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ABSTRACT 
 Constructing a new surface from a given regular surface is an important task in Surface Modeling. A parallel 

surface (called also an offset surface) of a polynomial or rational surface is widely used in computer-aided design. The 

shape of a regular surface can be characterized by its principle curvatures, or equivalently, by its Gaussian and mean 

curvatures. The parabolic cylinder is a regular polynomial surface with many applications in product design. Parabolic-

trough solar collectors and parabolic cylindrical reflector antennas are good illustrations of the integrated form and 

function. In this paper, we present constructions of two cylindrical surfaces associated with an arbitrary parabolic cylinder. 

The first one is the unique focal surface of the parabolic cylinder which is defined by the reciprocal of the unique nonzero 

principle curvature. Its set of singular points coincides with  the points of a straight line. The second one is a new regular 

surface obtained by the normals and reciprocal mean curvature of the original parabolic cylinder. This surface, called a 

generalized focal surface, consists of parabolic and planar points. A comparison of the properties of the parabolic cylinder, 

its focal surface, and its generalized focal surface is given. The relative positions of these three surfaces are also discussed.  

 
Keywords: parabolic cylinder, principle curvatures, focal surface, mean curvature, generalized focal surface. 

 

1. INTRODUCTION 

One important task in surface modeling is 

obtaining a new surface from a given one. A parallel (or 

an offset) surface of a regular surface is the most popular 

case for such a construction. Any point of the parallel 

surface lies on the normal through a certain point of the 

original regular surface and the distance 𝑑 >  between 

these points is constant. The shape of a regular surface can 

be characterized by its principle curvatures, or 

equivalently, by its Gaussian and mean curvatures. There 

is another construction for a given regular surface with at 

least one nonzero principle curvature . The focal surface 

consists of points on the normals of the given surface such 

that the oriented distance between each point of the 

original surface and the corresponding point of the focal 

surface is equal to − . The last construction can be 

modified by replacing  −  with some function of the two 

principle curvatures. In this case the new surface is called 

a generalized focal surface. Several studies have 

demonstrated that focal and generalized focal surfaces 

may possess important implications for manufacturing and 

computer-aided design. Radzevich [15] has investigated 

the focal surfaces, Hamman et al. [8] and Georgiev [2] 

examine the generalized focal surfaces. 

The parabolic cylinder is a quadratic surface that 

has many applications in different branches of engineering 

and natural sciences. The shape of the parabolic cylinder is 

widely used in reflector antennas as pointed out by 

Schantzin [18], Song et al. [19], Stutzman and Thiele [20], 

and Yu et al. [23]. The parabolic cylinder plays a key role 

in the parabolic-trough solar collectors (see for instance 

[1], [10], [16], and [22]). There are other applications of 

the parabolic cylinder in physics as shown in [4] and [12]. 

The purpose of this paper is to investigate the properties of 

two cylindrical surfaces that are associated with any 

parabolic cylinder. The first surface is the unique focal 

surface of the parabolic cylinder. The second one is the 

generalized focal surface of the parabolic cylinder which 

is obtained by the reciprocal mean curvature. 

In the next section, main definitions and some 

facts concerning focal and generalized focal surfaces of a 

regular surface are presented. In addition, a specific 

polynomial parametrization of the parabolic cylinder is 

considered. After that the focal surface of the parabolic 

cylinder is analyzed. The reciprocal mean curvature-based 

generalized focal surface of the parabolic cylinder is also 

completely described. In the sequel, the properties of these 

two surfaces related to the parabolic cylinder are 

compared. 

