A = 8 (1) (1’
1

and b = (0,0,0) transforms S; into S,.
3. RESULTS AND DISCUSSIONS

3.1 Properties of the focal surface of the parabolic
cylinder

We continue with basic computations for the
parabolic cylinder S given by (12). Using (3) and (13), we
see that the coefficients of the first fundamental form are

E=4f21+u?), F=0, G=1. (14)

The vector cross product r,(u,v) X r,(u,v) =
(2fu, —2f,0)7 has a norm

Il v, (u,v) X r,(w,v) I=2fV1+u? > 0.

Thus, the unit normal vector field (2) of the
parabolic cylinder (12) is

u 1 T
- 0) . (15)
Vi+u?z  V1+u?

n(u,v) = <

From the second order partial derivatives
ry, (w,v) = (0,2f, O)T’ r,(uwv) = (O'O'O)T’ (W) =
(O,O,O)T, the coefficients (4) of the second fundamental
form of S regarding the parametrization (12) are

2f
L=——— M=0, N=0. 16
V1+u? (16)

Then, the quadratic equation (5) for the principle
curvatures of S becomes
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Consequently, the principle curvatures of the parabolic
cylinder (12) are ky = K;q, = 0 and

4f2(1 +uH)K? + Kk = 0.

1
C2f(l+ eI r R

a7

K2 = Kmin =

Thus, the parabolic cylinder has an exactly one
focal surface (evolute). We can derive a parametrization of
this focal surface.

Proposition 1.Let S be the parabolic cylinder
parameterized by (12), and let S® be its unique focal
surface. Then, the surface S€ is a cylindrical surface which
is given by

—2fud
re(u’v) =<3fu2+2f>' (18)
u € (—00,00), v Ev(—OO, ).

Proof. An arbitrary ruling of S is parameterized
by (2fuo, fu3,v)T, where u, is a real constant and
v € (—o0,0). Then, the principle curvatures (17) at the
points of a fixed ruling of S are one and the same.
Similarly, the unit normal vectors (15) at the points of a
fixed ruling of S are also one and the same. Hence, there is
a one parameter family of straight lines on the focal
surface S¢ which is corresponding to the one parametric
family of rulings of S. These straight lines are parallel to
the z-axis, and therefore, S€ is a cylindrical surface.
Substituting the right-hand sides of (12), (15), and (17)
into (7) yields ré(u, v) =

u
2fu —
VIt
1;”2 —2f w1 | i

Nowar
0

After some calculations, we arrive at (18). O

Now, we can analyse properties of the focal
surface S°. Since the tangent vectors to the parametric
curves of S¢ are

ré(u,v) = (—6fu?, 6fu,0)7,

rs (u,v) = (0,0,1)7, (19)

the focal surface S¢ is regular in the domain

D® {(=00,0) U (0,0)} x (=00, )

{R\{0}} x R.

Moreover, the unit normal vector field of S€ is determined
only on D¢ as follows

u u?

VuZ ¥ ut VuZ ¥ ut

T
n(u,v) = ( 0) ,u # 0. (20)

By (19) the coefficient of the first fundamental form are
E¢ =36f%u%(1+u?), F¢=0, G®°=1.

From the second order partial derivatives
ro(w,v) = (0,2f,0)7, g, (w,v) = (0,0,0)", 1w, v) =
(0,0,0)", we obtain the coefficients of the second
fundamental form of S

6fu?
Vuz ¥ ud’

Then, at regular points of S¢ the Gaussian
curvature K€ is equal to zero, and the mean curvature

Lf=— M =0, N°=0.

u2

12f (u? + ud)vu? + us

e _ _

takes only negative values. Consequently, the focal surface
S¢ on the domain D¢ contains only parabolic points. The
points on the straight line A(v) =r¢(0,v) =
(0,2f,v)T, v €R are the singular points of S¢ because
both vectors rf (0, v) and rg (0, v) X rf(0,v) are equal to
(0,0,0)7.

The base curve of S€ in the xy —plane is the
semi-cubical parabola

.Be(u) = (_qu3) 3fu2 + th O)T’ ue€ (—OO, OO) (21)
which is implicitly defined by

02 _ (v =2\
1G) =(57)- 22)

This curve is the evolute of the base parabola

B°(W) = (2fu, fu?,0)", u € (=0, ). (23)

of the original parabolic cylinder S. Obviously, the
implicit polynomial equation (22), considered in the
Euclidean 3-space, defines the focal surface S€. According
to [11], the same surface S¢ is called a right cylindrical
surface with a base curve (directrix) semi-cubical
parabola, and the straight line A(v) of its singular points is
called a cuspidal edge of S°. Such a kind of a surface is
used in recent investigations in singularity theory as [9]
and [21].