 

2. MATERIALS AND METHODS 

 

2.1 Basic differential geometry of regular surfaces 

Assume that ,  and  denote Cartesian 

coordinates of the points in the three dimensional 

Euclidean space 𝔼 . Let 𝑆: → 𝔼  be be a regular surface 

of class  defined on a domain ⊆ ℝ  with a 

parametrization  

 𝐫 ,  = , , , , , 𝑇 ,   , ∈ ,      (1) 

 

where . 𝑇 denotes a transpose matrix. This 

means that the coordinate functions , , ,  and ,  have continuous partial derivatives up to order 

two. Moreover, at any point on the surface, the tangent 

vectors to the parametric curves 𝐫 = ∂∂ 𝐫 ,  and 𝐫 = ∂∂ 𝐫 ,  are non-collinear, or equivalently, the 

vector cross product 𝐫 × 𝐫  is a nonzero vector 

everywhere. Then, it is determined the unit normal vector 

field to the surface 𝑆 

mailto:georgi.fmi@gmail.com


                                VOL. 13, NO. 15, AUGUST 2018                                                                                                     ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2018 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                               4459 

 𝐧 , = ∥ 𝐫 × 𝐫 ∥ 𝐫 × 𝐫 ,                                           

 

where , ∈  and ∥. ∥ is a notation for a norm 

of a vector. The coefficients of the first fundamental form 

are expressed by three scalar (dot) products  

 = 𝐫 ⋅ 𝐫 ,    = 𝐫 ⋅ 𝐫 ,    = 𝐫 ⋅ 𝐫 .                          (3) 

 

At any point of the regular surface 𝑆 it is fulfilled − =∥ 𝐫 × 𝐫 ∥ > . From the existence of the 

second derivatives 𝐫 = ∂∂ 𝐫 , , 𝐫 = ∂∂  ∂ 𝐫 ,  

and 𝐫 = ∂∂ 𝐫 , , the coefficient of the second 

fundamental form  

 = 𝐧 ⋅ 𝐫 ,    = 𝐧 ⋅ 𝐫 ,    = 𝐧 ⋅ 𝐫                         (4) 

 

are also well defined. A parallel surface 𝑆  of 𝑆 at distance 𝑑 has a parametrization  

 𝐫 , = 𝐫 , + 𝑑. 𝐧 , . 
 

More details for this construction can be found in [5] and 

[17].  

 

2.2  Focal surfaces of regular surfaces 

Consider two ×  matrices formed from the 

coefficients of the first and second fundamental forms  

 𝐅𝐼 = ( )     a 𝑑   𝐅𝐼𝐼 = ( ). 
 

Then, the principle curvatures  and  of 𝑆 are 

the roots of the quadratic equation det 𝐅𝐼𝐼 − 𝐅𝐼 = , or 

equivalently,  

 − − + − + − = .         (5) 

 

In [14] it has been shown that the discriminant of 

the above equation  

 + − − − −  

 

is greater than or equal to zero for any , ∈ . 

Consequently, the two principle curvatures  and  are 

determined at any point of 𝑆. Recall that the Gaussian and 

mean curvature functions of the surface 𝑆 can be 

expressed by the coefficients of the first and second 

fundamental forms or by the principle curvatures as 

follows: 

 , = −− =  

 

and  

 

, = + −− = + .                      
 

A point of a regular surface is called parabolic 

(resp. planar), if =  and ≠  (resp. =  and = ). For a surface 𝑆 with nonzero principle curvatures 

 and , there exist two surfaces 𝑆  and 𝑆  called 

evolutes or focal surfaces. They are given by 

 𝐫 𝑖 , = 𝐫 , + 𝑖 𝐧 , , 𝑖 = , .            

 

Properties of the focal surfaces are described in 

[5]. These surfaces have been developed for engineering 

applications by Radzevich [15]. Let us notice that any 

Euclidean motion of the Euclidean 3-space 𝔼  is an affine 

transformation of 𝔼  that preserves the scalar product and 

the orientation of 𝔼 . In particular, any Euclidean motion 

leaves invariant the coefficients of the first and second 

fundamental forms and the orientation of regular surfaces. 

Thus, the principle curvatures, the Gaussian and mean 

curvatures are also invariant under Euclidean motions. We 

can conclude that the image of a regular surface and the 

image of one of its focal surface under an arbitrary 

Euclidean motion form also a pair of a regular surface and 

one of its focal surfaces. 

 

2.3 Generalized focal surfaces of regular surfaces 

A generalization of the focal surfaces can be 

obtained by replacing in the equation (7) the reciprocal 

principle curvature with another real-valued function 

depending on  and . More precisely, this 

generalization, called a generalized focal surface 𝑆  to a 

regular surface 𝑆, is a parametric surface represented by  

 𝐫 , = 𝐫 , + , 𝐧 , ,                              (8) 

 

where 𝐫 ,  is a parametrization (1) of 𝑆, 𝐧 ,  is the unit normal vector field (2) of 𝑆, and ,  

is a real-valued function depending on the principal 

curvatures  and  of 𝑆. Such a kind of a surface has 

been introduced by Hagen and Hahmann in their paper [6]. 

An important type of a generalized focal surface (8) has 

been considered by the first author in [2]. See also [7] and 

[3]. Let 𝑆 be a regular surface of class  with a 

parametrization (1). Suppose that 𝑆 has a nonzero mean 

curvature function . Then, there exist a generalized focal 

surface 𝑆  given by  

 𝐫 , = 𝐫 , + 𝐧 , .                                           

 

Other type of a generalized focal surface to a 

regular surface is introduced and studied by Moon in [13].  

 

2.4  Direct similarities of the Euclidean 3-space 
The Euclidean space 𝔼  can be considered as an 

affine space with an associate vector space ℝ . This means 
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that the points of 𝔼  can be identified with their position 

vectors.  

Let us recall that the affine transformation Φ:𝔼 → 𝔼  is called a direct similarity, if for any point 𝐱 = , , 𝑇 in 𝔼 , its image Φ 𝐱  in 𝔼  is determined 

by the matrix equation  

 Φ 𝐱 = 𝜌𝐀𝐱 + 𝐛 ,                                                                 (10) 

 

where 𝜌 >  is a constant, 𝐀 is a fixed ×  

orthogonal matrix with det 𝐀 = , and 𝐛 =𝑏 , 𝑏 , 𝑏 𝑇 ∈ ℝ  is a translation vector. The real positive 

number 𝜌 is called a similarity ratio. In other words, any 

direct similarity is an affine transformation of 𝔼  into 

itself which preserves the orientation in 𝔼  and the angels. 

If 𝜌 = , then the direct similarity (10) is a Euclidean 

motion. Consequently, the group 𝑆𝑖 + 𝔼  of all direct 

similarities of𝔼  is the minimal extension of the group + 𝔼  of the Euclidean motions of𝔼 .  

The generalized focal surfaces (9) are closely 

related to the direct similarities. Their main properties are 

proved in [2]:  

i. If the generalized focal surfaces 𝑆  of 𝑆 is 

given by (9), then the set of all pairs 𝑆, 𝑆  is invariant 

under an arbitrary direct similarity Φ:𝔼 → 𝔼 . This mean 

that if the surface 𝑆Φ = Φ 𝑆  is given by a vector-valued 

function 𝐫Φ ,  and if the surface 𝑆Φ = Φ 𝑆  is given 

by a vector-valued function 𝐫Φ , , then  

 𝐫Φ , = 𝐫Φ , + Φ 𝐧Φ , , 
 

where Φ is a mean curvature of 𝑆Φ and 𝐧Φ ,  is a unit 

normal vector field of 𝑆Φ.  

ii. If the original surface 𝑆 is rational, then the 

generalized focal surface 𝑆  given by (9) is also rational.  

 

2.5  A parametrization of the parabolic cylinder 

The cylindrical surfaces form a subclass of the 

class of all ruled surfaces. The defining elements of an 

arbitrary ruled surface are its base curve and its rulings. 