We can also determine the points of the
intersection SNS®. Since both surfaces are cylinders
whose rulings are parallel to the z-axis, it is sufficient to
find the intersection points of their base curves 8°(u) and
B¢(w) in the xy —plane. For any point P € B°(u)NB°(w)
there are parametric values u°, u® € R such that 8°(u°) =
B€(w®). By (21) and (23) these values constitute a real
solution of the nonlinear system
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2fu’ = 2f(u®)3
fw®)? = f(u®)? + 2f. (24)

The above system can be reduced to the equation
(u®)® — (u®)? — 2 = 0, which is equivalent to

(W2 + D(W®)* - (w®)?-2)=0.

The last equation has two real roots u¢ = /2 and
u$ = —+/2. It immediately follows that the pairs(ui’ =
—2vV2,u¢ =+2)and (ug = 2v2,u§ = —V2) are the real
solutions of the system (24). In other words, the
intersection S°(u)NBe(u) of the base curves consists of
two points P; and P, whose position vectors are
(—4V2f,8f,0)" and (4V2f,8f.0)7, respectively. Then,
the intersection SNS® of the original parabolic cylinder
with its focal surface falls into two straight lines parallel to
z-axis which are parameterized by(—4v2f,8f,v)T,v € R
and (4V2f,8f,v)T, v € R. In addition, S¢ meets S
transversally because the init normal vectors n€(u,v)
given by (20) ) and n(u,v) given by (15) ) are non-
collinear at any point of the intersection SNS¢. A part of
the original parabolic cylinder with f =3, the
corresponding part of the focal surface, and their
intersection are plotted in Figure-1.

Figure-1.The intersection(two segments in white) of the
part of the parabolic cylinder (in red) and irs foca
surface (in blue).

3.2 A generalized focal surface of the parabolic
cylinder

Let us consider again the parabolic cylinder S
defined by (12). Its Gaussian curvature K = Kk, 1is
identically zero because of x; = 0. Substituting (14) and
(16) into (6) we get the expression

1
= — 5
i 4fV1+u?(1+u?) (25)

for the mean curvature of S. Thus, the function H(u,v) =
KZ—Z never vanishes and takes only negative values. First, we

can find the generalized focal surface of S defined by the
reciprocal mean curvature of S.

Theorem 2.Let S be the parabolic cylinder
parameterized by (12), and let S8 be its generalized focal
surface obtained by (9). Then, the surface S& possesses a
polynomial parametrization

Af + 5fu? (26)

v

—2fu — 4fud
r9(u, v) =< )

where (u,v) € {(—o0,0) X (—o0,00)} = R%. Moreover,
59 is a cylindrical surface which is regular everywhere on
RZ.

Proof. From (15) and (25) it follows that

u
V1+u?
%n(u,v)= —4f(1+ud)yi+uw?| 1
V1+u?
0
—4f(1 +u®)u
= 4f (1 +u?)
0

Then, the right-hand side of (9) can be written as

2fu

) —4f(1 +u®)u
Tl ara+u?)
v
0
- 2fu — 4fud
=< 4f + 5fu? )

v

This proves (26). If u, is a real constant, then any
parametric curve

(—2fug — 4fud,4f +5fué,v)’, veR

of §9 is a straight line parallel to the z-axis. Therefore, S9
is a cylindrical surface. The tangent vectors to the
parametric curves of 9

9w, v) = (=2f — 12fu?, 10fu, 0)T
(27
r) (u,v) = (0,0,1)7

are non-collinear for any pair (u, v) € R2. In fact, for both
u = 0 and u # 0, the vector cross product

r)(u,v) x rJ(u,v) = (10fu, 2f + 12fu?,0)7

is differen from (0,0,0)7. Consequently, SY is a regular
surface.

Second, we can examine some specific properties
of the generalized focal surface SY with a parametrization
(26). Using (27), we find scalar and vector quantities of
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S9. Suppose that A(u) = (5u)? + (1 + 6u?)? > 0. Then,
the coefficients of the first fundamental form are

E9 = 4f2A(uw), F9 = 0,G9 =1,

the unit normal vector field is

Su 1+6u? \
0 (28)

JA@w' JAwW

and the second order derivatives are ry,(u,v) =
(=24fu,10£,0)", rJ (u,v) == (0,0,0)7, rl(u,v)=
(0,0,0)7. Furthermore, at the points of §9, the coefficients
of the second fundamental form are

nd(u,v) = (

10f (1 — 6u?
oo lpa-ewdy o

JVAMW)

the Gaussian curvature K9 is identically zero, and
by (6) the mean curvature HY is

N9 =0,

10£ (1 — 6u?)
Af[(5u)Z + (1 + 6u)2]3/2

HI(u,v) = —

Hence, the generalized focal surface S9 consists
of parabolic and planar points. The parabolic points of S9Y

. 1 1
correspond to parametric values u € ]R{{\/—g, _ﬁ}’ because
at these points both conditions Kg =0 and HI9 # 0 are

. 1
fulfilled. If u, = NG \/_, then H9(uy,v) =0

and HY9(u,, v) = 0 for any v € R. Thus, all planar points
ofS9 parameterized by (26) are the points on two rulings
of S9determined by

and u, =

_%_?"V"‘ )T=(—ff—'29f v, veR
2f 8f 29f
and(ﬁ 3\/_,4f+ )T— ?,— )T,UE]R.

Now, we w111 describe the intersection of the
original parabolic cylinder S given by (12) and its
generalized focal surface S9 defined by (26). For any point
Q € SNSY there are pairs (u°,v°), (u9,v9) € R? such
that r(u®,v°) = r9(u9,v9), or equivalently,

2fu’ = —2fud — 4f(u9)3
f)? =4f +5f(u9)?

v° =19,

The last system can be rewritten as

u® =—ud —2u9)?
(u®)? = 4 + 5(u9)? (29)
v° =9

Eliminating u° from the first two equations we
get a sixth degree equation

W9)? + 4(u9)* + 4(u9)® = 4 + 5(u9)?

in the unknown u9. This equation is equivalent to the
equation

[(w)? - 1][)?*+1]> =0

with real roots uf =1 and uj= —1.
Substituting these values into the first equation of (29)
yields uf = —3 and uJ =3. Consequently, the
intersection  SNSY9consists of two straight lines
(—6f,9f,v)T, v € R and (6f,9f,v)T,v € R which are
two common rulings of S and S9. By (15) and (28) the
normal vectors n(u, v) of S and n9(u, v) of $9 are non-
collinear at any point of these common rulings. Therefore,
S9 meets S transversally. In case of f =3, the
intersection of a part of the parabolic cyliner wirh the
corresponding generalized focal surface and the planar
points on this generalized focal surface are plotted in
Figure-2.

Figure-2. The intersection (two segments in white ) of a
part of the parabolic cylinder (in red) with its generalized
focal surface (in green) and the planar points (two
segments in yellow ) on this generalized focal surface.

Finally, we derive the implicit equation of S9.
The first two coordinate functions in the parametrization
(26) can be written as

x=x(u,v)=—2fu — 4fud
y =y, v) =4f +5fu’ = 4f

Then, we have

2 4f2u2(1 +u2)2
y—4f
5f

Eliminating u? from these two equalities gives

() -

=u?>0

v —4N) @y - 3/)*
(5)?

(v = 4f).
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The equation above is an implicit representation
of 9.

3.3 Relative position between the focal surface S€ and
the generalized focal surfaceS8

According to (11), the interior (resp. exterior) of
the parabolic cylinder S consists of the points in E* whose
Cartesian coordinates (x,y,z) satisfy the inequality
x% —4fy <0 (resp. x2 — 4fy > 0). Then, the points of
S¢ that belong to the interior of S are determined by (18)
with —/2 < u < /2. Similarly, the points of SY that
belong to the interior of S are determined by (26) with
—1 <u < 1. Using (22) we say that the interior of the
focal surface S° consists of the points in E® whose
Cartesian coordinates (x, y, z) satisfy the inequality

@) - () <o (30)

2 3
From (26) the Cartesian coordinates of the points
on S9 are x= —2fu — 4fud,y =4f +5fu®, and

z = v. Then for the points on S9, the left-hand side of
inequality (30) can be written as

—2fu — 4fud\®  [(Af +5fu —2f\°
() - ()

3
= (g) [27u?(1 + 2u®)? — (2 + 5u?)?]
f 3
= <§> (-8 —33u? —42u* - 17u®) < 0.
Hence, the surfaces S¢ and S9 have no common
points, and all points of SY belong to the interior of S°.

The mutual position between S¢ and S9 is illustrated in
Figure-3.

Figure-3. The generalized focal surface (in green) is
placed inside the focal surface (in blue).

4. CONCLUSIONS
In this paper, we describe two cylindrical surfaces
associated to an arbitrary parabolic cylinder S. The first

one is the unique focal surface S¢ of S. All regular points
of §¢ are parabolic, and all singular points of S¢ lie on one
of its rulings. The second one is the generalized focal
surface SY which is defined by the normals and reciprocal
mean curvature of the original parabolic cylinder S. All
points of S9 are regular and can be divided into two types.
The planar points of SY9 coincide with the points on two
rulings of S9. All other points on S9 are parabolic. Starting
with a suitable polynomial parametrization of S, we obtain
polynomial parameterizations of S¢ and S9. The relative
positions of S, S¢ and S9 are discussed. In particular, it is
shown that all points of S belong to the interior of S°.
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