The properties of the ruled surfaces are completely 

described in [5] and [14]. Up to a Euclidean motion, any 

parabolic cylinder can be considered as a ruled surface 

whose base curve is a parabola in the coordinate −plane and whose rulings are parallel to the −axis. 

As in [18] and [19], we assume that the parabolic cylinder 𝑆 is the implicitly defined surface with the following 

equation in Cartesian coordinates  

 − = ,                                                                       (11) 

 

where >  is the focal length of the base parabola. Then, 

the straight line  

) ,    ∈ ℝ 

is called a focal line of 𝑆. Furthermore, the considered 

parabolic cylinder given by (11) possesses a 

parametrization  

𝐫 , = ) ,
∈ −∞,∞ , ∈ −∞,∞ .                                         

 

 Now, we will recall some computations for this 

surface. The tangent vectors to the parametric curves 

 𝐫 , = , , 𝑇 a 𝑑  𝐫 , = , , 𝑇      (13) 

 

are linearly independent for any pair , ∈ℝ .In other words, the vectors 𝐫 ,  and 𝐫 ,  are 

non-collinear at any point of the surface parameterized by 

(12). Consequently, the parabolic cylinder is a regular 

surface of glass . Every two parabolic cylinders 𝑆  and 𝑆  presented by (12) with focal distances  and , 

respectively, are similarity equivalent as point sets. In fact, 

the direct similarity (10) with 𝜌 =  , 𝐀 = ) 

and 𝐛 = , , 𝑇 transforms 𝑆  into 𝑆 .  

 

3. RESULTS AND DISCUSSIONS 

 

3.1 Properties of the focal surface of the parabolic  

cylinder 

We continue with basic computations for the 

parabolic cylinder 𝑆 given by (12). Using (3) and (13), we 

see that the coefficients of the first fundamental form are  

 = + ,    = ,    = .                                 (14) 

 

 The vector cross product 𝐫 , × 𝐫 , =,− , 𝑇 has a norm  

 ∥ 𝐫 , × 𝐫 , ∥= √ + > .  

 

 Thus, the unit normal vector field (2) of the 

parabolic cylinder (12) is  

 𝐧 , = (√ + ,− √ + , )𝑇 .                          

 

 From the second order partial derivatives 𝐫 , = , , 𝑇, 𝐫 , = , , 𝑇, 𝐫 , =, , 𝑇, the coefficients (4) of the second fundamental 

form of 𝑆 regarding the parametrization (12) are  

 = − √ + ,    = ,    = .                                  

 

 Then, the quadratic equation (5) for the principle 

curvatures of 𝑆 becomes  
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+ + √ + = . 
Consequently, the principle curvatures of the parabolic 

cylinder (12) are = 𝑎 =  and  

 = 𝑖 = − + √ + .                            

 

Thus, the parabolic cylinder has an exactly one 

focal surface (evolute). We can derive a parametrization of 

this focal surface.  

Proposition 1.Let S be the parabolic cylinder 

parameterized by (12), and let Se be its unique focal 

surface. Then, the surface Se is a cylindrical surface which 

is given by  

 𝐫 , = ( − + ) ,∈ −∞,∞ , ∈ −∞,∞ .                                            (18) 

 

Proof. An arbitrary ruling of 𝑆 is parameterized 

by , , 𝑇 , where  is a real constant and ∈ −∞,∞ . Then, the principle curvatures (17) at the 

points of a fixed ruling of 𝑆 are one and the same. 

Similarly, the unit normal vectors (15) at the points of a 

fixed ruling of 𝑆 are also one and the same. Hence, there is 

a one parameter family of straight lines on the focal 

surface 𝑆  which is corresponding to the one parametric 

family of rulings of 𝑆. These straight lines are parallel to 

the -axis, and therefore, 𝑆  is a cylindrical surface. 

Substituting the right-hand sides of (12), (15), and (17) 

into (7) yields 𝐫 , = 

 

) −  + √ + ( 
 √ +− √ + ) 

 . 
 

After some calculations, we arrive at (18). □ 

Now, we can analyse properties of the focal 

surface 𝑆 . Since the tangent vectors to the parametric 

curves of 𝑆  are  

 𝐫 , = − , , 𝑇 ,                                           𝐫 , = , , 𝑇 , (19) 

 

the focal surface 𝑆  is regular in the domain  

 = { −∞, ∪ ,∞ } × −∞,∞= {ℝ\{ }} × ℝ.  

 

Moreover, the unit normal vector field of 𝑆  is determined 

only on  as follows  

 𝐧 , = √ + , √ + , 𝑇 , ≠ .            

By (19) the coefficient of the first fundamental form are  

 = + ,    = ,    = . 
 

From the second order partial derivatives 𝐫 , = , , 𝑇, 𝐫 , = , , 𝑇, 𝐫 , =, , 𝑇, we obtain the coefficients of the second 

fundamental form of 𝑆  

 = − √ + ,    = ,    = . 
 

Then, at regular points of 𝑆 , the Gaussian 

curvature  is equal to zero, and the mean curvature  

 = −  + √ +  

 

takes only negative values. Consequently, the focal surface 𝑆  on the domain  contains only parabolic points. The 

points on the straight line = 𝐫 , =, , 𝑇 ,    ∈ ℝ are the singular points of 𝑆  because 

both vectors 𝐫 ,  and 𝐫 , × 𝐫 ,  are equal to , , 𝑇.  

The base curve of 𝑆  in the −plane is the 

semi-cubical parabola  

 𝛽 = − , + , 𝑇 , ∈ −∞,∞         (21) 

 

which is implicitly defined by  

 = ( − ) .                                                           

 

This curve is the evolute of the base parabola  

 𝛽 = , , 𝑇 , ∈ −∞,∞ .                         (23) 

 

of the original parabolic cylinder 𝑆. Obviously, the 

implicit polynomial equation (22), considered in the 

Euclidean 3-space, defines the focal surface 𝑆 . According 

to [11], the same surface 𝑆  is called a right cylindrical 

surface with a base curve (directrix) semi-cubical 

parabola, and the straight line  of its singular points is 

called a cuspidal edge of 𝑆 . Such a kind of a surface is 

used in recent investigations in singularity theory as [9] 

and [21].  

We can also determine the points of the 

intersection 𝑆⋂𝑆 . Since both surfaces are cylinders 

whose rulings are parallel to the -axis, it is sufficient to 

find the intersection points of their base curves 𝛽  and 𝛽  in the −plane. For any point ∈ 𝛽 ⋂𝛽  

there are parametric values , ∈  such that 𝛽 =𝛽 . By (21) and (23) these values constitute a real 

solution of the nonlinear system  
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| == + .                                                      (24) 

 

The above system can be reduced to the equation − − = , which is equivalent to 

 + − − = . 
 

The last equation has two real roots = √  and =  − √ . It immediately follows that the pairs( =− √ , = √ and ( = √ , =  − √  are the real 

solutions of the system (24). In other words, the 

intersection 𝛽 ⋂𝛽  of the base curves consists of 

two points  and  whose position vectors are − √ , , 𝑇 and √ , . 𝑇, respectively. Then, 

the intersection 𝑆⋂𝑆  of the original parabolic cylinder 

with its focal surface falls into two straight lines parallel to 

-axis which are parameterized by − √ , , 𝑇 , ∈ ℝ 

and √ , , 𝑇 , ∈ ℝ. In addition, 𝑆  meets 𝑆 

transversally because the init normal vectors 𝐧 ,  

given by (20) ) and 𝐧 ,  given by (15) ) are non-

collinear at any point of the intersection  𝑆⋂𝑆 . A part of 

the original parabolic cylinder with = , the 

corresponding part of the focal surface, and their 

intersection are plotted in Figure-1. 

 

 
 

Figure-1.The intersection(two segments in white) of the 

part of the parabolic cylinder (in red) and irs foca 

 surface (in blue). 

 

3.2 A generalized focal surface of the parabolic  

cylinder 

Let us consider again the parabolic cylinder 𝑆 

defined by (12). Its Gaussian curvature =  is 

identically zero because of = . Substituting (14) and 

(16) into (6) we get the expression  

 =  − √ + +                                               

 

for the mean curvature of 𝑆. Thus, the function , =𝜅
 never vanishes and takes only negative values. First, we 

can find the generalized focal surface of 𝑆 defined by the 

reciprocal mean curvature of 𝑆.  

Theorem 2.Let S be the parabolic cylinder 

parameterized by (12), and let Sg be its generalized focal 

surface obtained by (9). Then, the surface Sg possesses a 

polynomial parametrization  

 𝐫 , = (−  −  + ),                                         (26) 

 

where , ∈ { −∞,∞ × −∞,∞ } = ℝ . Moreover, 𝑆  is a cylindrical surface which is regular everywhere on ℝ .  

Proof. From (15) and (25) it follows that 

 

𝐧 , =  − + √ + ( 
 √ +− √ + ) 

 
                   =    − + + .

 

 

Then, the right-hand side of (9) can be written as  

 

) +  − + +
= (−  −  + ) .  

 

This proves (26). If  is a real constant, then any 

parametric curve  

 −  −  , + , 𝑇 ,    ∈ ℝ 

 

of 𝑆  is a straight line parallel to the -axis. Therefore, 𝑆  

is a cylindrical surface. The tangent vectors to the 

parametric curves of 𝑆  

 𝐫 , = − − , , 𝑇𝐫 , = , , 𝑇                              (27) 

 

are non-collinear for any pair , ∈ ℝ . In fact, for both =  and ≠ , the vector cross product 

 𝐫 , × 𝐫 , = , + , 𝑇 

 

is differen from , , 𝑇. Consequently, 𝑆  is a regular 

surface. 

Second, we can examine some specific properties 

of the generalized focal surface 𝑆  with a parametrization 

(26). Using (27), we find scalar and vector quantities of 
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𝑆 . Suppose that 𝐴 = + + > . Then, 

the coefficients of the first fundamental form are 

 = 𝐴 , = , = ,  

 

the unit normal vector field is  

 𝐧 , = √𝐴 , +√𝐴 , 𝑇  ,                             

 

and the second order derivatives are 𝐫 , =− , , 𝑇, 𝐫 , == , , 𝑇, 𝐫 , =, , 𝑇. Furthermore, at the points of 𝑆 , the coefficients 

of the second fundamental form are  

 = − −√𝐴 , = , = , 
 

the Gaussian curvature  is identically zero, and 

by (6) the mean curvature  is  

 , = − −[ + + ] / . 
 

Hence, the generalized focal surface 𝑆  consists 

of parabolic and planar points. The parabolic points of 𝑆  

correspond to parametric values ∈ ℝ{√ , − √ }, because 

at these points both conditions =  and ≠  are 

fulfilled. If = √  and = − √ , then , =  

and , =  for any ∈ ℝ. Thus, all planar points 

of𝑆  parameterized by (26) are the points on two rulings 

of  𝑆 determined  by − √  −  √ , + , 𝑇 =  − √ , , 𝑇, ∈ ℝ 

and √  +  √ , + , 𝑇 = √ , , 𝑇, ∈ ℝ. 

Now, we will describe the intersection of the 

original parabolic cylinder 𝑆 given by (12) and its 

generalized focal surface 𝑆  defined by (26). For any point ∈ 𝑆⋂𝑆  there are pairs , , ,  ∈ ℝ  such 

that 𝐫 , = 𝐫 , , or equivalently,  

 | = − −= += .  

 

The last system can be rewritten as  

 | = − −= +                                                          = (29) 

 

Eliminating  from the first two equations we 

get a sixth degree equation  

 + + = +  
 

in the unknown . This equation is equivalent to the 

equation 

 [ − ][ + ] =  

 

with real roots =  and = − . 

Substituting these values into the first equation of (29) 

yields = −  and = . Consequently, the 

intersection 𝑆⋂𝑆 consists of two straight lines − , , 𝑇 , ∈ ℝ     and , , 𝑇 , ∈ ℝ which are 

two common rulings of 𝑆 and 𝑆 . By (15) and (28) the 

normal vectors 𝐧 ,  of 𝑆 and 𝐧 ,  of 𝑆  are non-

collinear at any point of these common rulings. Therefore, 𝑆  meets 𝑆 transversally. In case of = ,  the 

intersection of a part of the parabolic cyliner wirh the 

corresponding generalized  focal surface and the planar 

points on this generalized  focal surface are plotted in 

Figure-2. 

 

 
 

Figure-2. The intersection (two segments in white ) of a  

part  of the parabolic cylinder (in red) with its generalized 

focal surface (in green) and the planar points (two 

segments in yellow )  on this  generalized focal surface. 

 

Finally, we derive the implicit equation of 𝑆 . 

The first two coordinate functions in the parametrization 

(26) can be written as  

 | = , = −  −  = , = + ≥ . 
 

Then, we have  

 | = +− = ≥ . 
 

Eliminating  from these two equalities gives  

 ( ) = − −         ≥ . 
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The equation above is an implicit representation 

of 𝑆 .  

 

3.3 Relative position between the focal surface 𝐞 and  

the generalized focal surface 𝐠 
According to (11), the interior (resp. exterior) of 

the parabolic cylinder 𝑆 consists of the points in 𝔼  whose 

Cartesian coordinates , ,  satisfy the inequality − <  (resp. − > ). Then, the points of 𝑆  that belong to the interior of 𝑆 are determined by (18) 

with −√ < < √ . Similarly, the points of 𝑆  that 

belong to the interior of 𝑆 are determined by (26) with − < < . Using (22) we say that the interior of the 

focal surface 𝑆  consists of the points in 𝔼  whose 

Cartesian coordinates , ,  satisfy the inequality  

 − − < .                                                        (30) 

 

From (26) the Cartesian coordinates of the points 

on 𝑆  are = −  −  , = + , and = . Then for the points on 𝑆 , the left-hand side of 

inequality (30) can be written as  

 −  −  − + −
= ( ) [ + − + ]= ( ) − − − − <  .

 

 

 Hence, the surfaces 𝑆  and 𝑆  have no common 

points, and all points of 𝑆  belong to the interior of 𝑆 .  

The mutual position between  𝑆  and 𝑆  is illustrated in 

Figure-3. 

 

 
 

Figure-3. The generalized focal surface (in green) is 

placed inside the focal surface (in blue). 

 

4. CONCLUSIONS 
In this paper, we describe two cylindrical surfaces 

associated to an arbitrary parabolic cylinder 𝑆. The first 

one is the unique focal surface 𝑆  of 𝑆. All regular points 

of 𝑆  are parabolic, and all singular points of 𝑆  lie on one 

of its rulings. The second one is the generalized focal 

surface 𝑆  which is defined by the normals and reciprocal 

mean curvature of the original parabolic cylinder 𝑆. All 

points of 𝑆  are regular and can be divided into two types. 

The planar points of 𝑆  coincide with the points on two 

rulings of 𝑆 . All other points on 𝑆  are parabolic. Starting 

with a suitable polynomial parametrization of 𝑆, we obtain 

polynomial parameterizations of 𝑆  and 𝑆 . The relative 

positions of 𝑆, 𝑆  and 𝑆  are discussed. In particular, it is 

shown that all points of 𝑆  belong to the interior of 𝑆 .  
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